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OBJECTIVE—Peptide YY3–36 (PYY3–36), a Y2 receptor agonist,
and oxyntomodulin, a glucagon-like peptide 1 (GLP-1) receptor
agonist, are cosecreted by intestinal L-cells after each meal.
Separately each hormone acts as an endogenous satiety signal
and reduces appetite in humans when infused intravenously. The
aim of the current study was to investigate whether the anorectic
effects of PYY3–36 and oxyntomodulin can be additive.

RESEARCH DESIGN AND METHODS—Twelve overweight or
obese human volunteers underwent a randomized, double-blinded,
placebo-controlled study. An ad libitum test meal was used to
measure energy intake during intravenous infusions of either
PYY3–36 or oxyntomodulin or combined PYY3–36/oxyntomodulin.

RESULTS—Energy intake during coadministration of PYY3–36
and oxyntomodulin was reduced by 42.7% in comparison with
the saline control and was significantly lower than that during
infusions of either hormone alone.

CONCLUSIONS—The anorectic effects of PYY3–36 and oxynto-
modulin can be additive in overweight and obese humans.
Coadministration of Y2 receptor agonists and GLP-1 receptor
agonists may be a useful treatment strategy for obesity.
Diabetes 59:1635–1639, 2010

O
besity is a major risk factor for the develop-
ment of type 2 diabetes and its prevalence is
increasing rapidly throughout the world (1,2).
Weight loss reduces that risk substantially (3)

but is difficult to achieve and sustain. Bariatric surgery is
the only obesity treatment proven to reduce mortality
(4,5). Furthermore, the rapid improvement in glucose
homeostasis after Roux-en-Y gastric bypass surgery (6,7)
has led some to question whether type 2 diabetes, as well
as obesity, should be considered a surgically curable
disease (8,9). However, operative mortality and delayed
complications are not uncommon (10,11). There is there-
fore a pressing need to develop safe, effective, nonsurgical
treatments for obesity.

The main proposed mechanism by which Roux-en-Y

gastric bypass causes weight loss is through altering the
secretion of gut hormones (12). Two important such
hormones, peptide YY3–36 (PYY3–36) and oxyntomodulin,
are physiologically cosecreted after meals (13,14). Post-
prandial concentrations of both PYY3–36 and oxyntomodu-
lin are increased by Roux-en-Y gastric bypass (12,15–17).
Intravenous infusion of each hormone individually has
been shown to reduce appetite in humans (18–20). Fur-
thermore, oxyntomodulin causes weight loss in obese
human volunteers when administered by repeated subcu-
taneous injection (21). However, one proposed physio-
logic function of these hormones at higher concentrations
is nausea (22). Thus, if significant appetite reduction is
attempted by giving a large dose of a single hormone,
nausea or even vomiting may result (20–23). We hypoth-
esized that coadministered PYY3–36 and oxyntomodulin
would mimic the natural postprandial situation and have
additive effects on appetite, but that neither hormone
would reach concentrations associated with nausea.

RESEARCH DESIGN AND METHODS

Healthy male and female volunteers aged �18 years with a stable BMI of
25–40 kg/m2 were recruited by advertisement. Potential participants were
screened and determined to be healthy by medical history, physical examina-
tion, routine blood tests, and 12-lead electrocardiogram. The SCOFF question-
naire (24), the Dutch Eating Behavior Questionnaire (25), and a 3-day diet
diary were used to exclude those with disordered eating or a high level of
restrained eating. Palatability of the study meal was assessed using a 9-point
hedonic scale. It was calculated that, for 90% power to detect a difference in
energy intake of 10% between treatments, 12 participants would be required,
assuming a within-subject SD of 6% and a significance level of 0.05. Thus, 12
volunteers were selected for the study (Table 1). Women of child-bearing age
were advised to avoid pregnancy during the study and underwent urine tests
to exclude pregnancy before each infusion.

The study was approved by the Hammersmith and Queen Charlotte’s and
Chelsea Research Ethics Committee (reference number 06/Q0406/50). All
participants gave written informed consent, and the study was planned and
performed in accordance with the Declaration of Helsinki.

The study followed a randomized, double-blind, placebo-controlled cross-
over protocol comparing the effect on energy intake of six different pairs of
infusions, as shown in Table 2. Each subject received two 110-min intravenous
infusions, A and B, simultaneously, at each visit. Infusion A consisted of either
PYY3–36 or saline control. Infusion B consisted of either oxyntomodulin or
saline control. Infusion doses were based on previously established doses,
with a twofold difference between high and low doses for each peptide. The
infusion rate for high-dose PYY3–36 was based on previous work by Batterham
et al. (26). The infusion rate for high-dose oxyntomodulin was similar to that
used by Cohen et al. (19). The duration of infusion was chosen to allow steady
state to be reached and sustained during test meals. Peptides were synthe-
sized by Bachem U.K. and were sterile on culture and negative for pyrogen, as
previously described (26). The amino acid content of representative peptide
vials was measured independently (Alta Bioscience, Edgbaston, Birmingham,
U.K.). Control vials were prepared with sterile saline and were indistinguish-
able visually from those containing peptide. To reduce adsorption of peptide
onto the walls of syringes and infusion lines, the contents of randomized vials
were dissolved in Gelofusine (B. Braun Medical, Sheffield, U.K.).

Study visits were scheduled a minimum of 3 days apart. Subjects were
asked to standardize their diet, abstain from alcohol, and avoid strenuous
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exercise for 24 h before each visit. Food diaries were used to monitor dietary
compliance. Subjects fasted and drank only water from 9:00 P.M. on the night
before each visit. After arrival at 9:00 A.M., peripheral venous cannulae were
inserted in both of the patient’s forearms, one for infusions and one for blood
sampling. A three-way tap with low internal volume (Becton Dickinson,
Franklin Lakes, NJ) was attached to the infusion cannula to allow connection
of two separate infusion lines. Subjects then relaxed for 30 min before the
start of the infusions. All time cues were removed from the study room, and
subjects were encouraged to relax by reading or watching films on DVD.

Blood samples were collected at �30, 0, 30, 60, 75, 90, 120, and 135 min into
lithium-heparin–coated tubes containing 2,000 kallikrein inhibitor units (0.2
ml) aprotinin (Bayer Schering Pharma, Berlin, Germany). Samples were
stored on ice until centrifugation at 4°C, after which plasma was separated
immediately and stored at �20°C until analysis. Immediately before each
blood sample was taken, subjects completed visual analog scales (VAS) rating
hunger, satiety, prospective food consumption, and nausea (27). Pulse and
blood pressure were measured every 30 min and at the end of each study visit.

Ninety minutes after the start of the infusions, subjects were offered a meal
that was provided in excess and were asked to eat until they were comfortably
full. Water was freely available. Both food and water were weighed pre- and
postprandially, and energy intake was calculated. The test meal procedure
was identical to that used in previous studies with PYY3–36 and oxyntomodulin
(18,19,26). At the end of the meal, the infusions were discontinued, and the
subjects were asked to rate the palatability of the food using VAS.
Hormone assays. Plasma PYY3–36 and oxyntomodulin-like immunoreactivity
(OLI) concentrations were measured using established in-house radioimmu-
noassays. The PYY assay (28,29) could detect changes of 4.4 pmol/l (95%
confidence limit) with an intra-assay variation of 11.5%. The OLI assay (14)
could detect changes of 10 pmol/l (95% confidence limit) with an intra-assay
variation of 5.7%. Because the radioimmunoassay technique is comparative
and not absolute, all samples were assayed in duplicate and within a single
assay to eliminate interassay variation. Plasma insulin and glucose concen-
trations at 0, 60, and 90 min were measured on an Olympus analyzer in the
Department of Clinical Biochemistry, Hammersmith Hospital.
Statistical analysis. Combined data are represented as means � SEM.
Comparisons of energy intake were by repeated-measures ANOVA with a
Tukey multiple comparison posttest. Effects on changes in energy intake of
subjects’ BMI and sex were analyzed by linear regression and repeated-
measures two-way ANOVA, respectively. VAS scores were adjusted for
baseline, and differences were compared by a repeated-measures nonpara-
metric Friedman test with a Dunn multiple comparison posttest. Comparisons
at each time point of plasma insulin and glucose levels and of cardiovascular

parameters were made by one-way ANOVA with a Tukey multiple comparison
posttest. Analyses were performed using Prism (version 4.03; GraphPad
Software, San Diego, CA).

RESULTS

Adverse effects. On one visit each, the first three partic-
ipants experienced severe nausea and sweating. As a
result, the randomization code on this single occasion was
examined by an independent medical colleague appointed
for the purpose before the study and not directly con-
nected with the investigation. It was identified that each
case of nausea had occurred during high-dose PYY3–36
infusion, with symptoms commencing �50 min after the
start of the infusion. In each case, symptoms settled within
30 min of stopping the infusions, and the participants were
able to leave the investigation ward as normal after the last
blood sample. Mean peak plasma PYY3–36 concentration
achieved during these infusions was 156.5 � 56.9 pmol/l
(n � 3). It was not felt possible thereafter to continue the
high-dose PYY3–36 infusion arm, and the study then pro-
ceeded as a five-way crossover, maintaining the random-
ized, double-blind, placebo-controlled design. During the
remainder of the study, four participants reported nausea,
requiring early termination of their infusions, at one visit
each. However, because the nausea was not associated
with vomiting, the randomization code was not examined
again until the end of the study.
Effect of PYY3–36 and oxyntomodulin infusions on
energy intake and appetite. In comparison with sa-
line control infusion, energy intake during combined
PYY3–36 � oxyntomodulin infusion was reduced by 42.7%
at the study meal (P � 0.001) and was also significantly
lower than during infusions of either hormone alone
(mean energy intake at buffet meal: 557 � 88.9 kcal
[saline], 511 � 85.2 kcal [low-dose PYY3–36], 480 � 80.0
kcal [low-dose oxyntomodulin], 486 � 86.2 kcal [high-dose
oxyntomodulin], and 319 � 61.9 kcal [combined PYY3–36 �
oxyntomodulin]; P � 0.001 vs. saline, P � 0.01 vs. low-dose
PYY3–36, and P � 0.05 vs. low-dose oxyntomodulin and
high-dose oxyntomodulin; n � 12) (Fig. 1). There was no
evidence that change in energy intake varied with either
BMI or sex of the subjects.

Neither the palatability of the buffet meal nor other
satiety-related VAS responses were altered significantly by
any infusion except high-dose PYY3–36. In particular, there
were no significant differences in nausea scores between
the five completed arms of the study at any time point (Fig.
2). However, four participants did report mild nausea, one
during a high-dose oxyntomodulin infusion and the other
three during combined PYY3–36 � oxyntomodulin infusion.
Even though the nausea settled rapidly in each case after
the infusion was (prematurely) stopped, it may have
reduced energy intake at the subsequent buffet meal. The
energy intake data were therefore analyzed further, ex-
cluding all data from the four affected participants. In this
analysis (n � 8), the combined PYY3–36 � oxyntomodulin
infusion significantly reduced energy intake by 33% in
comparison with saline control (P � 0.05). However, the
control low-dose PYY3–36, low-dose oxyntomodulin, and
high-dose oxyntomodulin infusions for these subjects did
not reduce food intake significantly (mean energy intake:
593 � 132.7 kcal [saline], 524 � 129.9 kcal [low-dose
PYY3–36], 503 � 121.3 kcal [low-dose oxyntomodulin],
532 � 113.6 kcal [high-dose oxyntomodulin], and 398 �
77.3 kcal [combined PYY3–36 � oxyntomodulin]; P � 0.05
vs. saline; n � 8).

TABLE 1
Baseline characteristics of participants

Age (years) 33.74 � 2.32
Sex: female/male 7/5
Height (m) 1.67 � 0.03
Weight (kg) 86.13 � 3.48
BMI (kg/m2) 30.94 � 1.03
Fasting insulin (pmol/l) 57.4 � 0.86
Fasting plasma glucose (mmol/l) 4.96 � 0.05
Fasting PYY3–36 (pmol/l) 21.6 � 0.98
Fasting OLI (pmol/l) 85.1 � 5.94

Data are means � SE or n.

TABLE 2
Summary of infusions

Infusion pair
designation Infusion A Infusion B

Saline Saline Saline
Low-dose PYY3–36 0.25 pmol/kg/min PYY3–36 Saline
Low-dose OXM Saline 1.5 pmol/kg/min

OXM
High-dose PYY3–36 0.5 pmol/kg/min PYY3–36 Saline
High-dose OXM Saline 3.0 pmol/kg/min

OXM
PYY3–36 � OXM 0.25 pmol/kg/min PYY3–36 1.5 pmol/kg/min

OXM

OXM, oxyntomodulin.
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Plasma concentrations of PYY3–36, OLI, insulin, and
glucose. Basal plasma concentration of PYY3–36 was
22.2 � 0.7 pmol/l. Infusion of low-dose PYY caused a
threefold elevation in plasma PYY3–36 concentration to a
peak of 62.9 � 7.2 pmol/l and had no effect on plasma OLI
concentration. Basal plasma concentration of OLI was

83.6 � 4.1 pmol/l. Infusion of low-dose oxyntomodulin
caused a fivefold elevation in plasma OLI concentration to
a peak of 381.2 � 49.0 pmol/l, whereas infusion of high-
dose oxyntomodulin caused a sixfold elevation to a peak
of 505.3 � 68.3 pmol/l (Fig. 3). Plasma PYY3–36 concentra-
tion remained at basal levels during low- and high-dose
oxyntomodulin infusions. There were no statistically sig-
nificant differences between treatments in insulin or glu-
cose concentrations before the meal. Plasma insulin and
glucose were not measured postprandially because energy
intake was not fixed.
Effect of PYY3–36 and oxyntomodulin infusions on

cardiovascular parameters. No statistically significant
differences in pulse or blood pressure were detected
between treatments at any time point.

sa
lin

e

low PYY

low O
XM

high O
XM

PYY + 
OXM

-60

-40

-20

0

***

‡‡
‡‡

en
er

gy
 in

ta
ke

 (%
 o

f s
al

in
e)

FIG. 1. Percent reduction in energy intake at the buffet meal, with
reference to the mean intake during saline infusion (all subjects
included, n � 12). ***P < 0.001 vs. saline. ‡P < 0.05 vs. PYY3–36 �
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DISCUSSION

Combined administration of PYY3–36 and oxyntomodulin
at low dose resulted in a statistically significant reduction
in energy intake of 42.7% in comparison with that on the
saline control day. In contrast, mean energy intake during
low-dose infusion of either PYY3–36 or oxyntomodulin was
8.3 and 14% lower, respectively, than during saline infu-
sion, but in neither case was this difference statistically
significant from the food intake during saline infusion. In a
separate analysis that excluded all data from subjects who
had experienced nausea at any point during the study, the
reductions in energy intake achieved by low-dose infusion
of either hormone alone (12 and 15% for PYY3–36 and
oxyntomodulin, respectively) were again nonsignificant,
but combined low-dose infusions of PYY3–36 and oxynto-
modulin reduced mean energy intake significantly by 33%
compared with saline. This indicates that the combination
of PYY3–36 and oxyntomodulin reduces food intake to a
greater extent than either hormone infused separately at
this same dose.

Although not directly comparable, because the proce-
dures were different, the anorectic effect of low-dose
PYY3–36 infusion in the current study was less than that
observed by Batterham et al. (26) using a somewhat higher
dose. The anorectic effects of both low- and high-dose
oxyntomodulin infusions were also less than those previ-
ously observed by Cohen et al. (19). Furthermore, there
was no difference in effect between these low- and
high-dose oxyntomodulin infusions, despite the twofold
difference in dose. However, the peak plasma OLI concen-
trations in the current study were substantially lower than
those achieved previously, which may reflect differences
in infusion preparation (19).

During high-dose PYY3–36 infusion, the mean peak
plasma PYY3–36 concentration was sufficient to cause
sweating and severe nausea in all subjects, in keeping with
previous reports (20,22,23). In contrast, nausea did not
occur with low-dose PYY3–36 infusion, during which the
peak plasma PYY3–36 concentration was similar to that
achieved in obese subjects by Batterham et al. (26).
High-dose oxyntomodulin infusion resulted in a mean
plasma OLI concentration �60% of that achieved previ-
ously by intravenous infusion (19) and considerably lower
than that previously reported to cause nausea (21). Nev-
ertheless, 1 of the 12 subjects experienced nausea during
high-dose oxyntomodulin infusion, suggesting that the
threshold for oxyntomodulin-induced nausea may vary
between individuals. There were no adverse effects with
low-dose oxyntomodulin. However, combined low-dose
infusions of PYY3–36 and oxyntomodulin caused nausea in
3 of 12 subjects. Thus, although coadministration of
PYY3–36 and oxyntomodulin can produce a robust reduc-
tion in energy intake, this combination may increase the
incidence of side effects.

When satiety-inducing hormones that act via different
receptors are administered in combination, it can be
hypothesized that the effects on appetite should be addi-
tive. However, studies performed on lean human volun-
teers do not always support this. Neary et al. (30) reported
that pancreatic polypeptide, a Y4 receptor agonist, and
PYY3–36, a selective Y2 receptor agonist, did not reduce
food intake when infused together. Others have found
that, although cholecystokinin and glucagon-like peptide 1
(GLP-1) synergistically reduced hunger sensations, the
combination did not reduce energy intake to a greater

extent than infusion of either hormone separately (31). It
is possible that the absence of additive effects results
either from duplication of the principal mode of action or
from unsuspected, mutually antagonistic actions within
each pair of hormones. In contrast, and in agreement with
the current study, Neary et al. (32) demonstrated that
intravenous infusion of PYY3–36 with GLP-1 reduced food
intake to a greater extent than either hormone adminis-
tered separately. Furthermore, exendin-4, which, like
GLP-1 and oxyntomodulin, is a GLP-1 receptor agonist,
acts synergistically with PYY3–36 to reduce food intake in
mice (33). The current study thus supports the concept
that Y2 receptor agonists and GLP-1 receptor agonists
have distinct and additive effects on appetite.

The plasma concentrations of PYY3–36 and OLI during
these infusions are within the range of those occurring
after Roux-en-Y gastric bypass surgery. Measurement of
oxyntomodulin concentration in plasma presents particu-
lar difficulties because of cross-reactivity of total glucagon
(enteroglucagon) antibodies with several circulating prod-
ucts of preproglucagon cleavage (14). This may account
for the 10-fold difference in postprandial levels reported
after Roux-en-Y gastric bypass (16,17). Notwithstanding
this discrepancy and differences in antibody specificity,
the mean plasma OLI concentration achieved during the
current study was similar to postprandial enteroglucagon
levels reported after Roux-en-Y gastric bypass (15). With
regard to plasma PYY3–36 concentration, the mean peak
level achieved during low-dose infusion in the current
study was �50% higher than the peak concentration
reported after a 420-kcal mixed meal (34), but slightly
lower than that measured after a 398-kcal liquid meal (35),
both studies being performed on patients who had under-
gone Roux-en-Y gastric bypass. Thus, the results of the
current study may throw light on the mechanism of food
intake reduction after Roux-en-Y gastric bypass.

In summary, we have shown that combined infusion of
PYY3–36 and oxyntomodulin appear to have an additive
anorectic effect in overweight and obese humans. These
results and data from other recent studies suggest that Y2
receptor agonists and GLP-1 receptor agonists may be
particularly suited to coadministration for the treatment of
obesity. However, further studies are required to establish
whether chronic coadministration of gut hormones can
increase the potential anorectic effect without inducing a
parallel increase in nausea.
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