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Transcriptional profile of breast muscle 
in heat stressed layers is similar to that of broiler 
chickens at control temperature
Imran Zahoor1,2, Dirk‑Jan de Koning1,3 and Paul M. Hocking1* 

Abstract 

Background:  In recent years, the commercial importance of changes in muscle function of broiler chickens and of 
the corresponding effects on meat quality has increased. Furthermore, broilers are more sensitive to heat stress dur‑
ing transport and at high ambient temperatures than smaller egg-laying chickens. We hypothesised that heat stress 
would amplify muscle damage and expression of genes that are involved in such changes and, thus, lead to the iden‑
tification of pathways and networks associated with broiler muscle and meat quality traits. Broiler and layer chickens 
were exposed to control or high ambient temperatures to characterise differences in gene expression between the 
two genotypes and the two environments.

Results:  Whole-genome expression studies in breast muscles of broiler and layer chickens were conducted before 
and after heat stress; 2213 differentially-expressed genes were detected based on a significant (P < 0.05) geno‑
type × treatment interaction. This gene set was analysed with the BioLayout Express3D and Ingenuity Pathway Analy‑
sis software and relevant biological pathways and networks were identified. Genes involved in functions related to 
inflammatory reactions, cell death, oxidative stress and tissue damage were upregulated in control broilers compared 
with control and heat-stressed layers. Expression of these genes was further increased in heat-stressed broilers.

Conclusions:  Differences in gene expression between broiler and layer chickens under control and heat stress condi‑
tions suggest that damage of breast muscles in broilers at normal ambient temperatures is similar to that in heat-
stressed layers and is amplified when broilers are exposed to heat stress. The patterns of gene expression of the two 
genotypes under heat stress were almost the polar opposite of each other, which is consistent with the conclusion 
that broiler chickens were not able to cope with heat stress by dissipating their body heat. The differentially expressed 
gene networks and pathways were consistent with the pathological changes that are observed in the breast muscle 
of heat-stressed broilers.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Modern broiler chickens are characterised by relatively 
fast growth rate, greater muscle mass and better feed 
conversion ratio compared with layer and traditional 
chicken breeds [1, 2]. The carcasses of some broiler 
chickens show changes in the appearance of breast meat, 
such as a pale colour with reduced water holding capac-
ity, or dark, firm and dry muscle with different functional 

properties [3]. More recently, white striping, which is 
characterised by white parallel striations in the direc-
tion of the muscle fibres and “wooden breast” muscles, 
have been reported [4, 5]. Elevated activity of creatine 
kinase and histopathological changes in affected muscles 
are suggestive of a degenerative myopathy [4, 6]. These 
changes have implications for meat quality and, poten-
tially, have a significant economic cost. Several factors 
affect the proportion of affected carcasses, including dif-
ferent genetic background, growth rate, season, heat and 
transport stress, and abattoir practices [7–9].
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Genetic variation in muscle and meat quality traits has 
been quantified [2, 10] but these traits usually involve 
measuring slaughtered sibs. Recent technological inno-
vations have opened the way for genomic selection (GS) 
based on DNA markers (single nucleotide polymor-
phisms, SNPs) [11, 12]. Therefore, our objective was to 
identify genetic networks and pathways that might be 
useful for the detection of causal genetic factors that are 
involved in breast muscle and meat quality disorders of 
broiler chickens. It is also likely that the identified genetic 
factors would be helpful in updating the existing SNP 
chips to enable scientists to perform genomic selection 
for better muscle and meat quality in broilers.

Through the use of high-throughput microarray tech-
nology, it is possible to identify differentially-expressed 
genes as a result of a specific treatment [13]. In this study, 
we used microarray analysis to identify candidate genes 
that may contribute to differences in muscle damage 
between broilers and layers. Spontaneous and stress-
induced myopathies in broiler skeletal muscles are exac-
erbated by heat stress [14, 15] and, thus, we compared 
gene expression profiles in the breast muscles of broiler 
and layer genotypes that were subjected to control or 
heat stress conditions. Our experimental strategy was 
based on the hypothesis that the expression of genes that 
are differentially expressed in broilers and layers under 
normal conditions is increased and therefore more eas-
ily detected after heat stress. However, it is often difficult 
to assign biological significance to the large number of 
genes that are detected in a microarray experiment. This 
problem can be solved when the differentially-expressed 
genes are organised via hierarchical clustering methods 
[16] and, for this purpose, we used BioLayout Express3D 
[17, 18] and Ingenuity Pathway Analysis (IPA) (http://
www.ingenuity.com/). In addition, we compared the 
results from these analyses with those obtained with the 
DAVID [19, 20] (https://david.ncifcrf.gov/) and Reac-
tome [21, 22] (http://reactome.org/) software using more 
recent databases.

Methods
Animals and husbandry
We used 40 male broiler chicks of a male line (Ross 308, 
Aviagen, Newbridge, UK) from a commercial hatchery 
and 74 layer chicks (White Leghorn) from a line main-
tained at the Roslin Institute. For the first 2 weeks, birds 
were reared in groups of 20 individuals until the layers 
had been sexed by a DNA method [23]. At 2 weeks of age, 
the birds were distributed to eight pens by sex and geno-
type, with each pen containing 12 male layers and nine 
or ten broilers, in a completely randomised design. The 
birds were provided with feed (a commercial layer starter 

diet) and water ad libitum and the daily photoperiod was 
16 h light and 8 h darkness.

The birds were subjected to experimental treatments 
over four days from 42 to 46 days of age. On each day, we 
randomly selected two pens for each breed and the birds 
were transferred into four controlled environment cham-
bers. On each day, we randomly selected four chambers, 
i.e. two for the heat treatment (32 °C, 75% relative humid-
ity or RH) and two as controls (21  °C, 50% RH). Each 
chamber contained two crates with two male broilers or 
two male layers, with pens and crates confounded. The 
crates were placed on a wooden pallet and the order of 
the pairs (crates) in each room was randomised. Sixty-
four birds were used in the experiment.

About 30 min before the birds were transferred to the 
chambers, the relevant chamber was turned on, such that 
it could reach the required temperature and humidity 
before birds were placed into the chamber for the follow-
ing 2 h. Birds were introduced in each chamber at inter-
vals of 45 min to allow for sampling of the birds.

After completing the 2-h treatment, birds were 
removed from the crate and rectal temperatures were 
measured using a thermistor probe (Model 612-849; RS 
Components Ltd., Corby, Northants, UK). Then, they 
were euthanized by an intravenous injection of sodium 
pentobarbitone into the wing vein and two tissue samples 
of 100–120 mg were taken from the left pectoral muscle 
and snap frozen in liquid nitrogen for subsequent RNA 
extraction.

RNA extraction and microarray experiment
Samples of breast muscle from male chickens were ran-
domised prior to extraction of RNA using Trizol (Life 
Technologies, Paisley, UK) following the manufacturer’s 
recommended protocol. Briefly, the frozen tissue was 
homogenised in 1 ml of Trizol using the FastPrep® sys-
tem with Lysing matrix D (MP Biochemicals). The phases 
were separated by addition of 200 µl of 2-bromo-chloro-
propane (Sigma Aldrich) and centrifuged for 15  min. 
A 500-µl sample of the clear upper aqueous layer was 
transferred to a fresh tube and 500 µl of isopropanol was 
added. The samples were centrifuged for 30 min to pel-
let the RNA, which was washed twice with 70% ethanol 
before air-drying. The RNA was resuspended in 100  µl 
of RNAse-free water prior to quantification and quality 
assessment. All RNA samples had a RNA integrity num-
ber (RIN) value higher than 8.0, as determined by the 
Agilent Bioanalyser RNA 6000 Nano Chip. Samples were 
diluted to 50 ng/μl with deionised and RNAse-free water. 
Aliquots of 20 μl from each sample were used for pooling 
the two samples from each crate to obtain eight replicates 
for each breed × treatment combination.

http://www.ingenuity.com/
http://www.ingenuity.com/
https://david.ncifcrf.gov/
http://reactome.org/


Page 3 of 11Zahoor et al. Genet Sel Evol  (2017) 49:69 

Microarray hybridisation was completed in the Ark-
Genomics laboratory at the Roslin Institute (http://
genomics.ed.ac.uk). Total RNA was prepared for hybridi-
sation to the Affymetrix chicken GeneChip array using 
the Affymetrix IVT express kit according to the manu-
facturer’s protocol. The generated cRNA was hybridised 
overnight to the cartridge arrays according to Affym-
etrix’s protocols. The cartridges were washed and stained 
in the Affymetrix fluidic station using the hybridisation, 
wash and stain kit from Affymetrix. After staining, the 
arrays were scanned with the Affymetrix GeneChip sys-
tem 3000 scanner. The resultant CEL files were reviewed 
using the Expression Console software from Affymetrix.

Thrity-two Affymetrix chicken array chips (38.5K; 
each GeneChip included 38,535 probes) were used in 
the microarray experiment. After scanning, the CEL files 
were analysed in four batches of eight slides to obtain 
expression values in GenStat (www.vsni.co.uk/software/
genstat). Each batch contained slides from birds treated 
on the same day. The Robust Multichip Average (RMA) 
algorithm [24] was used to extract the gene expression 
data.

Statistical analysis
The experiment was a 2  ×  2 factorial design 
(breed × treatment), with day/chambers/crates as block-
ing factors. Standard analysis of variance methods was 
used to analyse body temperature and body weight using 
GenStat v13 (https://www.vsni.co.uk/software/genstat/). 
Transformation to natural logarithms was necessary to 
achieve normally distributed residuals of body weight.

For the analysis of differentially-expressed genes, we 
used a model with fixed effect terms for breed and treat-
ment and their interaction. The normalised data were 
analysed by using Microarray One-Channel ANOVA 
in GenStat, with a model that included breed ×  treat-
ment as treatment structure and the hierarchical struc-
ture of day/chamber/breed as blocking factor. Genes 
that showed a significant breed ×  treatment interaction 
(P < 0.05) were used for subsequent investigation because 
they were expected to be most relevant for genetic dif-
ferences between broilers and layers in response to heat 
stress. Based on these ANOVA results, the false discov-
ery rate (FDR) was calculated for three probability values 
(P < 0.05, <0.01 and <0.001) for the effects of treatment, 
breed, and their interaction. FDR was calculated using 
the Mixture Model of GenStat and the maximum num-
ber of iteration cycles was set to 300.

Cluster analysis in BioLayout Express3D

Gene annotations were downloaded from the NetAffx 
analysis centre of Affymetrix (http://www.affymetrix.
com/analysis/index.affx; downloaded 15 December 

2016). Expression values for the selected subset of genes/
probes were unlogged, entered into BioLayout Express3D 
(BLE, http://www.biolayout.org/) and analysed using 
a Pearson correlation threshold of 0.80. Clusters were 
viewed in the Class Viewer, after running the Markov 
Clustering Algorithm (MCL). For cluster size, a mini-
mum threshold of four genes/probes per cluster was 
selected to limit the size of the smallest clusters [25]. 
Selected clusters were identified on the basis of a clear 
difference in expression pattern of the genes between 
treatments (control vs. heat treatment) and breeds. For 
functional analyses, clusters were combined into ‘catego-
ries’ on the basis of similarity in mean expression pattern 
across breeds and treatments.

Analysis of pathways and networks in IPA
The gene expression data for each of the six selected 
categories were combined into a single Excel sheet for 
analysis in Ingenuity Pathway Analysis (IPA, http://www.
ingenuity.com/products/ipa) of the four breed  ×  treat-
ment combinations (broiler control, BC; broiler heat 
stress, BH; layer control, LC and layer heat stress, LH). 
The lists of genes for each category were analysed in IPA 
by using Fisher’s exact test to identify biological func-
tions and pathways that were enriched in the dataset 
using the ‘Core Analysis’ function of the IPA program. 
Genes were mapped against the ‘Tissues and Cell Lines’ 
available in the Ingenuity Pathway Analysis Knowledge 
Base (IPAKB). Because information in the IPA originates 
mainly from mammals (human, mouse and rat), the sub-
mitted lists of genes were mapped against all available 
species and changes to avian terminology, e.g. neutrophil 
to heterophil, were made. For network generation, we set 
a threshold of 35 molecules per network and 25 networks 
per analysis. Both direct and indirect relationships of 
molecules were considered.

Additional analyses of pathways and networks
To reconfirm the initial results, we repeated the analyses 
on pathways and networks with more recent databases. 
We used two software programs, i.e. DAVID (https://
david.ncifcrf.gov/) and Reactome (http://reactome.org/), 

Table 1  Number of significant genes for treatment, breed, 
and  breed  ×  treatment interaction at  different levels 
of significance

Significance 
(P<)

Treatment 
(heat-stress 
vs. control)

Breed (broiler 
vs. layer)

Breed × treat-
ment interaction

0.001 107 5208 93

0.01 617 8182 635

0.05 1922 10,733 2213

http://genomics.ed.ac.uk
http://genomics.ed.ac.uk
http://www.vsni.co.uk/software/genstat
http://www.vsni.co.uk/software/genstat
https://www.vsni.co.uk/software/genstat/
http://www.affymetrix.com/analysis/index.affx
http://www.affymetrix.com/analysis/index.affx
http://www.biolayout.org/
http://www.ingenuity.com/products/ipa
http://www.ingenuity.com/products/ipa
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://reactome.org/
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both accessed on 2nd July 2017. Further information is in 
Additional file 1: Table S1.

Results
Differentially‑expressed genes
The Affymetrix Genechips were filtered for expression 
levels higher than 1, which reduced the number of probes 
from 38,535 to 19,038. The results of the ANOVA for the 
filtered set of genes are in Table 1. The false discovery rate 
(FDR) for statistically significant genes (P < 0.05) was less 
than 31.5% for the treatment × breed interaction, 44% for 
treatment, and 3% for breed. A total of 2213 genes were 
differentially expressed among the four treatment com-
parisons. The numbers of differentially-regulated genes 
that overlapped between the two treatments are in Fig. 1. 
We found 1361 upregulated genes in the comparison 
between BH and BC, of which 1316 (97%) were shared 
with downregulated genes in the comparison between 
LH and LC. Similarly, we found 852 downregulated genes 
in the comparison between BH and BC, of which 753 
(88%) were shared with upregulated genes in the compar-
ison between LH and LC.

Categorisation of candidate genes on the basis of their 
biological functions
Based on their biological function, genes that were differ-
entially expressed for the breed ×  treatment interaction 
were divided into 12 categories (Table 2). More than 43% 
(959) of the genes had no gene ontology (GO) term for 
a biological process or function. These genes fell in two 
major groups: 424 genes had no known function and 534 
genes were not involved in a known biological process.

`
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Fig. 1  Differentially-regulated genes that overlap between two 
treatments. a Downregulated genes in broiler controls (BC) versus 
layer controls (LC). b Downregulated genes in heat-stressed layers 
(LH) compared with control layers (LC). c Upregulated genes in 
heat-stressed broilers (BH) compared with control broilers (BC). d 
Upregulated genes in heat-stressed broilers (BH) compared with 
heat-stressed layers (LH). e Downregulated genes in heat-stressed 
broilers (BH) compared with control broilers (BC). f Upregulated 
genes in broiler controls (BC) compared with layer controls (LC). g 
Upregulated genes in heat-stressed layers (LH) compared with layer 
controls (LC). The number in parentheses in each circle is the total 
number of differentially-expressed genes

Table 2  Significant differentially-expressed genes for breed × treatment interaction (P < 0.05) grouped by function

Group Biological functions Number of genes

1 Transcripts with no known gene name 424

2 Genes with no GO terms for biological functions 534

3 Signal transduction 130

4 Stress-related response, inflammatory, angiogenesis, apoptotic, and proteolytic functions 334

5 Metabolic, and catabolic processes 190

6 Inter and intracellular transport of proteins, ions, and muscle contraction 162

7 Cellular proliferation, and organ development 142

8 Transcription and translation 138

9 Protein phosphorylation, dephosphorylation, modification, and folding 95

10 Signal transduction 92

11 DNA damage, repair, metabolism, and catabolic processes 60

12 Cytoskeleton organization and polymerization of filaments 42
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Comparisons of genes within and between breed 
and treatment significant for interaction
The selected genes were further divided into up- and 
downregulated patterns of gene expression for differ-
ent comparisons within- and between-breed and treat-
ment. Of the 54 clusters, 21 were selected for further 
analysis on the basis of their clear expression pattern, 
which included 509 genes that were grouped into six 
distinct categories (Table  3) according to the nature of 
their expression patterns corresponding to the (statisti-
cally significant) interactions of heat stress and genotype 
(Fig.  2). The expression values of the genes in category 
I were higher for broilers than for layers. Heat-stress 

resulted in a further increase in expression levels for 
broiler but a decrease for layers, compared to their 
respective controls. In the case of category II, the expres-
sion level of genes was higher for broilers than layers 
under control temperatures (as for category I). However, 
after heat-stress expression levels were lower in broilers 
compared with control broilers and conversely, higher 
in layers compared with LC. Expression values of cat-
egory III genes were substantially higher for LC than BC 
whereas heat-stress resulted in further increases in gene 
expression in layers and decreases in broilers. Category 
IV genes were upregulated in BH compared with BC, 
whereas they were upregulated in LC compared with LH. 

Table 3  Numbers of genes, pathways and networks associated with different categories of genes based on function (see 
Fig. 2)

a  Genes mapped to corresponding identifiers

Category Genesa Pathways Networks Selected

Pathways Networks Functions

I 180 35 23 9 5 Stress response, cellular damage, connective tissue and muscle disorders

II 74 40 7 12 4 Cellular development, anti-apoptotic, anti-inflammatory and anti-stress func‑
tions

III 55 3 9 2 0 Anti-apoptotic, anti-oxidant, anti-inflammatory, energy production

IV 13 9 0 10 0 Stress, inflammatory, tissue damage, anti-oxidative, wound healing

V 7 9 4 5 0 Inflammation, immune functions, oxidative stress, phospholipid degradation

VI 16 7 4 3 0 Cell death, inflammatory and immune response, dellular development, 
haematopoiesis
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Fig. 2  Mean expression levels of genes with significant breed × treatment interaction (P < 0.05) grouped into six categories (categories I–VI). Each 
graph has four bars and each bar represents one group. BC broiler control, BH heat-stressed broiler, LC layer control, LH heat-stressed layer
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Expression of category V genes was low in LC compared 
with all other groups and genes were upregulated in LH 
compared with LC, whereas they were downregulated in 
BH compared with BC. In the case of category VI genes, 
expression values for control layers were higher than for 
the respective broilers. After treatment, the expression of 
these genes increased in broilers but decreased in layers. 
Each of the six patterns of gene expression were analysed 
separately in IPA and significant (P < 0.05) pathways and 
networks were identified (see Additional file 1: Tables S2, 
S3, S4, S5, S6, S7). The set of genes which were filtered 
out by BioLayout Express (i.e. genes with a correlation 
coefficient of less than 0.80) was analysed in IPA sepa-
rately, using the same procedure, to determine signifi-
cant pathways and networks for this gene set, as shown in 
Additional file 1: Table S8.

Body weight and rectal temperature
Mean rectal temperatures for the control and heat-
stressed conditions were 41.0 and 43.7  °C, respectively, 
in broilers, and 42.0 and 42.3  °C, respectively, in layers 
[standard error of difference (SED) 0.15 between breed 
and 0.14 between treatments]. The increase in rectal tem-
perature in the heat-stressed birds was significantly larger 
in broilers (2.6 °C) than in layers (0.3 °C) which resulted 
in a significant breed × treatment interaction (P < 0.001). 
Average body weights (back-transformed) of broiler and 
layer males were 8.38 (4384 g) and 6.54 (693 g), respec-
tively (SED 0.017, P < 0.001).

Discussion
Phenotypic responses validate experimental treatments
The large increase in rectal body temperature for broilers 
compared with layers is consistent with early reports in 
the literature [15, 26]. The results confirm the difficulty 
that broiler chickens have in coping with high ambi-
ent temperatures and other stressors, such as shackling, 
that may ultimately lead to detrimental consequences 
for both muscle function and meat quality [27, 28]. The 
results confirm that the heat treatment had the expected 
effect on the metabolism of broiler chickens and that the 
response in broilers was greater than in layers.

Microarray analysis
The microarray results showed large differences between 
broilers and layers. Nevertheless, comparatively few sig-
nificant genes (107, 617 and 1922 at P < 0.001, P < 0.01 
and P  <  0.05, respectively) were differentially-expressed 
in the comparison between treatments, which indicated 
that the differences in gene expression between heat-
stressed and control birds were not as large as those 
between breeds. The number of upregulated genes in 
BH compared with BC (97%) that were shared with 

downregulated genes in the LH and LC comparison, and 
the number of downregulated genes in the former (BH 
vs. BC) compared with the latter (LH vs. LC) (88%), sug-
gest that changes in gene expression in response to heat-
stress are opposite in broilers compared to layers, which 
is consistent with the conclusion that broiler chickens do 
not manage heat stress appropriately. Furthermore, dif-
ferential gene expression in breast muscles of BC and LH 
compared with LC, separately, involved a similar set of 
genes, which suggests that, in terms of gene expression, 
control broilers are similar to heat-stressed layers. We 
found that 1026 downregulated genes overlapped in the 
comparison of LH vs. LC (71%) and BC versus LC (83%) 
and likewise 753 genes were common/overlapped in the 
set of upregulated genes in the LH vs. LC (95%) compari-
son and in the list of downregulated genes in BH versus 
BC (88%) comparison. Taken together, these results are 
consistent with the physiological changes and muscle dis-
orders that were reported for broiler chickens reared at 
conventional temperatures [1, 4].

The 2213 genes that were differentially-expressed for 
the breed ×  treatment interaction term were classified 
into categories according to their function and the bio-
logical processes in which they are involved. For 424 
transcripts (19.2% of the total), we found no gene sym-
bol and no gene name, which indicates that many genes 
involved in heat-stress induced responses in chicken 
skeletal muscle are not characterised to date. Similarly, 
the second largest group of genes, representing 13.1% 
of the significant genes, had no GO term for a biological 
function at the time the GO terms for this gene set were 
retrieved from the NetAffx Analysis Centre of Affymetrix 
(http://www.affymetrix.com/estore/analysis/index.affx, 
re-accessed 15th December 2016).

About 15% of the 2213 genes, which were significant 
(P < 0.05) for breed × treatment interaction, are directly 
involved in stress-related response, inflammatory, angio-
genesis, apoptotic, and proteolytic functions, which is 
consistent with the physiological changes in broiler mus-
cle caused by heat-stress [15, 29]. Similarly, 4% of the 
genes are involved in signal transduction and are associ-
ated with various biological processes, including oxida-
tive stress, inflammation, muscle contraction, glycogen 
metabolism, and the concentrations of intracellular ions 
[30–34], and 7.3% are involved in inter and intracellular 
transport of proteins associated with muscle contraction 
and muscle damage-related functions [35–37]. Other 
smaller categories of genes are involved in cellular prolif-
eration, development and DNA damage repair.

Stress is known to accelerate metabolic rate, mainly 
through carbohydrate metabolism to produce larger 
amounts of energy and facilitate “fight or flight” 
responses [38–40]; about 6% of all 2213 genes were 

http://www.affymetrix.com/estore/analysis/index.affx
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involved in metabolic and catabolic functions. The 
cytoskeleton is required for cell shape and motility and 
is involved in cell division [41, 42]. It has been suggested 
that the genes in Group 11 (Table  2) have a role in the 
movement and division of leukocytes, such as heterophils 
and macrophages, as secondary mediators of the genes 
in Groups 3, 4 and 5 to shape the stress and inflamma-
tory response to heat stress. Of all the significant genes 
for breed  ×  treatment interaction, 49 encode proteins 
located in the mitochondria and about 200 affect the cell 
membrane directly. These results suggest that damage to 
mitochondria and cell membrane are potentially impor-
tant components of heat-stress induced pathogenesis in 
chicken breast muscles.

Taken together, these results suggest a picture of stress 
responses, inflammation, oxidative stress, and tissue 
damage, which is consistent with histological and physi-
ological changes in broiler breast muscle [1]. Confirma-
tory evidence was also reported in a recent IPA analysis 
of differentially-expressed genes in “wooden breast” and 
control broiler muscles [43].

IPA analysis
Heat stress in broilers led to further increases in the 
expression of category I genes of the α-adrenergic sig-
nalling network (see Additional file  1: Table S2), which 
are involved in glycogenolysis under stressful condi-
tions to provide energy for muscle contraction. However, 
stress hormones are also known to alter the activities 
of immune cells and lead to the production of various 
pro-inflammatory cytokines and chemokines [44, 45]. 
In agreement with these findings, genes of several 
chemokine pathways were also present in this category, 
which are involved in cytokine signalling, tissue dam-
age and related functions (see Additional file  1: Table 
S2). Upregulation of these pathways in control broilers 
indicates that breast muscles in broilers at conventional 
ambient temperatures show physiological and functional 
changes that are further exacerbated by exposure to heat 
stress. However, the upregulated vascular endothelial 
growth factor (VEGF) signalling pathway is also a sig-
nificant mediator of hypoxia-induced angiogenesis and 
is usually upregulated in hypoxia-like situations. Upreg-
ulation of this pathway in control broilers compared 
with layers suggests that broiler muscle cells were under 
hypoxic-stress even under control conditions. The rea-
son for this may lie in the larger size of muscle fibres in 
broilers and an inadequate capillary supply, which are, 
in turn, considered to induce metabolic stress due to the 
larger diffusion distances for nutrients, metabolites and 
waste products [1]. This is consistent with reports that 
thermal stress leads to oxidative stress and muscle dam-
age, as indicated by higher plasma creatine kinase activity 

[26, 46–48]. Upregulation of the nuclear factor eryth-
roid 2-related factor 2 (NRF2)-mediated oxidative stress 
response pathway may be a protective measure to mini-
mise the damaging effects of heat stress on anti-oxidant 
functions [49–51].

Expression of category II genes was highest in BC and 
decreased after heat stress. Upregulation of protein syn-
thesis and angiogenic pathways in BC is logical, in the 
sense, that broilers have substantially higher growth 
rates and larger body mass than layers [52, 53]. Exposure 
to heat stress resulted in downregulation of these path-
ways in broilers, which is consistent with the negative 
effects of heat stress on growth-related traits [54]. Con-
versely, inflammatory and anti-inflammatory pathways 
were upregulated in layers after heat stress, possibly as 
a mechanism to protect the body from tissue damage. 
However, these results are in agreement with the physi-
ological data (body temperature) from the current study 
that show that the increase in body temperature was 
much smaller in layers than in broilers. Consistent with 
this, Sandercock et  al. [14] reported that the effects of 
heat stress on body temperature and plasma creatine 
kinase activity were much smaller in layers than in broil-
ers. Similarly, the extent of heat stress induced oxidative 
stress in skeletal muscles was much smaller in layers than 
in broilers [55].

Hypoxia is known to decrease the efficiency of oxida-
tive phosphorylation [56] and, thus, the downregula-
tion of this pathway in broilers (Additional file  1: Table 
S4) could be due to hypoxia-like conditions in skeletal 
muscles. In contrast to our finding, Toyomizu et al. [57] 
reported that oxidative phosphorylation in skeletal mus-
cles was much more efficient in broilers than in layers at 
14–28 days of age when body weights were about 1.0 and 
0.2  kg for broilers and layers, respectively. This greater 
efficiency of oxidative phosphorylation in broilers at that 
age is a logical outcome of selection for rapid growth. In 
the present study, broilers at 6  weeks of age were over 
3.5 kg heavier than 28-day layers and the occurrence of 
an hypoxia-like situation in their muscles is consistent 
with a higher muscle to capillary ratio and larger diffu-
sion distances for nutrients and metabolic wastes [1]. 
Consistent with this conclusion, some angiogenic path-
ways in category I that are involved in hypoxia-induced 
angiogenesis, such as the VEGF signalling pathway, were 
upregulated in broilers.

Category VI genes, such as Janus kinase 1 (JAK1), 
Janus kinase 2 (JAK2) and tyrosine kinase 2 (TYK2) were 
up-regulated in BH compared with BC and have a role 
in wound healing and tissue regeneration [58], in agree-
ment with categories I and IV genes, which indicates that 
muscle damage is much more important in heat-stressed 
broilers than BC, LC and LH. However, these pathways 
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were downregulated in LH compared with LC, possi-
bly because upregulation of survival-related pathways 
reduced damaging effects in LH [59].

Conclusions
The experimental paradigm of combining genetic and 
environmental differences was successful in identify-
ing a limited number of pathways and networks that 
underlie muscle function and meat quality. Our findings 
provide new insights into the genetics and pathogen-
esis of muscle damage induced by heat stress through 
the identification of previously unknown pathways and 
networks. Importantly, our study also showed that the 
gene expression pattern for breast muscle of broiler 
chickens that were raised under a conventional (control) 
temperature was similar to that of heat-stressed lay-
ers and that the expression of these genes was further 
enhanced in heat-stressed broilers. These results pro-
vide a resource for the identification of candidate genes 
for muscle function and meat quality, which we will use 
in an accompanying paper to determine statistically 
significant associations of SNPs with muscle and meat 
quality traits in chicken.
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