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Abstract

Epileptic  seizures  are  known  for  their  unpredictable  nature.  However,  recent  research  provides  that  the
transition to seizure event  is  not  random but  the result  of  evidence accumulations.  Therefore,  a  reliable  method
capable to detect these indications can predict seizures and improve the life quality of epileptic patients. Seizures
periods  are  generally  characterized  by  epileptiform  discharges  with  different  changes  including  spike  rate
variation according to the shapes,  spikes,  and the amplitude.  In this  study,  spike rate  is  used as  the indicator  to
anticipate  seizures  in  electroencephalogram  (EEG)  signal.  Spikes  detection  step  is  used  in  EEG  signal  during
interictal, preictal, and ictal periods followed by a mean filter to smooth the spike number. The maximum spike
rate in interictal periods is used as an indicator to predict seizures. When the spike number in the preictal period
exceeds the threshold,  an alarm is  triggered.  Using the CHB-MIT database,  the proposed approach has  ensured
92% accuracy in seizure prediction for all patients.
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Introduction

Epilepsy  is  a  neurological  disorder  disease
characterized  by  sudden  and  disturbed  movements  of
the  body,  and  can  be  accompanied  by  excessive
electrical  discharges,  loss  of  consciousness,  and  loss
of  muscle  control[1–  2].  In  most  epileptic  patients,
seizures  can  be  controlled  by  anticonvulsant  therapy.
While  for  about  25% of  epileptic  cases,  no  treatment
is  available,  yet.  Hence,  a  reliable  and  effective
prediction  method  to  anticipate  the  onset  of  seizures
could improve the quality of life of these patients who

are  constantly  facing  the  fear  of  random  seizure
occurrences.

Prediction of epileptic seizures has been the goal of
many  researchers  since  the  1990s.  In  the  last  years,
researchers  have  claimed  that  epileptic  seizures  were
not abrupt, but were manifested a few minutes before
the  seizure  onset.  Epileptiform  in  electroence-
phalogram  (EEG)  activity  has  been  categorized  by
three  periods  that  the  ictal  period  refers  to  a  seizure
event;  the  preictal  period  is  the  state  immediately
before  the  epileptic  seizure,  and  the  interictal  period
refers  the  state  between  seizures  (seizure  free).
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Therefore,  this  study  aims  to  distinguish  clearly
between  the  interictal  and  preictal  states  and  detect
them  before  the  onset  of  seizure  symptoms,  even  a
few minutes before, in order to take the precautionary
measures  and  protection  necessary  for  epileptic
patients.

Thus far,  several  algorithms based on EEG signals
have  been  proposed  in  the  literature  to  predict
epileptic  seizures,  such  as  linear  methods  based  on
frequency  domain  analysis  of  EEG  signals,  and
parametric  models  based  on  multivariate  spectrum
estimation[3–4].  Various algorithms based on nonlinear
signal  theory  help  deal  with  changes  in  EEG  signal
dynamics  during  the  preictal  period,  such  as
correlation  density[5],  largest  Lyapunov  exponent[6–7],
dynamic  similarity  index[8–9],  and  find  significant
changes  in  prediction  characteristics  of  EEG  signals.
Novel  methods  for  predicting  seizures  based  on
Kolmogorov's  entropy  phase  synchronization  and  the
combination  of  medium-phase  coherence  have  been
used to  detect  the  transition from the  preictal  state  to
the ictal state in the EEG signal[10–11].

Seizures  in  EEG  signal  are  characterized  by
waveforms called epileptiform discharges  that  have a
high  and  manifest  degree  of  spike,  and  slow-wave
complexes[12].  Spike  is  described  as  transient  signals
with  a  short  spike  on  the  EEG  ranging  from  20
milliseconds  to  70  milliseconds  with  amplitudes
greater  than  100[13–  14].  A  variety  of  automated  spike
detection  methods  have  been  implemented,  such  as
multi-level  wavelets[15],  neural  network[16],  and
adaptive  time-frequency  parameterization[17].  Some
older studies[18–19] have shown that spike numbers vary
significantly  a  few  minutes  before  epileptic  seizures
begin. It has been found that the rate of bilateral spike
increased  significantly  in  predictive  segments  before
20  minutes  to  seizure  event[18].  It  has  also  been
verified  that  preictal  neuronal  activity  reflected  a
distinct  and  extensive  physiological  state  in  focal
epilepsy,  and  that  changes  in  neuronal  activity  could
be  detected  within  a  few  weeks[19].  A  method  of
forecasting  seizures  based  on  the  spike  rate  of  the
EEG  signal  has  also  been  proposed,  proving  the
effectiveness of the spike number to predict a seizure
period with alarm triggering[20].

The  feature  extraction  of  the  EEG signals  requires
segmentation  into  smaller  windows  to  have  similar
significant  features  in  order  to  analyze  the  EEG
signals.  The  duration  of  these  windows  for  epilepsy
analysis ranged from 5 to 60 seconds. Previous studies
used  a  window  analysis  in  20  seconds  with  overlap
processes[21] or  opted  a  5-second  window  without
overlap[22–24]. A short window is considered to ensure a
compromise  between  stationarity  hypotheses  and  the
ability to capture specific models.

The first prediction algorithms for epileptic seizures

date  back  to  more  than  25  years  but  no  standard
preictal  time  has  yet  been  chosen.  Various  methods
have  reached  different  predictive  times,  such  as  2[25],
20[8], 30[21], and 90 minutes[26].

Other  algorithms  have  treated  other  prediction
periods.  Some  studies  used  10,  20,  30,  and  40
minutes[24] and  did  not  observe  any  difference  in
sensitivity between them. They defined that the means
of time prediction is 0.47 minutes. Other studies tested
the  same  four  prediction  times  and  concluded  an
optimal  average time is  33.7  minutes[23].  Bandarabadi
et  al treated  a  statistical  measure  based  on  amplitude
distribution histogram with different periods from 5 to
180 minutes before the onset occurs[27].  They observe
an  average  time  of  44.3  minutes.  Moghim et  al
proposed a prediction duration that varies from 0 to 20
minutes  before  seizure  state[28];  where  the  defined
forecast  epileptic  seizure  between  14  and  19  minutes
was the most reliable and effective time. Each method
uses a different anticipation strategy, so no predictive
time can be considered a standard, and it can be noted
that  the  optimal  time  of  the  prediction  state  varies
between seizure periods even for the same subject[29].

In this study, we proposed a prediction approach for
epileptic  seizures  based on the  spike  number  of  EEG
signals.  Firstly,  on all  channels,  the number of spikes
was  detected  in  interictal,  preictal,  and  ictal  periods.
The  epileptic  prediction  process  is  presented  in  the
next section; a soft average filter is chosen and used to
smooth the number of spikes between segments of the
same  period.  The  value  of  the  maximum  number  of
spikes  in  the  interictal  period  becomes  a  threshold
used  for  training  data  to  serve  prediction  in  the
preictal  period;  hence,  the  alarm  will  be  triggered
when  the  number  of  spikes  exceeds  the  threshold.
Finally,  the  results  and  comparative  study  are
presented to evaluate the performance of the proposed
approaches.

Materials and methods

EEG international database

The international CHB-MIT database contains scalp
EEG  data  collected  at  Boston  Children's  Hospital
(CHB)  from  23  pediatric  patients  with  9  to  40
recordings  for  each  epileptic  patient.  This  database
was  collected  for  epileptic  seizure  detection[30].  One
hundred and twenty-nine of those records that contain
one  or  more  seizures  and  535  of  the  recordings
contain  no  seizure  activity.  The  recordings  were
sampled  at  256  samples  per  second  (256  Hz)  with  a
resolution of 16 bits[31]. Specifically, one hour for each
patient selected to present an interictal period (seizure
free) used for training data with 720 segments, and 40
minutes selected to be a preictal period with 480. All
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segment's  length  is  5  seconds.  The  seizure  period  is
given in database description but its changes between
one signal and another even in the same subject and it
was segmented into 5-second windows.

Spike detection

The  EEG  is  a  non-stationary  signal  based  on
geometric  characteristics  that  can  be  measured  and
detected using the shape of the corresponding element.
Many  reported  methods  are  applied  to  solve  the
problem  of  automated  peak  detection  in  EEG  signal
data.  A  peak  is  defined  as  a  local  phenomenon,
whereas  a  local  peak  may  not  be  accepted  as  a  true
peak comparing with other peaks in the time series. A
data point in a time series is considered as a local peak
if  :  (1)  it  is  a  high  and  local  maximum  value  in  a
window and it is not necessary that the value must be
large or maximum in the time series; (2) not too many
points have similar values in the window[32].

In this paper, a formal characterization of a peak in
a time series is proposed to detect spike forms in order
to  predict  the  epileptic  seizures  in  EEG  signal.  The
proposed  algorithm  uses  a  raw  time  series  data  and
does  not  require  any  pretreatment  such  as  smoothing
that  eliminates  some  subjective  aspects  and  details
that  are  essential  for  the  prediction  process.  To
highlight the epileptiform in EEG signal,  the selected
element  to  extract  the  spike  must  be  adapted  to  the
geometric  characteristics  of  the  EEG  signals.  This
section  describes  the  operating  process  of  the
proposed algorithm that  begins  with  searching for  all
maximum  local  peaks  in  a  5-second  window.  A
segment can form a set of candidate peaks. Then each
peak in the segment,  if  it  occurs in a period less than
20  milliseconds  and  over  70  milliseconds  and  its
amplitude should be 100 μV and more, is rejected[13–14].
Surviving  peaks  that  exceed  70  milliseconds  are
discarded  and  considered  as  low  frequency  waves.
The  remaining  peaks  are  accepted  as  spikes.  In  this
work,  a  spike  detection  process  is  based  on  these
studies for the extraction of epileptic spike.

The  spikes  detection  process  of  EEG  signal  is
represented  by  the  flowchart  in Fig.  1 and  in  the
following steps:

1) For all the channels, EEG signal is separated into
three periods, which are the interictal period chosen to
be 1 hour, preictal and ictal periods, where the preictal
time  is  40  minutes  after  seizure  onset[23–24].  For  each
period (interictal, preictal, and ictal), a sliding window
is used to obtain segments with duration for 5 seconds
to obtain the spike number in each segment.

2)  Spikes  are  detected  if  the  duration  ranges  from
20 milliseconds  to  70  milliseconds  and the  minimum
amplitude  100μV  such  as  the  sampling  frequency  of
EEG  signals  is  256  Hz[13–  14,20].  EEG  epileptic  spikes
can be extracted efficiently in the CHBMIT database.

Fig.  2 presents  an  example  of  three  EEG  signal
periods:  interictal,  preictal,  and  ictal.  One  hundred
segments  in  each  period  are  randomly  selected  from
the  EEG  CHB-MIT  database.  The  length  of  each
segment  is  5  seconds.  The  variation  of  the  spikes
number  distribution  in  the  EEG  periods  is  well
distinguished  where  the  spikes  number  of  ictal
segments  is  the  maximum  compared  to  the  of  the
other  two  periods.  The  spikes  number  in  preictal
period is greater than interictal periods.

Table  1 represents  the  number  of  segments,  the
means  of  spike  number  in  each  period,  and  the
maximum value of spikes/segment are 4, 7, and 11 in
interictal,  preictal,  and  ictal  period,  respectively.  The
comparison  of  the  three  EEG  periods  shows  a
significant  differentiation  according  to  their  spike
distributions.

Seizure prediction algorithm

As  shown  in Fig.  2,  the  spikes  number  gradually
increases  as  the  seizure  approaches  and  reaches  a
maximum of  seizures.  Based  on  this  observation,  the
rate of peaks was chosen as a tool and as an indicator
to  predict  epileptic  seizures. Fig.  3 illustrates  the
proposed  seizure  prediction  approach.  CHB-MIT
database  (EEG  scalp)  was  used  to  prove  the
robustness  of  the  proposed  method,  and  the  seizure
prediction process based on spikes rate is described in
the following algorithm:

1) For all the channels, separate the EEG signal into
interictal, preictal, and ictal periods. The preictal time
is  40  minutes  before  the  seizure  event,  and  interictal
period  is  chosen  randomly  from  seizure-free
recordings with a period of 1 hour.

2)  After  the  extraction  of  the  three  period  datasets
(interictal,  preictal,  and  ictal),  a  sliding  window  is
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Fig. 1   Block diagram of EEG spike detection method.
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used  to  separate  each  period  in  segment  with  5
seconds.

3) Detect the spikes in each segment for all periods
then calculate their total number of spikes.

N j (i) =
k∑

k=0

n (k) (1)

j represents  the  period, i represents  the  number  of
segments  in j period,  and  n(k)  represents  the  number
of  spikes  in  the ith segment  for  the jth period  in  the
above, and Nj is the total spike number of j period.

4)  Determine  the  spikes  number  segments  in  each
period  and  smooth Nj(i)  using  the  average  filter  to
obtain the new spikes number of i segment relative to
its neighbors to equalize the spikes number in a period
j. 7 is the length of average filter, and 1 is the moving
step.

S N (i) =
1
M

M−1
2∑

a=− M−1
2

N j (i+a) (2)

SN(i)  is  the  smoothed  spikes  number, Nj(i)  is  the
input  segment, a is  the  neighbors  of  the ith segment,
and M represents  the  length  of  the  smoothing  filter
who's chosen to be 7.

5) The maximum value of the spikes number for the
ith segment  in  interictal  period  is  the  threshold  to
predict seizure.

Thresh =max[Ninterictal (i)] (3)
For each patient, Thresh represents the training data

threshold.  The  alarm  is  triggered  when  the  spikes
value in preictal period exceeds threshold.

6)  At  least  one  alarm  is  triggered  in  the  preictal
period (during 40 minutes) in any channel, which may
indicate  an  impending  of  epileptic  seizure  will  occur
in the near future.

The training data represented by 1 hour of interictal,
40 minutes preictal and 5 minutes seizure events were
randomly  selected  from  EEG  data  for  each  patient,
and the test dataset presented by the rest of EEG data
to  evaluate  the  performance  of  the  proposed  method.
Note that the threshold can be different for each patient.
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Fig. 2   Spikes number in 100 EEG segments in each period (in-
terictal,  preictal,  and  ictal). Each  EEG  segment's  length  is  5
seconds. The arrow represents the spike number that  increases re-
spectively in interictal, preictal, and ictal periods.
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Fig. 3   Diagram of the proposed seizure prediction method. The spike number obtained from the interictal period will first be used as a
threshold. The segment spike number in the preictal  period is then compared to this threshold and the alarm will  be triggered when it  ex-
ceeds it.

Table 1   Spikes number in interictal, preictal, and ictal EEG
periods

EEG periods
Segments
number

Mean
Maximum

spike/segment
Interictal 100 0.43 4

Preictal 100 0.99 7

Ictal 100 3.13 11
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Results

Seizure  occurrence  period  (SOP)  is  defined  as  the
period  during  which  the  epileptic  seizure  is  to  be
expected,  while  seizure  prediction  horizon  (SPH)  is
defined as the minimum window of time between the
beginning  of  SOP and  any  alarm[33].  For  a  successful
prediction, the epileptic seizure must occur during the
SOP and not in the SPH. The proposed algorithm was
assessed using SOP and SPH.

The EEG CHB-MIT database was used to evaluate
the proposed prediction algorithm. The EEG signal is
decomposed  to  segments  with  5  seconds  in  order  to
detect  the  spikes  of  each  EEG  segment.  Then  each
segment  took  a  new  spikes  value  according  to  the
average  of  its  neighbors  to  have  the  rate  of  spikes
compared to all  segments in the EEG period. Finally,
the  number  of  spikes  in  each  segment  was  tested
according to the threshold obtained in the training data
and  the  alarm  is  triggered  when  the  SN  exceeds  the
threshold.

Fig.  4 represents  three  periods  (interictal,  preictal
and ictal) of EEG signal, each period has a duration of
190  seconds,  and  it  is  observed  the  variation  of  the
spike  number  between  periods.  Furthermore,  the
variation of spike number in the three EEG periods is
illustrated in Fig. 5A–C respectively, where the duration
in  the  ictal  period  is  190  seconds  while  the  interictal
and preictal periods are 20 minutes. In this figure, the
smoothed spikes  number  are  presented in Fig.  5D–F
respectively  to  interictal,  preictal  and  ictal.  It  can  be
observed  from  this  figure  that  the  spikes  increase  in
the  ictal  period  compared  to  other  periods  and  are
significantly increased suddenly in the preictal period
compared to the interictal state.

Fig.  6 shows the level  of  smoothed spike for  EEG
signal  of  a  patient:  interictal  state  for  1  hour,  preictal
state  for  40  minutes,  seizure  event  for  190  seconds.

The  color  bars  with  magenta  represent  the  time  of
alarm  (21  alarms)  which  are  the  segments  exceeding
the  threshold  presented  by  horizontal  red  lines.  The
smoothed spike  rate  of  this  patient  shows an obvious
increase  in  the  prediction  state,  with  a  sharp  increase
in  seizure  state  compared  with  reduction  in  the
interictal  period. In order to reduce the false alarm in
this  patient,  the  first  alarm  was  started  before  16
minutes of the ictal period.

The  proposed  algorithm  for  seizure  prediction
makes  it  possible  to  give  a  prediction  rate  of  92% to
the  total  number  of  seizures  for  each  patient.  The
prediction time varies between 1 minute and 23 minutes.

Discussion

Prediction of epileptic seizures and the triggering of
an  alarm  or  alert  is  the  goal  of  different  methods  to
have an effective algorithm to improve the quality  of
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Fig.  4   An  example  of  three  EEG  signal  with  interictal,
preictal,  and  ictal  periods. Each  period  has  duration  of  190
seconds.
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Fig. 5   Number of spike detection of three EEG periods before
and after smoothing. A, B and C: The segment spike number ac-
cumulated  to  represent  the  difference  between  interictal,  preictal,
ictal, respectively. D, E and F: The smoothed spike number during
interictal,  preictal,  ictal,  respectively,  where  D  represents  a
smoothed number of spikes in A and E represents B where C rep-
resented in F.
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Fig. 6   Smoothed spike rate in EEG signal for a patient. Inter-
ictal 1 hour (blue), preictal state 40 minutes (yellow), seizure event
during 190 seconds (red), the colored bar with magenta is the alarm
time (21  alarms)  exceeded  the  threshold  that  presented  with  hori-
zontal line.

166 Ben Slimen I et al. J Biomed Res, 2020, 34(3)



life  of  epilepsy  patients  by  eliminating  the  damage
caused  by  epileptic  seizures  that  can  be  presented  by
loss  of  consciousness.  The  key  point  for  successful
prediction  of  seizures  is  to  differentiate  between
preictal  state  and  interictal  state.  Heretofore,  tens  of
linear and nonlinear methods with univariate measures
and  multivariate  measures  have  been  partially
successfully applied to predict epileptic seizure.

Before seizures event, the brain state is stable; there
is  no  epileptiform  discharge  presented.  With  the
discharge  of  some  neurons  that  have  gone  to  the
abnormal  state,  the  epileptiform,  like  spike,  increases
gradually.  In Table  1,  the  statistical  analysis  of  spike
rates  in  different  periods  of  EEG  signal  (interictal,
preictal,  and  ictal)  shows  that  there  is  a  significant

variation between them.
Each  prediction  method  has  been  realized  with  a

different  anticipation  strategy.  Therefore,  it  can  be
concluded  that  no  prediction  time  can  be  fixed  and
considered as a norm. Hence, it is possible to note that
the prediction time varies  from period to another  and
from  records  to  another,  even  for  the  same  subjects.
The  spike  number  can  vary  between  different  EEG
signal  periods,  so  it  is  necessary  to  have  a  specific
setting  parameter  for  each  patient  to  make  the  spike
rate threshold stability optimal for all recordings. The
performance of  the  seizure  prediction algorithm must
be  tested  and  evaluated  on  clinical  cases  and  can  be
implemented  on  an  epilepsy  prediction  device
according to simplicity and understandable logic.

Table 2   Comparative study on recent works conducted on seizure prediction

Ref. Database and methodology Prediction time Performance

Li SF et al[20], 2013 - Freiburg database
- Low-pass filter, Morphology filter, Spike rate detection 10 seconds Sensitivity 75.8%

Zandi et al[34], 2013 - Private data
- Histogram, Variational GMM, Zero crossing intervals 2 minutes Sensitivity 88.34%

Zheng et al[35], 2014 - Freiburg database
- BEMD, Mean phase coherence 20 seconds

Able to detect
synchrony changes
before the onset

Zhang et al[36], 2014 - Freiburg database
- Higuchi FD, Bayesian LDA, Kalman filtering 2 minutes Sensitivity 89.33%

Zhang et al[37], 2014 - Private data
- Approximate entropy 25 seconds Accuracy 94.59%

Teixeira et al[21], 2014 - EPILEPSIAE database
- Auto-regressive modeling, Kruskal-Wallis test, ANN, SVM classifier 15.58 minutes

Sensitivity 73.55,
24.83%

Bandarabadi et al[27], 2015 - EPILEPSIAE database
- Amplitude distribution histograms, Spectral power features 8 seconds Able to predict

seizures

Bandarabadi et al[22], 2015
- EPILEPSIAE database
- Relative spectral power features, MRMR feature selection, Amplitude
  distribution histogram, SVM classifier

5 seconds Sensitivity 75.8%

Behnam et al[38], 2016
- CHB-MIT database
- Interpolated histogram feature, Seizure distribution model, Bayesian
  classifier, Hunting search algorithm, MLP classifier

6.64 seconds Accuracy 86.56%

Fujiwara et al[39], 2016 - Private data
- Time, frequency domain features, Multivariate statistical, process control 10 seconds Sensitivity 91%

Fei et al[40], 2017 - Private data, CHB-MIT database
- Fractional Fourier transform, Modified LLE features, BPNN classifier 10 seconds Accuracy 89.67%

Direito et al[41], 2017
- EPILEPSIAE database
- Auto-regressive modeling predictive error, decorrelation time, statistical
  moments, energy, SVM classifier

5 seconds Sensitivity 38.47%

Chu et al[42], 2017 - Private data, CHB-MIT database
- Spectral feature, Fourier coefficients 20 seconds Sensitivity 86.67%

Zhang et al[43], 2018 - Private data
- A mathematical model 10 seconds

Synaptic plasticity has
influence on seizure
period

Yuan et al[44], 2018 - Freiburg database
- Wavelet transform, Diffusion distance, Bayesian discriminant analysis 10 seconds Sensitivity 93.62%

Tsiouris et al[45], 2018
- CHB-MIT database
- Statistical features, Zero crossings,Wavelet transform, Power spectral,
  Cross-correlation, Graph theory, LSTM

15 minutes to
20 minutes

Sensitivity 99%

Proposed method
- CHB-MIT database
- Spike detection, average filter, threshold from training data.
- Alarm triggered

1 minute to
23 minutes

Able to predict
seizure period with
92% for true
prediction alarm
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Table  2 and Fig.  7 present  different  proposed
methods  for  the  purpose  to  predict  epileptic  seizures;
where  each  method  is  different  from  other  methods
according  to  the  approach  and  strategy  proposed.
Some studies proposed to use epileptiform for seizure
prediction  with  SPH  10  seconds[20].  In  the  same
estimated period, some studies obtained 10 seconds as
prediction  period;  the  research  were  based  on  Fast
Fourier  transform  and  Backpropagation  Neural
Network classifier, with classification accuracy rate of
89.67%[40],  or  the  Wavelet  Transform  and  Bayesian
discriminant  analysis  was  recently  used,  with
classification accuracy rate of  93.62%[44].  The change
in  the  number  of  epileptiform  changes  significantly
between the periods, which clearly allows anticipating
the seizure state.

In this work, an epileptic seizure prediction method
is proposed based on the spike rate in the EEG signal.
The  algorithm  detects  spikes  number  in  all  channels
over  three  EEG  periods  by  applying  the  local
maximum  where  the  time  range  and  amplitude  of
spike were given. The spike rate is smoothed with an
average  filter  to  balance  the  segments  spike
distribution  in  the  same  EEG  periods,  where  the
maximum number of spikes in the interictal  period is
used  as  a  threshold  and  as  index  that  there  is  an
impending  seizure  in  the  near  future.  The  alarm  is
triggered  when  the  spike  number  in  an  interictal
period segment exceeds the threshold. The CHB-MIT
database  is  used  to  evaluate  the  algorithm,  and  it  is
shown  that  the  spike  rate  increases  with  the
occurrence  of  a  seizure  and  reaches  a  maximum  in
seizure  state.  The  proposed  approach  achieves  a
prediction rate up to 92% for all patients with at least
one  alarm  is  triggered  at  least  in  one  channel.
Comparing  the  epileptic  seizure  prediction  methods
such  as  correlation  dimension,  phase  synchronization
and  other  algorithms,  the  proposed  algorithm  allows
to  obtain  a  higher  precision  with  a  perfect  prediction

rate. In order to improve the quality of life of epileptic
patients,  after  the  validation  and  according  to  the
simplicity  of  this  algorithm,  it  is  possible  to  make  a
portable device for monitoring epileptic seizures.
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