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A B S T R A C T   

Adolescence is associated with major changes in the cognitive, emotional and social domains. One domain in 
which these processes intersect is decision-making. Previous research has shown that individuals’ attitudes to
wards risk and ambiguity shape their decision-making, and information about others’ choices can influence 
individuals’ decisions. However, it is currently unknown how information about others’ choices influences risk 
and ambiguity attitudes separately, and the degree to which others’ choices shape decision-making differentially 
across development from adolescence to young adulthood. The current study used a computational modeling 
framework to test how information about others’ choices influences these attitudes. Participants, aged 14–22 
years, made a series of risky and ambiguous choices while undergoing fMRI scanning. On some trials, they 
viewed risky or safe choices of others. Results showed that participants aligned their choices toward the choice 
preferences of others. Moreover, the tendency to align choices was expressed in changes in risk attitude, but not 
ambiguity attitude. The change in risk attitude was positively related to neural activation in the medial prefrontal 
cortex. Results did not show age related differences in behavior and corresponding neural activation, indicating 
that the manner in which adolescents are influenced by peers is not ubiquitous but rather, is highly context- 
dependent.   

1. Introduction 

Many important decisions in life have uncertain outcomes, such as 
decisions in the financial, health and social domains. Although the 
outcomes associated with these choices are uncertain, they can have 
significant consequences. Given the importance of decision making 
strategies on life outcomes, it is important to understand what factors 
contribute to decision making and the role of contextual factors in de
cision making. Two important factors for decision making under un
certainty are attitudes towards risk and ambiguity. Previous work has 
shown that information about others’ choices has a robust influence on 
decision making. Seeing information about others’ previous choices 
makes one more likely to also select that option, an effect seen in the 
more safe (Braams et al., 2019) as well as the more risky direction 
(Chung et al., 2015). In this study, we investigate how seeing 

information about others’ previous choices specifically affects attitudes 
towards risk and ambiguity. We use functional magnetic resonance 
imaging (fMRI) to investigate which neural processes underlie changes 
in these factors of decision making when individuals have access to in
formation representing the previous choices made by others. To eval
uate whether adolescents are particularly attuned to this information, 
we tested a developmental sample of participants between the ages of 14 
and 22 years. Each of these components is discussed in detail below. 

1.1. Risk and ambiguity 

Experimental studies provide a unique opportunity to decompose 
complex processes such as decision making into components to study 
how each of these factors selectively influences decision making. Two 
important factors for decision making are attitudes towards risk (i.e., 
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choices with variable outcomes and known probabilities of these out
comes), and ambiguity (i.e., choices with variable outcomes with un
known probabilities of outcome). Attitudes towards risk and ambiguity 
can be dissociated with a widely used computational modeling approach 
(Blankenstein et al., 2016; Levy et al., 2010; Tversky and Kahneman, 
1992; Tymula et al., 2012). In general, individuals show both risk 
aversion (Tversky and Kahneman, 1992) and ambiguity aversion 
(Blankenstein et al., 2016; Ellsberg, 1961; Tymula et al., 2012). Atti
tudes towards risk and ambiguity show weak relations, indicating that 
they capture different elements of decision making under uncertainty 
(Von et al., 2011). 

FMRI research provides information on how human brain func
tioning supports decision making processes. Experimental studies have 
identified neural regions involved in general decision making, and more 
specifically permits identification of neural responses that scale with the 
riskiness and ambiguity of the choice options. Although the exact neural 
mechanisms tracking risk and ambiguity during decision making is not 
fully understood, previous work and a recent meta-analysis have shown 
that both risky and ambiguous decision making engage neural regions 
related to salience (i.e. insula and anterior cingulate cortex), valuation 
(i.e., striatum), and executive control (i.e. parietal and prefrontal re
gions) (Blankenstein et al., 2017; Huettel et al., 2006; Krain et al., 2006; 
Levy et al., 2010; Poudel et al., 2020). These findings suggest that 
evaluating risk and ambiguity may require recruitment of the brain’s 
distributed affective and cognitive systems. 

Ultimately, choices are made based on an integrated value signal 
representing each of the choice options, known as subjective value 
(Tversky and Kahneman, 1979). The subjective value of choice options 
is constructed of different parts: the objective characteristics of the 
choice options (i.e., riskiness and ambiguity), and the weight that sub
jects attribute to the riskiness and ambiguity of these options (i.e., risk 
and ambiguity tolerance) (Levy et al., 2010; Tversky nd Kahneman, 
1992; van den Bos et al., 2018). The same choice option can therefore 
have a different subjective value for individuals based on the risk and 
ambiguity tolerance of the individual. The subjective valuation of 
different choice options is encoded in the ventromedial prefrontal cortex 
(Bartra et al., 2013; Clithero and Rangel, 2014; Kable and Glimcher, 
2007; Levy et al., 2010). 

1.2. Social context 

Besides risk and ambiguity, the social context is another factor that is 
highly relevant for decision making and has been shown to influence 
decision making under uncertainty. A large body of literature shows that 
people tend to conform to others’ choices and behavior (Brechwald and 
Prinstein, 2011; Cialdini and Goldstein, 2004; Zaki et al., 2016, 2011). 
There are many different ways in which others can influence decisions, 
ranging from active involvement of others in the decision making pro
cess to passive observation. In the current study, we focus on one specific 
type of social context: how information about others’ previous choices 
influences decision making. 

A real-life example is when faced with the decision to drive home 
after drinking or to arrange alternative transport. Knowledge about the 
previous decisions of others in a similar situation can influence whether 
we judge it acceptable to drive. Prior experimental studies have shown 
that people are prone to follow previous decisions of others (Albert et al., 
2013; Blankenstein et al., 2016; Braams et al., 2019; van et al., 2016). 
Adults make more risky decisions when they see that someone else 
makes risky choices, and conversely make less risky decisions when they 
see that someone else prefers the safe option (Chung et al., 2015). In this 
study, computational models indicated that information about others’ 
choices alters the subjective value of the choice option selected by the 
peer. The increase in subjective value was related to activation in the 
ventromedial prefrontal cortex. It is currently unknown how informa
tion about others’ choices separately influences risk and ambiguity at
titudes and its related neural correlates. 

1.3. Age related changes in decision making 

Adolescence is the stage in life between childhood and adulthood 
that begins around the onset of physical puberty and ends with the 
assumption of independent roles. Adolescence is an important period in 
life associated with both changes in decision making under uncertainty 
and changes in the social domain. As children enter adolescence, peers 
become more important and adolescents show heightened risk taking 
behavior in the real world when they are with their peers (Doherty et al., 
1998; Eaton et al., 2010). Because of the highly salient social context and 
the changes in risk taking behavior during adolescence, this age group 
can give unique insight into the process of decision making under un
certainty. Two behavioral studies tested the influence of information 
about previous choices of supposed peers on risk and ambiguity atti
tudes. One study tested how previous risky and safe choices of others 
influenced participants’ choices on risky and ambiguous choice options. 
In this study, late adolescents, compared to children, early adolescents 
and adults, were more likely to follow peers’ choices for a safe option 
and less likely to follow a risky option (Braams et al., 2019). There was 
no evidence for an interaction between social context and riskiness or 
ambiguity of the choice options. However, this study did not use a 
computational framework to derive risk and ambiguity tolerance pa
rameters for each individual, which could provide a more precise index 
of behavior on which to evaluate the influence of peers’ choices. For this 
reason, the present study incorporates a computational framework. 

A second study utilized a computational modeling approach to 
disentangle the effects of risky choices of others on risk and ambiguity 
tolerance (Blankenstein et al., 2016). In this study, participants aged 
10–25 years made decisions with varying levels of risk. In one condition 
they did not see information about others’ choices, and in another 
condition they were presented with previous choices of another indi
vidual. This study found that participants increased their selection of 
risky choice options when presented with the previous risky choices of 
another person. The change in choice behavior was related to an in
crease in risk tolerance, and no changes in ambiguity attitude were 
observed. The change in risk tolerance was highest for the younger 
participants in the study and linearly decreased into young adulthood. 
However, this study did not test the influence of safe choices of a peer. 
Together, these studies show that adolescents incorporate information 
about previous choices of others when making decisions. The current 
study extends this work by investigating how these safe and risky 
choices change risk and ambiguity tolerance across age. 

1.4. The current study 

The current study evaluated which neural mechanisms underlie 
changes in risky and ambiguous decision making when participants are 
informed about previous safe and risky choices of others, and whether 
these processes change with age from adolescence to young adulthood. 
Participants made a series of choices between a sure, safe, option and a 
risky option with variable outcomes. The risky option varied in level of 
risk (i.e., outcome variability), and ambiguity (i.e., uncertainty about 
the chances of winning). To test the effects of social information, for 
some decisions, participants received information on choices of sup
posed previous participants in the study. These supposed other partici
pants reflected a generally risk-tolerant or risk-averse choice strategy. As 
a comparison condition, participants made choices without information 
about others’ previous choices. Participants’ neural responses were 
recorded while making decisions. 

We utilized a computational modeling approach to estimate pa
rameters reflecting each participant’s risk and ambiguity attitudes. We 
hypothesize that risk tolerance, as estimated by parameters in the 
computational utility model, will increase when participants are 
observing risky choices made by peers. Conversely, we expect that risk 
tolerance will decrease when seeing safe choices of others. It has been 
suggested that following safe choices of others might be a particularly 
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salient context for social learning, as safety cues from others can facil
itate avoidance of negative outcomes (Ciranka and van den Bos, 2021). 

We expected that adolescents would show a distinct pattern of de
cisions when information about others’ choices is present. However, 
different predictions could be derived from different literatures on 
adolescent social learning and decision making. One line of prior work 
has demonstrated that relative to adults, adolescents are especially 
prone to learning from direct experience rather than following the 
guidance or instructions by others (Decker et al., 2015). This may lead to 
a prediction that adolescents are especially motivated to make choices 
that are independent of the views of others, which would lead them to be 
less likely than adults to shift risky choice behavior based on the pre
vious choices of peers. A second line of work emphasizes adolescents’ 
propensity to be influenced by peers. Previous work has demonstrated 
that direct observation by peers will induce riskier choices by adoles
cents more so than adults (Albert et al., 2013; Chein et al., 2011), which 
might lead to an opposite prediction – that adolescents would be more 
influenced by peers’ choices. Finally, recent perspectives have empha
sized the potential for an asymmetric effect of peers on risky relative to 
safe choices during adolescence, which aligns with prior empirical 
findings (Braams et al., 2019; Chung et al., 2020; Engelmann et al., 
2012). This perspective emphasizes that information about safe choices 
of peers could exert greater impact than information about risky choices 
during adolescence, as observing others behave safely during explora
tion is a particularly important signal that would facilitate avoidance of 
negative outcomes when encountering new environments or 
information. 

These previous studies and perspectives do not yield a highly cohe
sive set of behavioral predictions; therefore, we did not make strong 
behavioral hypotheses for the present study. Rather, the objective of the 
present study was to generate robust data to help resolve these 
competing perspectives. In the brain, we predicted that changes in risk 
tolerance would show a positive relationship with activation in neural 
regions previously related to risk processing and integration of different 
sources of information including the ventral striatum, insula and 
ventromedial prefrontal cortex (Blankenstein et al., 2017; Blankenstein 
et al., 2018; Levy, 2017). In parallel with potential age-related differ
ences in the computational model estimates of risk and ambiguity atti
tudes, we expected that patterns of neural activation would track with 
age-related changes in risk and ambiguity tolerance in the social infor
mation conditions. Together, these analyses provide more insight into 
the underlying processes that give rise to changes in risky and ambig
uous decision making in a social context. 

2. Methods 

2.1. Participants 

A total of 69 participants between 14 and 22 years old participated in 
the study. The selection of the age range for the current study resulted 
from a balance between practical concerns regarding feasibility of the 
data collection and inclusion of the age range of interest. The results of 
our previous study (Braams et al., 2019) showed that the effects of 
observing peer choices were strongest in older adolescent group, age 
range ~16–18. By reducing the age range, we increased the sample 
density for the ages selected in the sample, allowing a focus on the age 
range of interest. The participants in the current study comprised an 
independent sample with no overlap in participants tested in our pre
vious work (Braams et al., 2019). 

Individuals were excluded from participation if they endorsed a 
history of neurological disorders, head trauma, recent diagnosis of any 
psychiatric disorder, insufficient command of the English language to 
understand task instructions, or MRI contraindications. In the case of 
minors, parents were asked to report on these exclusion criteria. 
Exclusion criteria for data analysis for fMRI data included a motion 
cutoff of > 5 mm framewise displacement or > 15% framewise motion of 

more than 0.9 mm in two or more runs (Davidow et al., 2019; Siegel 
et al., 2014). Signal to noise ratio (SNR) was calculated as the mean/
standard deviation averaged for each slice and then averaged across all 
slices. Any participant with two or more runs with excessive motion or 
signal to noise ratio values < 99 were excluded from data analysis. 
Additionally, participants were excluded if they did not finish data 
collection or if they did not believe the social manipulation. In total, four 
participants were excluded from final data analysis: one for incomplete 
data, one for low SNR, one for excessive motion, and one who did not 
believe the social manipulation (see task design). The average absolute 
motion across the three runs in the included sample was 0.48 mm 
(min=0.12 mm, max=2.46 mm). The total number of usable datasets 
was 65 (32 females), Mage= 18.54, SDage= 2.61, Rangeage=

14.21–22.83. A chi-square test indicated that the proportion of males 
and females did not vary significantly across age (χ2(58) = 61.00, 
p = .37). 

2.2. A priori power analysis 

We performed a power analysis before beginning the current study to 
determine the sample size using the package simr (Green and MacLeod, 
2016). Because we previously published a behavioral study using a 
similar paradigm with 99 participants aged 12–22 years old (Braams 
et al., 2019) we leveraged a subset of this prior independent dataset to 
calculate observed power for the behavioral effects of central interest. 

In the current study, we focused on participants ages 14–22 years 
old. Therefore, for the observed power analysis we only included in
dividuals of this age range, resulting in N = 65, after ensuring an equal 
distribution across age and gender. Note that participants were selected 
based on age and gender and not on behavioral performance in the task. 
As we were interested in age-related effects in the social conditions, we 
used the effect size of the Age x Social Risky and Age x Social Safe 
interaction effects on risky choices from the previous study. A sample 
size of 65 participants resulted in 96% power for the Age x Social Risky 
effect and 100% power for the Age x Social Safe effect. The power 
analysis indicated that a sample of 65 participants would provide suf
ficient power to detect age-related effects of the social vs solo conditions 
on risky choices at the behavioral level. The previous behavioral study 
did not employ computational modeling or brain imaging approaches. 
Thus, this power analysis cannot inform power for the computational 
models or the fMRI analyses. 

2.3. Session 

The total duration of the session was 3 h. Participants received $60 
for participation and they could earn up to $23 in bonus money based on 
their choices in the task. Prior to participation, adult participants pro
vided informed consent, and parent permission and participant assent 
were obtained for minors. This study was approved by the Committee on 
the Use of Human Subjects at Harvard University. 

2.4. Task 

2.4.1. Trial Structure 
On each trial, participants made a choice between a safe option (a 

sure amount of $5) and a risky option (a lottery). For the risky option, 
there was a low and a high magnitude outcome. The low outcome of 
each lottery was always $0 and the high magnitude outcome varied 
between $3 and $76. The chance of winning the high magnitude 
outcome varied between 20% and 80% in increments of 20%. The ex
pected value of the risky option (i.e., magnitude of the high amount 
multiplied by the odds of winning the high magnitude) varied between 
$1 and $60. The expected value of the safe option was always $5. To 
account for the fact that overall, people tend to be risk averse and to 
ensure sufficient variation in choices, the expected value of the risky 
option was higher than the expected value for the safe option on 
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approximately 70% of the trials. Lotteries were represented graphically 
as bars with the colors of the bar representing the chance of winning 
different magnitudes (see Fig. 1). 

Ambiguity was introduced into the lotteries by covering part of the 
bar. Ambiguity levels varied between 0% and 80%, in increments of 
20%. Bars were covered proportionally, meaning that for a lottery with 
20% chance of winning the low amount of money and 80% chance of 
winning the high amount of money and an ambiguity level of 60%, the 
total visible bar for the chance of winning the low amount of money was 
8% and the total visible bar for the chance of winning the high amount of 
money was 32%. Consequentially, the optimal strategy (i.e., to ignore 
ambiguity) was the same for all levels of ambiguity. Any changes in 
decision making strategy for different ambiguity levels can therefore be 
attributed to the ambiguity level of the lottery. Note that participants 
were not informed of the optimal strategy and did not receive any 
additional information on the underlying probabilities. 

We used a computational modeling framework to derive risk toler
ance and ambiguity aversion estimates for each participant (also see 
‘computational modeling’). To optimize model performance, the final 
set of presented trials was selected based on simulations of choice data 
and subsequent recovery of parameters of the computational model. 
Choice data were simulated for a range of parameter values for risk 

tolerance, rho 0.7 to 1.3 in increments of 0.3, and ambiguity aversion, 
beta -2 to 2 in increments of 1. Parameter recovery for the final data set 
was high. The correlation coefficient for rho and recovered rho was 
r = 0.94 and beta and recovered beta showed a correlation of r = 0.97. 

On each trial, the two choice options (i.e., safe option and the lottery) 
were displayed and participants had 4 s to indicate their preferred 
choice, after which a confirmation of their choice was displayed for 
0.5 s. Trials ended with a variable jitter between 1.21 s and 7.83 s, 
average jitter was 4.83 s (see Fig. 1). If participants responded within 
4 s, the remaining time was added to the jitter. If participants did not 
respond within 4 s, the word ‘missed’ was shown on the screen for 1 s, 
the task then continued with the next trial. In total, eight different 
counterbalanced trial presentations were presented across participants. 
Probabilities of winning the high magnitude amount were presented 
either in blue or red, the location of the high and low magnitude 
amounts were presented on the top or bottom of the bar, and safe and 
risky choice options were presented on either the left or right side of the 
screen. Counterbalance assignment did not differ across age (χ2(56) =
48.40, p = .75). 

Fig. 1. Task Design. Trials started with a screen showing the choice options (see panel A). One option, the safe option, was always a sure $5. The other option, the 
risky option, was a chance of winning zero dollars or a high amount of money varying between $3 and $76. Chances of winning the high amount of money (in red) 
varied between 20% and 80% (see panel B). For the ambiguous choices, part of the bar was occluded thereby introducing uncertainty about the chances of winning. 
Ambiguity levels varied between 0%− 80% (see panel C). The example in the figure reflects all ambiguity levels for a trial in which the chance of winning the high 
amount (shown in red) was 60%. In the solo condition, participants made choices without availability of additional information about a peer’s choice. In the social 
conditions, participants saw a picture of a peer and their choice, displayed as a green bar over the selection. Trials in the social safe condition were defined as all trials 
on which peer selected the safe option, whereas trials in the social risky condition were defined as trials in which the peer selected the risky option. Peers were the 
same gender and age category as the participants. The example displays an 18–22-year-old male. After the trial onset, participants indicated their choice within 4 s, 
their choice was displayed for 0.5 s and trials ended with a variable jitter. 
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2.4.2. Social manipulation 

Participants were instructed that on some trials, they would see the 
choices of two peers of their choosing. On trials in which participants 
could see the choices of the peers, they were presented with a name and 
a picture of that supposed previous participant. Choices of peers were 
indicated by a green rectangle above their preferred choice (see Fig. 1). 

Before the start of the task, participants rated 15 pictures of similar- 
aged and gender matched individuals. Participants rated these in
dividuals on seven different questions assessing dimensions such as 
niceness, friendliness and popularity (see Braams et al., 2019 for de
tails). Ratings were made on a continuous scale with anchors ‘not at all’ 
and ‘extremely’. Participants indicated their rating with a slider on the 
scale. Participants were told that these people were previous partici
pants in the study and to make it believable that we took a picture of 
previous participants, the experimenter also took a picture of the 
participant. To ensure that participants saw choices of those individuals 
that they were most interested in, participants were asked to select two 
individuals for whom they would see choices in the task. Selected in
dividuals received higher ratings on each of the seven different di
mensions (i.e. attractiveness, possibility of becoming friends, niceness, 
popularity, similarity, whether the participant thought the other person 
was more attractive than they are and whether the participant thought 
the other person was more popular than they are, than non-chosen in
dividuals; see Supplementary Fig. 1). 

We randomly assigned the two selected peers to be the risky peer and 
the safe peer. The ‘Risky peer’ made 75% risky choices and 25% safe 
choices, whereas the ‘Safe peer’ made 75% safe choices and 25% risky 
choices. There were no statistical differences between the ratings for the 
safe and risky peer on any of the dimensions and participants’ choices 
were not related to the rating of the peers on any of the dimensions, see 
Supplementary Materials. Note that although the ‘peers’ each showed a 
distinct decision making profile (i.e., risky or safe), collapsing across the 
peers participants yielded 50% risky choices and 50% safe choices in 
aggregate. All ambiguity levels and all risk levels were distributed across 
trials for the peers, meaning that all ambiguity levels and all risk levels 
were shown in both conditions. See Supplementary Materials for details 
of selection of choices depicted in the social risky and social safe trials. 
Importantly, participants were never instructed to follow the choices of 
the peers. 

We used a funnel debrief interview to assess whether participants 
believed the social manipulation. Participants were asked whether they 
paid attention to the choices of the other participants and if they 
answered that they did not, follow-up questions determined why the 
participant did not pay attention to the choices and whether the 
participant believed the manipulation. One participant indicated that 
they did not pay attention to the choices and that they did not believe 
the social manipulation; this participant was excluded from analyses. All 
other participants indicated that they believed the manipulation. Par
ticipants were fully debriefed about the social manipulation at the end of 
the session. 

2.4.2.1. Conditions 
Trials displaying peer choices were presented intermixed with 

choices in which participants did not see any additional choice infor
mation (solo condition). Choices in the solo condition were used to 
quantify baseline risk preferences. In total, this resulted in three con
ditions: solo, social safe, and social risky. Choice simulation and sub
sequent parameter recovery (Wilson and Collins, 2019; see 
Supplementary Materials for details) showed that 60 trials per condition 
were needed for an accurate estimation of the risk and ambiguity 
tolerance parameters. The full time to perform the task for participants is 
35 min, which we judged to be too lengthy for the developmental 
sample to complete inside of the MRI. Thus, participants performed part 
of the task inside the scanner and part of the task outside of the scanner. 
Trials presented during fMRI scanning included all levels of risk and 

ambiguity levels of 0%, 40% and 80%, for a total of 108 trials. Addi
tional trials were presented outside of the scanner with all risk levels and 
with ambiguity levels 20% and 60%, adding 72 additional trials of 
behavioral data. 

2.5. FMRI data acquisition 

Data were collected on a 3 T Siemens Tim Trio scanner, with a 32 
channel head coil. A high-resolution 3D T1-weighted anatomical image 
was collected using multiecho multiplanar rapidly acquired gradient- 
echo (MEMPRAGE) sequence (repetition time=2260 msec., echo 
time=1.69, 3.55, 5.41, 7.29 msec., flip angle=7◦, field of 
view=256 mm, slice thickness=1 mm, voxel size=1x1x1 mm). Func
tional MRI data were acquired over three runs of 183 volumes each. 
Functional data were acquired with a T2 * -weighted EPI sequence with 
the following parameters: repetition time= 2 s, echo time= 31 msec., 
field of view= 206 mm, flip angle= 80◦, voxel 
size= 2.4 × 2.4 × 2.4 mm, multi-band acceleration factor: 3, slice 
thickness: 2.4 mm, total number of slices per TR= 66. 

2.6. Data analysis 

2.6.1. Behavioral data analysis 

2.6.1.1. Raw choice data 
All raw choice data were inspected for outliers, defined as |z|> 3. No 

outliers were identified for mean percentage risky choice for any of the 
conditions. To test whether the percent risky choices was different 
across conditions, we first calculated the mean percent choices for the 
risky option for the solo, social risky and social safe conditions. To test 
whether the social manipulation significantly altered percentage choices 
for the risky option, we performed t-tests to compare percentage choices 
for the risky option in each of the social conditions and the solo condi
tion. In these analyses, we compared only those trials that were pre
sented in both the solo condition and the social condition of interest to 
accurately reflect differences in risky choice based on the social infor
mation instead of the choice options that were presented. 

2.6.1.2. Computational modeling 
We used a computational modeling framework to derive risk toler

ance and ambiguity aversion for each participant. We used a well- 
established power utility function to model the expected utility of 
each option (Blankenstein et al., 2016; Gilbo and Schmeidler, 1989; 
Levy et al., 2010; Tymula et al., 2012). In this utility function, both the 
risk and the ambiguity of the options are considered, resulting in sepa
rate parameter estimates for risk tolerance and ambiguity aversion. 

The expected utility, U is given by: 

U(p,A, v) = (p − (β ∗ p ∗ A)) ∗ vρ 

In this model p is the probability of winning the high amount, v is the 
value of the high amount, A is the ambiguity level of the option. Risk 
tolerance is ρ. A risk neutral subject would have a ρ of 1 and would 
choose the option with the highest expected value. Risk seeking would 
be reflected in ρ> 1, resulting in a higher expected utility of the risky 
option compared to the expected value. Risk aversion would be reflected 
by ρ< 1. Ambiguity tolerance is β. An ambiguity neutral participant 
would assign the covered part of the bar proportionally to the chances of 
winning. That is, if the chance of winning is the high amount is 40%, an 
ambiguity neutral participant would assign 40% of the covered bar to 
the chance of winning the high amount, thereby essentially ignoring 
ambiguity, this would be reflected in a β of 1.1 An ambiguity averse 

1 Note that this is a generalized version of the formula previously used in 
Tymula et al. (2012) in which all ambiguous lotteries had an underlying 
probability of winning of 50%, resulting in p * A.5 *A and simplified to A

2. 
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participant would assign less than 40% of the covered bar to the chance 
of winning the high amount of money, which is reflected in positive 
values of β. Negative values of β would reflect ambiguity seeking. 

The probability of choosing the risky choice option is then calculated 
using a softmax function: 

P(chose risky lottery) =
Urisky

(1/μ)

Urisky
(1/μ) + Usafe

(1/μ)

In which μ is noise. As choices become more random, μ becomes 
larger. To test for any age-related differences in noise, we performed a 
model fitting procedure on the μ parameter fitted for each participant for 
each condition. We used non-linear mixed effects models to compare a 
total of three different models per condition. We compared a null model 
in which we did not include an age parameter, a model with a linear 
predictor for age testing for linear increases or decreases over age and a 
model with a quadratic predictor for age testing for adolescent-specific 
effects. Model fit was evaluated based on AIC values. Lower AIC values 
indicate a better fit. Model fit improvement was tested using a log 
likelihood ratio test. The best fitting model for the solo and social safe 
conditions was a null model indicating that there were no age-related 
differences in noise (AIC values solo condition null model: − 52, linear 
age model: − 50, quadratic age model: − 48; AIC values social safe 
condition null model: − 59, linear age model − 57, quadratic age model 
− 55). In the social risky condition, the best fitting model was a model 
including a quadratic regressor for age (AIC values social risky condition 
null model: 14, linear age model: 11, quadratic age model 9). In this 
model, there was a significant quadratic relationship with age in which μ 
was smallest in the mid-range of the age of the sample, i.e. 18 years old 
(B=0.53, t(61) = 2.16, p = .034), suggesting this age group showed the 
least randomness and thus most consistency in their choices. 

Computational models were fitted using fmincon, search algorithm 
sqp, in MATLAB. Parameter initialization points were random with 
bounds 0–1. No parameters bounds for the solution were enforced. 
Models were fitted 50 times and the best model solution was selected 
based on log likelihood. Plots to illustrate the fit of the computational 
model on the raw data are shown in Supplementary Figure 3. Plots 
showing model fit for each individual participant are available on the 
Open Science Framework: https://osf.io/8frsj/. Parameter estimates 
were inspected for outliers. One participant selected the risky option on 
all lotteries in the social risky condition. Due to the lack of variation in 
the choice data, parameter estimates could not be established accurately 
and were therefore excluded from all analyses for this participant. 

2.7. Risk and ambiguity tolerance comparisons between conditions and 
across age 

We fitted computational models to derive risk and ambiguity atti
tudes in each of the three conditions (solo, social risky, social safe). 
Changes in these parameters would reflect changes in decision making 
strategies by social context and can therefore be used to parse out 
whether participants modify their choices in the social conditions due to 
changes in risk tolerance, ambiguity aversion, or both. To test whether 
risk and ambiguity attitudes were altered in the social conditions versus 
the solo condition, we fitted non-linear mixed effects models with a fixed 
effect for condition and a random effect for participant. Models were run 
using package nlme in R (Pinheiro et al., 2013; R Core Team, 2014). If a 
model with a fixed effect for condition fits significantly better than the 
null model without fixed effects, this would indicate that the variation in 
the dependent variable is significantly better explained when taking the 
condition into account. 

We also fitted two additional mixed effects models to test for age 
related effects. We used the poly function in the nlme package (Pinheiro 
et al., 2013) in R to fit a model including a linear fixed effect of age and a 
model including both a linear and quadratic fixed effect of age. Linear 
effects of age would indicate a gradual increase or decrease with age, 

whereas a quadratic effect of age would indicate an age-range specific 
peak (or dip). Both of these models included a factor for condition (so
cial safe vs. solo, or social risky vs. solo). We tested for interactions 
between the linear and quadratic fixed effects for age and condition. If 
models with an interaction for age fit significantly better than a model 
with only condition, this would indicate that the changes in the 
dependent variable between the conditions differed across age. Models 
were fit for the social risky condition vs solo and the social safe condition 
vs solo separately. 

2.8. fMRI data analysis 

FMRI preprocessing was performed using fmriprep, version 1.0.15 
(Esteban et al., 2019). Preprocessing steps included slice-time correc
tion, realignment, coregistration of functional to structural images and 
non-linear normalization of anatomical to MNI152 template space. 
Spatial smoothing using a 5 mm full width at half maximum Gaussian 
smoothing kernel was performed using fslmaths. FMRI analyses were 
performed using FSL, version 5.0.9 (Jenkinson et al., 2012). We used 
FEAT to estimate task effects (Woolrich et al., 2004). On the first level, 
regressors of interest were included for the solo condition, social risky 
condition, and social safe condition. Regressors were timelocked to the 
onset of the trials and duration was specified from the onset of the trial 
until the onset of the fixation cross. Not all trials shown in the solo 
condition were shown in both social information conditions. To permit 
creating contrasts that compare the same choice information in each 
condition (varying only in the social information), the trials in the solo 
condition were divided into three different categories: trials that were 
shown in the social risky condition, but not in the social safe condition; 
trials that were shown in the social safe condition, but not in the social 
risky condition; and trials that were shown in both conditions. A re
gressor of non-interest was included for missed trials. All regressors were 
convolved with a double-gamma hemodynamic response function 
included in FSL. Standard fMRIprep output nuisance regressors were 
included for 29 variables including motion and rotation in x, y, z di
rections, average csf signal and average white matter signal (see 
https://fmriprep.readthedocs.io/en/stable/outputs.html for full expla
nation of all nuisance regressors provided by fMRIPREP). 

First level individual contrasts were then submitted to random ef
fects group analyses using FLAME 1 + 2 as implemented in FSL. We used 
a threshold of z > 3.1, cluster corrected to FWE p < .05, for the group 
analyses. Parameter estimates were extracted from activated clusters to 
allow for descriptive plotting of the results. We first tested whether 
seeing choices of others was related to activation in neural regions 
previously found to be active in social contexts. We tested the whole 
brain contrast social>solo. As this contrast was intended to test for ef
fects of social information regardless of the content of that information, 
we combined the social risky and social safe conditions. We then per
formed whole brain analyses to test which neural regions respond to the 
riskiness and ambiguity levels of the trials. These analyses were per
formed on the solo condition to isolate the effects of the riskiness and 
ambiguity of the trials, without the presence of social information. 

To test which neural regions track the riskiness of the trials, we 
performed a parametric whole brain regression. We tested which neural 
regions responded to parametric increases in risk as well as which neural 
regions responded to parametric decreases in risk. Trials were catego
rized based on percentage chance of winning (20%; 40%; 60% and 
80%). The t-test contrast assigned weights to these categories in a 
parametric manner. The positive linear contrast was coded as [− 3; − 1; 
1; 3] and the negative parametric test [3; 1; − 1; − 3]. To test which 
neural regions responded to the ambiguity level of the trials, we again 
used a parametric whole brain regression. Here we categorized trials 
based on the level of ambiguity (0%; 40%; 80%). The positive linear 
parametric contrast was coded as [− 1; 0; 1] and the negative linear 
parametric contrast was coded as [1; 0; − 1]. Exploratory analyses with 
age as a linear and quadratic regressor were performed and are available 
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on NeuroVault: https://identifiers.org/neurovault.collection:10516. 
To test how changes in risk and ambiguity attitudes are related to 

changes in neural activation, we used the results of the behavioral an
alyses to guide our analyses. In the behavioral analyses, we used 
computational models to test whether risk and ambiguity attitudes 
changed as a function of availability of social information. Differences in 
risk and ambiguity attitudes between the solo and social conditions were 
then used as regressors in a whole brain regression on the contrast of 
interest (i.e., social risky>solo or social safe>solo). Finally, we tested 
which neural regions showed age related differences in activation. We 
tested for linear increases and decreases in neural recruitment as well as 
quadratic effects in the contrast social>solo. We tested both a quadratic 
peak with age to identify neural regions that show highest levels of 
activation for the participants in the mid-range of age of the sample (i.e., 
18 years of age) and a quadratic dip with age to identify neural regions 
that show lowest levels of activation for the mid-range of age in the 
sample. These are common patterns associating age and performance 
across many types of cognitive processes and will allow us to draw 
comparisons to a broad developmental literature when considering the 
trajectory of decision making in safe and risky contexts. 

3. Results 

3.1. Behavioral results 

3.1.1. Raw choice data 
To confirm that our social manipulation affected choice preferences, 

we tested whether participants changed the proportion of risky choices 
they selected in the social conditions compared to the solo condition. 
Participants selected the risky option, on average, on 42.49% of trials in 
the solo condition (SDsolo=13.31, rangesolo=15–70), 70.41% of trials in 
the social risky condition (SDsocial risky=18.90, rangesocial risky=32–100) 
and 15.74% of trials in the social safe condition (SDsocial safe=10.80, 
rangesocial safe=1.67–46.67), see Fig. 2. In both social conditions, par
ticipants were presented with 40 unique lotteries (see Methods for de
tails). To accurately reflect change in risky choices, we compared each 
social condition against a set of matching lotteries from the solo con
dition. One sample t-tests were run to test whether change in mean 
percentage risky choice was significantly different from zero. Mean 
percentage risky choice on matched trials in the solo condition was 
subtracted from mean percentage risky choice in each of the social 

conditions. Values above zero therefore indicate increases in risky 
choice, values below zero decreases in risky choice. In line with our 
hypothesis, participants chose the riskyoption significantly more often 
in the social risky condition than in the solo condition (t(64) = 3.56, 
p < .001). In the social safe condition, participants selected the risky 
option significantly less often than in the solo condition (t(64)=-3.69, 
p < .001). 

3.1.2. Computational models 
We first fitted models to derive risk and ambiguity tolerance for each 

participant for the solo condition and each of the social information 
conditions. Changes in these parameters in the social conditions, 
compared to the solo condition, give insight to whether participants 
change their choices in the social information conditions due to changes 
in their risk or ambiguity attitudes, or both. After testing for differences 
between the conditions, we tested for age-related changes. For risk 
tolerance, the best fitting model for both conditions was a model with 
condition and no age effects, see Table 1 for AIC values for all models. 
This means that risk tolerance was significantly altered in both social 
conditions compared to the solo condition, and that the change in risk 
tolerance was not related to age. Participants showed increased risk 
tolerance in the social risky condition, (B=0.06, SE=0.021, t(63) =
2.55, p = .013), and a decrease in risk tolerance in the social safe con
dition (B=− 0.04, SE=0.012, t(64) = − 3.61, p < .001), see Fig. 3 A. For 
ambiguity aversion, the best fitting model was a null model, meaning 
there was no evidence for changes in ambiguity aversion in the social 
conditions compared to the solo condition (social risky condition vs solo 
condition: B=− 0.19, SE=0.13, t(63) = − 1.41, p = .164; social safe 
condition vs solo condition: B= − 0.05, SE= 0.07, t(64) = − 0.72, 
p = .476), see Fig. 3B. Also, we did not find age related differences in 
ambiguity aversion. 

3.2. FMRI results 

3.2.1. Main effects 
We first tested which neural regions were active when participants 

were presented with information about others’ choices. As expected, 
results for this social>solo whole brain contrast showed activation in a 
set of regions previously related to social information processing 
including the ventromedial prefrontal cortex, temporoparietal junction 
(TPJ) and precuneus, see Fig. 4 and Table 2. We then performed separate 
analyses to test which neural regions showed increases in activity in 
response to increases in risk and ambiguity. Whole brain results for the 
parametric regression testing for increased activation with increasing 
riskiness of the trials resulted in activation in regions including the 
ventral striatum and anterior cingulate cortex, see Table 3. A parametric 
regression for decreasing risk resulted in activation in the occipital 
cortex, see Table 3. Whole brain parametric regression results for the 

Fig. 2. Raincloud plots displaying average change in percent choices for the 
risky option in the social safe and social risky condition compared to the 
matched trials in the solo condition. Black dots indicate the mean for each 
condition, error bars indicate standard error of the mean. Participants made 
significantly fewer risky choices in the social safe condition compared to the 
solo condition, and significantly more risky choices in the social risky condition 
compared to the solo condition. 

Table 1 
Included fixed effects and AIC values for all models. Improvement of model fit 
was tested using a log likelihood ratio test. Models were regarded statistically 
better if they exceeded the threshold of p < .05. Preferred models are depicted in 
bold. A full description of the statistical parameters for each of these models is 
available on the Open Science Framework: https://osf.io/8frsj/.  

Fixed effects Social risky vs solo Social safe vs solo  

Risk 
tolerance 
(rho) 

Ambiguity 
aversion 
(beta) 

Risk 
tolerance 
(rho) 

Ambiguity 
aversion 
(beta) 

None (null model) -70  383 -170  234 
Condition -75  383 -180  236 
Condition * linear 

age 
-72  387 -176  238 

Condition * linear 
age & Condition 
* quadratic age 

-71  388 -176  240  
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ambiguity analysis showed increased activation in a distributed set of 
regions across the brain including the precuneus and superior frontal 
gyrus for parametric increases in ambiguity, and increased activation in 
the temporal pole and supramarginal gyrus for parametric decreases in 
ambiguity, see Table 4 for all clusters of activation for both analyses. 

3.2.2. Whole brain regressions 
The next set of analyses were guided by the behavioral results 

showing a change in risk tolerance, but not ambiguity tolerance, in the 
social conditions compared to the solo condition. We tested how 
changes in risk tolerance were related to changes in neural activation by 
performing a whole brain regression on the social risky>solo and social 

Fig. 3. Raincloud plots displaying density and individual data points for the risk aversion parameter rho (panel A) and ambiguity aversion parameter beta (panel B) 
in the solo, social safe and social risky condition. Higher values for rho indicate higher tolerance to risk, higher values for beta indicate lower tolerance for ambiguity. 
Large black dot indicates the mean for each condition, error bars indicate standard error of the mean. Vertical dotted line indicates the mean in the solo condition, 
serving as a reference to indicate change compared to solo in the social conditions. The rho parameter (risk tolerance) is significantly lower for the social safe 
condition and significantly higher for the social risky condition, indicated by three asterisks (***), there are no significant differences in the beta parameter (am
biguity tolerance), indicated by ‘ns’. 

Fig. 4. Whole brain results for both social conditions combined vs solo. Whole brain statistical maps were thresholded at z > 3.1, p < .05 FWE corrected, MNI 
coordinates are provided for each slice. 

Table 2 
Whole brain table for activation for the contrast social (i.e. social risky & social 
safe) > solo. Peak coordinates for each cluster are reported as well as laterali
zation of the effect (L=left; R=right). Whole brain results are thresholded at 
z > 3.1, p < .05 FWE corrected.  

Region z-stat L/R  MNI  voxels    

x y z  

Occipital Cortex  7.70 L  -6  -82  -18  3492 
Ventromedial Prefrontal Cortex  6.02 R  0  48  -20  1799 
Precuneus  6.97 R  6  -52  20  2136 
Temporal Parietal Junction  5.36 L  -58  -46  2  2110 
Temporal Parietal Junction  5.76 R  44  -48  18  869 
Temporal Pole  6.43 R  58  -2  -28  1584 
Temporal Pole  5.28 L  -44  16  -38  733 
Ventral Striatum  6.04 R  0  4  -14  117 
Cerebellum  5.73 L  -6  -56  -46  235 
Cerebellum  4.65 R  20  -76  -36  104 
Cerebellum  6.01 L  -26  -78  -36  224  

Table 3 
Neural regions showing increased activation for the parametric contrast for 
increasing risk and decreasing risk. Peak coordinates for each cluster are re
ported as well as lateralization of the effect (L=left; R=right). Whole brain 
activation maps were thresholded at z > 3.1, p < .05 FWE corrected.  

Region z-stat L/R  MNI  voxels    

x y z  

Parametric whole brain contrast for increasing risk 
Supramarginal Gyrus 4.28 L -54 -46 50 143 
Ventral Striatum 4.41 R 14 10 -6 127 
Ventral Striatum 4.42 L -10 10 -6 117 
Precuneus 4.34 R 26 -52 22 90 
Precuneus 4.55 R 8 -54 6 72 
Anterior Cingulate Cortex 3.92 R 6 36 4 68 
Fusiform Gyrus 4.09 R 26 -70 -4 67 
Parametric whole brain contrast for decreasing risk 
Occipital Cortex 4.77 L -32 -92 -2 995 
Occipital Cortex 4.90 R 40 -86 -12 446 
Occipital Cortex 3.88 R 38 -86 12 76  
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safe>solo contrasts using the difference in risk tolerance in the respec
tive social condition and solo condition (rhosocial – rhosolo) as a regressor. 
We performed separate whole brain regressions for the contrast social 
risky>solo and social safe>solo to ensure matching of the risk and 
ambiguity levels for the social and solo conditions. We tested for both 
positive linear and negative linear effects. The positive linear whole 
brain regression for the contrast social risky>solo showed a cluster in 
the left medial prefrontal cortex (see Fig. 5 and Table 5). Thus, neural 
activation in this cluster was higher for those participants who showed a 
higher difference in risk tolerance between the social risky and solo 
condition. No clusters reached significance for other whole brain 
regressions. 

3.2.3. Age related differences in neural activation 
Lastly, we tested for age-related differences in neural activation. 

Computational analyses did not show age related associations with 
estimated parameters. However, it is possible that participants of 
different ages would show different neural recruitment to reach the 
same behavioral outcome. Therefore, we performed exploratory whole 
brain regressions on the contrast social>solo. We tested for linear in
creases and decreases with age, as well as quadratic effects showing 

elevated or decreased neural activation. Given the age range in the 
current study and previous work showing adolescent-specific patterns of 
responses in the age range 16–18 years for reward sensitivity (Braams 
et al., 2015; Schreuders et al., 2018), social evaluation (Somerville et al., 
2013) and social information (Braams et al., 2019), we tested quadratic 
patterns of responses with a peak/dip around the average age of the 
sample (i.e., approximately 18 years old). 

Results showed that the mid-range of the ages in the sample showed 
the greatest activation magnitude in the temporoparietal junction (see  
Fig. 6 and Table 5) and that this age range showed the lowest magnitude 
of neural activation in the ventrolateral prefrontal cortex (see Fig. 6 and 
Table 5). Results did not show any linear effects, positive or negative, 
with age. 

4Discussion 

The current study tested how information about others’ choices 
induced changes in decision making under uncertainty. We utilized a 
computational modeling framework to assess how participants’ risk and 
ambiguity attitudes change as a function of seeing information about 
others’ choices. Functional MRI data were collected to test neural acti
vation related to behavioral effects. To test for age related differences, 
we included participants between the ages of 14–22 years old. 

Behavioral results showed that participants followed choices of 
others in both risky and safe directions. We did not find evidence for age- 

Table 4 
Neural regions showing increased activation for the parametric contrasts for 
increasing ambiguity and decreasing ambiguity levels of the trials. Peak co
ordinates for each cluster are reported as well as lateralization of the effect 
(L=left; R=right). Whole brain activation maps were thresholded at z > 3.1, 
p < .05 FWE corrected.  

Region z-stat L/R  MNI  voxels    

x y z  

Parametric whole brain contrast for increasing ambiguity 
Occipital Cortex 8.54 L -20 -98 -2 7482 
Superior Temporal Cortex 4.33 R 60 -18 28 221 
Superior Frontal Gyrus 4.19 R 26 4 54 121 
Precuneus 3.82 R 4 -66 52 77 
Inferior Parietal Cortex 4.13 L -58 -26 32 76 
Parametric whole brain contrast for decreasing ambiguity 
Occipital Cortex 4.29 L -32 -78 -40 258 
Temporal Pole 4.58 L -44 16 -14 245 
Posterior Cingulate Gyrus 4.44 R 2 -36 32 173 
Supramarginal Gyrus 3.97 R 60 -42 0 129 
Superior Temporal cortex 4.12 R 52 -10 -22 83 
Ventromedial Prefrontal cortex 4 R 0 50 -6 78 
Ventromedial Prefrontal cortex 3.62 L -10 46 38 73 
Supramarginal Gyrus 4.22 L -64 -26 -24 71  

Fig. 5. Panel A) Whole brain regression analysis on the contrast Social Risky-Solo with the change in risk tolerance between the Social Risky and Solo condition 
(rhosocial risky – rhosolo). Panel B) Scatter plot representing the relationship between the change in risk tolerance and activation in the left medial prefrontal cortex 
cluster (MNI coordinates for the peak voxel: x = − 10 y = 60 z = 0) circled in panel A. Note that this plot is included for visualization purposes only. Repeating the 
analysis with exclusion of one extreme datapoint resulted in activation in the same neural region. 

Table 5 
Neural regions showing activation for the whole brain regressions. Peak co
ordinates for each cluster are reported as well as lateralization of the effect 
(L=left; R=right). Whole brain results are thresholded at z > 3.1, p < .05 FWE 
corrected.  

Regression Region z- 
stat 

L/ 
R  

MNI  voxels     

x y z  

Social risky > Solo whole brain regressions with rhosocial - rhosolo 

Positive linear Medial Prefrontal 
Cortex 

4.10 L -10 60 0 80 

Social > Solo whole brain regressions with age 
Positive 

quadratic 
(ie. peak) 

Temporal Parietal 
Junction 

3.98 R 54 -40 18 97 

Negative 
quadratic (i. 
e. dip) 

Ventrolateral 
Prefrontal Cortex 

3.89 L -42 42 2 126  
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related modulation of the tendency to align with choices of others for 
either of the social conditions. Computational modeling analyses 
showed that aligning one’s own choices with others was related to 
changes in risk attitude, but not ambiguity attitude. On the neural level, 
the change in risk tolerance was positively correlated with activation in 
the left medial prefrontal cortex. Exploratory analyses of age-related 
patterns resulted in adolescent specific patterns of responses in the 
right TPJ and left ventrolateral prefrontal cortex. Together, these results 
suggest that changes in risky choice behavior as a function of informa
tion about others’ previous choices are induced by changes in the risk 
perception and valuation of the different choice options. These results 
show that information about others’ choices changes individuals’ choice 
behavior. By showing how information about others’ choices indepen
dently influences risk and ambiguity attitudes its neural correlates, we 
contribute to a more detailed account of the nature of social influence 
based on the choice history of peers and reveal consistent use of this 
information across age from adolescence to young adulthood. Together, 
these results provide more insight into the complex effects of social in
formation on risky choices. 

4.1. Behavioral findings 

We first tested whether information about others’ previous choices 
induced changes in participants’ risky choices. As expected and in line 
with previous work (Braams et al., 2019; Chung et al., 2015), partici
pants made more risky choices when they saw that a previous 

participant made a risky choice, and fewer risky choices when the pre
vious participant made a safe choice. Contrary to a previous study using 
a very similar task design, we did not find evidence for age related ef
fects (Braams et al., 2019). One difference between these two studies is 
that the current study used a slightly narrower age range in which we 
tested participants aged 14–22, whereas the previous study tested par
ticipants aged 12–22. 

Results showed that when participants saw a previous participant 
select the risky option, they showed more tolerance for risk, but not 
ambiguity. A similar pattern was observed for the condition in which 
participants saw a safe choice of a previous participants. Here partici
pants showed less tolerance for risk, but no changes in the ambiguity 
parameter. These results are in line with previous work using a similar 
paradigm (Blankenstein et al., 2016). The observed changes in the risk 
parameter imply that information about others’ previous choices attri
butes a higher subjective value to that option, which increases the dif
ference in subjective value for the two choice options and ultimately 
leading participants to select that option more often. 

It is possible that ambiguity attitudes are less susceptible to peer 
influence than risk attitudes. There are several possible explanations 
why participants’ ambiguity tolerance was not affected by social infor
mation. One possibility is that ambiguity attitudes do not change 
because participants do not regard the peer as more knowledgeable than 
they are. Indeed, in the task context, participants are instructed that 
peers had the same information they did – not unique information that 
could help resolve the ambiguity of the participant’s decision. Although 

Fig. 6. Quadratic whole brain regressions on the social (social risky & social safe) - solo contrast and visualization of the results. Whole brain regressions were 
thresholded at z > 3.1, p < .05 FWE corrected, see also Table 5. Panel A & B: positive quadratic regression resulting in activation in the right temporal parietal 
junction (TPJ). Panel C & D: negative quadratic regression resulting in activation in the left ventrolateral prefrontal cortex, note that these plots are included for 
visualization purposes only. 
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previous research has shown that expert opinions exert a strong influ
ence on choice behavior (Meshi et al., 2012) and that adolescents are 
influenced by the opinion of an expert to a larger degree than adults 
(Engelmann et al., 2012), the present experimental context could have 
attenuated this effect as peers did not have unique expertise regarding 
the choice at hand. An alternative experimental context could alter the 
instructions so that participants believe the peer has knowledge they did 
not, which we predict would induce participants to follow peers’ choices 
in the ambiguous conditions. Another possibility is that the change in 
ambiguity aversion could be so small that it was not detected at the 
current power level. Future work could extend the current study and use 
a larger sample to test for more subtle changes in ambiguity aversion 
than were tested in the current study. 

4.2. fMRI findings 

On the neural level we first confirmed that the social condition eli
cited activation in neural regions previously related to social informa
tion processing. We found higher activation in a collection of brain 
regions including the precuneus, bilateral TPJ, bilateral temporal pole, 
and medial prefrontal cortex in the social conditions versus the solo 
condition. These areas are well known for their engagement in social 
processes (Blakemore, 2008; Van Overwalle, 2009). These findings are 
in line with expectations that participants process social information 
when they are presented with information about others’ choices. We 
then tested which neural regions responded to increased risk and am
biguity of the choice options. As expected, results showed increased 
activation in a set of neural regions including the ventral striatum and 
anterior cingulate cortex when the riskiness of the choice options 
increased (Levy, 2017; Poudel et al., 2020). Increasing ambiguity of the 
choice options was related to increased activation in a set of regions 
including the precuneus and superior frontal gyrus. These results 
correspond with two meta-analyses comparing risky and ambiguous 
decision making (Krain et al., 2006; Poudel et al., 2020). 

After establishing that our experiment elicited the expected neural 
responses for the social manipulation and the risk and ambiguity levels 
of the choice options, we used the results on the behavioral level and 
tested which neural regions showed responses related to changes in risk 
tolerance. We showed that participants who showed higher changes in 
risk tolerance when seeing a risky choice of someone else also show 
increased activation in the left medial prefrontal cortex. The medial 
prefrontal cortex is an area known for both integration of information 
from multiple sources as well as processing of social information (Burke 
et al., 2013; Somerville et al., 2013; Somerville al., 2010; van den Bos, 
McClure, Harris, Fiske, and Cohen, 2007; Van Overwalle, 2009). 
Although interpretations based on neural activity should be made with 
caution, it appears as if participants employ the medial prefrontal cortex 
to integrate information about their own risk preferences and the in
formation they receive about others’ risk preferences to make their final 
choice. In other words, the subjective value of the risky option is con
structed from both social information and participants’ private risk 
preferences. 

In the current study, we did not find age related differences in 
magnitude of change in risk tolerance between the social and solo 
conditions. Also, we did not find any age-related differences in the 
medial prefrontal cortex activation. Adolescents show increased risk 
taking behavior in the presence of their peers in the real world (Brech
wald and Prinstein, 2011; Simons-Morton et al., 2005). This is mirrored 
by previous studies in the lab showing that adolescents make more risky 
choices when their peers are present (Albert et al., 2013; Chein et al., 
2011; Gardner and Steinberg, 2005). Together, these observations led to 
the conclusion that adolescents are prone to more risk taking behavior 
when peers are involved. 

However, here we do not find evidence for differences in social in
fluence on choice behavior between adolescents and adults, neither for 
behavioral performance nor in neural activity. Although the absence of 

statistical significance must be interpreted with caution, these results 
could support the interpretation that adolescents are influenced by the 
choices of peers to a similar extent as adults are. In other words, infor
mation about previous choices from similar aged peers holds as much 
sway for young adults as adolescents. 

Social influence is an important and complex construct, operation
alized in many different ways experimentally. One study directly testing 
the difference between peer observation and mere peer presence 
without observation showed that only in the active peer observation 
condition adolescents changed their behavior compared to an alone 
condition (Somerville et al., 2019). In the current study, we used oper
ationalized social influence as information about previous choices of 
others and the choices made by the participant were not observed by a 
peer. Based on the results of the current study and the study by Som
erville et al. (2019) we speculate that active observation of peers, which 
was not used in the present study, may be a key factor for increases in 
risky decision making. Possibly, the effect of direct observation on risky 
choices might be related to the (assumed) positive reputational effects of 
risk taking, which remains an important topic for future work. 

Exploratory age-related analyses to test for linear and quadratic 
patterns of neural responses showed quadratic patterns in the TPJ and 
ventrolateral prefrontal cortex. We found a quadratic pattern of neural 
responses with the highest neural activation in the right TPJ for the 18 
year olds in the sample, and the lowest neural activation in the left 
ventrolateral prefrontal cortex for this age group. The TPJ is a region 
which is related to processing of social information (Blakemore, 2008; 
Van Overwalle, 2009). The lateral parts of the prefrontal cortex are 
related to inhibitory processing (Aron et al., 2004; Munakata et al., 
2011; Wagner et al., 2001). However, activation in these regions was not 
related to a behavioral correlate. Future work should test how unique 
patterns of neural responses in these regions are related to behavior. 

4.3. Limitations 

The current study tested how information about others’ choices in
fluences risky decision making. Although information about others’ 
choices is a form of peer influence that occurs in the real world, the 
current peer manipulation shows different effects compared to other 
forms of peer influence such as peer monitoring or active engagement of 
the peer. Most adolescent risk-taking behavior in the real world occurs 
when individuals are observed or their behavior is encouraged by their 
peers. It is likely that these types of peer influence induce behavioral 
changes with different mechanisms than the current peer manipulation. 
Future work should test whether other forms of peer influence have 
similar effects on behavior and its neural correlates. Secondly, in the 
current study we used unknown peers. Although the use of unknown 
peers ensures that the manipulation is consistent for all participants, this 
is at the expense of ecological validity. Future work should test how 
information about choices of real peers influences behavior. Thirdly, in 
the current study we tested for linear and quadratic patterns of age- 
related change. Although these patterns are commonly used to detect 
age-related changes, linear and quadratic models limit the detection 
power of more complex age-related patterns. Future work could use 
more complex and/or data driven methods such as generalized additive 
modeling to identify nonlinear age-related changes. Lastly, in the cur
rent study we tested a cross-sectional sample allowing for between 
subject tests of age-related change. To test how decision making changes 
over age within the individual, future work should collect longitudinal 
data. Moreover, a longitudinal approach might benefit from sampling an 
age range which begins younger and extends older than the sample 
tested here. Here, we focused on ages in which we expected the greatest 
effects from information about others’ previous choices. Extending this 
understanding to include periods in which others’ choices are less 
influential – possibly younger and/or older ages – would be useful to 
informing windows of differential influence of social factors in decision 
making. Finally, a larger sample size could be more sensitive to 
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detecting smaller effect sizes in behavioral and neural responses. 

5. Conclusion 

The current study aimed to evaluate how information about others’ 
choices affects risk and ambiguity attitudes in adolescents and adults. 
We found that information about others’ choices affects risk tolerance, 
but did not find evidence that others’ choices affects ambiguity aversion. 
On the neural level, the changes in risk tolerance were positively related 
to changes in medial prefrontal cortex activation, a region believed to 
encode the subjective value of choice options. We did not find evidence 
for age-related differences in these processes. Although the findings 
should be interpreted with caution, they suggest that adolescents use 
previous choice information similarly to adults. Together with prior 
work demonstrating elevated social influence in adolescence, these 
findings highlight the complexity of the construct of peer influence. 
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