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Abstract
Background: Androgenetic alopecia (AGA) is the most common form of
non‐scarring alopecia in humans. Several studies have used different lab-
oratory models to study the pathogenesis and interventions for AGA. These
study models have proved beneficial and have led to the approval of two
drugs. However, the need to build on existing knowledge remains by
examining the relevance of study models to the disease.
Objective: We sought to appraise laboratory or pre‐clinical models of AGA.
Method: We searched through databases (PubMed, ScienceDirect, Web of
Science, World CAT, Scopus and Google Scholar) for articles on AGA‐
related studies from 1942 to March 2019 with a focus on study models.
Results: The search rendered 101 studies after screening and deduplica-
tion. Several studies (70) used in vitro models, mostly consisting of two‐
dimensional monolayer cells for experiments involving the characterization
of androgen and 5‐alpha reductase (5AR) and inhibition thereof, the effects
of dihydrotestosterone (DHT) and biomarker(s) of AGA. Twenty‐seven
studies used in vivo models of mice and monkeys to investigate DHT syn-
thesis, the expression and inhibition of 5AR and hair growth. Only four
studies used AGA‐related or healthy excisional/punch biopsy explants as ex
vivo models to study the action of 5AR inhibitors and AGA‐associated
genes. No study used three‐dimensional [3‐D] organoids or organotypic
human skin culture models.
Conclusion: We recommend clinically relevant laboratory models like hu-
man or patient‐derived 3‐D organoids or organotypic skin in AGA‐related
studies. These models are closer to human scalp tissue and minimize the
use of laboratory animals and could ultimately facilitate novel therapeutics.

1 | BACKGROUND

Androgenetic alopecia (AGA) is the most common form
of non‐scarring hair loss in humans.1–3 The prevalence of
AGA varies between races and ethnicities.1 This
disparity is attributed to the different methods of
measuring prevalence, making it difficult to compare
studies.1,2 Nonetheless, about 50% of men of European
descent are affected by the age of 50 years; this pro-
portion increases to 90% with age.1,4,5 Furthermore,

AGA is estimated to affect about 19% of women of Eu-
ropean ancestry, while the prevalence and severity of
AGA are considered low in Asian and African men.1,4,6

In the early 1940s, Hamilton proved that genetic
predisposition and male hormone stimulation are pre-
requisites in AGA development.7 After this discovery,
several AGA models were created to delineate the
pathophysiology and evaluate the effectiveness of novel
therapeutics using both laboratory (in vitro, in vivo and
ex vivo) and non‐laboratory models. These models,
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though beneficial, however, have limitations since most
are not fully representative of AGA. Also, available in-
formation on the molecular pathology and mechanism of
AGA action is modest and thus hampers the progression
of potential new treatments to human clinical trials. This
problem may explain why only two drugs (Minoxidil, a
vasodilator, and Finasteride, an alpha two reductase in-
hibitor) are currently approved and available for AGA
treatment. Therefore, it is imperative to build upon
existing models of AGA to facilitate the discovery of
novel therapeutics.

This systematic review aims to appraise all AGA‐
related study models published to date for the testing
of AGA interventions. However, not intended to eval-
uate the efficacy of AGA treatments.

2 | METHODS

The protocol for this study was registered and pub-
lished in the International Prospective Register of
Systematic Reviews (reg. number CRD42018107182;
http://www.crd.york.ac.uk/PROSPERO).

2.1 | Search strategy

The Medical Search Headings terms used for the search
were Androgenetic alopecia, Androgenic Alopecia, Hair
Loss, and Male pattern baldness. Other search terms
included In vitro, In vivo, Ex vivo, Finasteride, Minoxidil,
Proliferation, Hair loss culture models and Xenografts,
Tissue culture, Plant extracts, Hair shedding, Hair scalp
biopsies, Induced alopecia, Cell differentiation, Cell
lines, Primary cells, 2‐D Models, 3‐D Models, and Sig-
nificant hair growth. The ‘NOT’ Boolean operator was
used to exclude reviews, ‘transplant studies’, ‘human
studies’, and ‘clinical studies’ (Table S1).

2.2 | Information sources

There was a search for articles on publication data-
bases (PubMed, ScienceDirect, Web of Science, World
CAT, Scopus and Google Scholar) from January 1942
until March 2019. A search strategy was developed for
PubMed and adapted as per the requirements of other
databases. A hand search in Google Scholar and Sci-
ence Direct supplemented the search. The review also
looked at unpublished articles from conferences and
libraries (dissertations).

2.3 | Inclusion criteria

The inclusion criteria for the articles selected are
as follows: preclinical laboratory studies and models

(in vitro, in vivo and ex vivo) published in the English
language. Our search excluded all articles involving
human, clinical, diagnostic, drugs/phytochemicals
efficacy and hair or cell transplant studies. Search re-
sults were filtered to include the research studies
relevant to this review as per the pre‐decided inclusion
criteria.

2.4 | Data extraction and synthesis

We used a predesigned template adapted from
Cochrane to populate the data extracted from the
selected studies (Table S2). We analysed these data
based on certain variables: the type of model (i.e., in
vitro, ex vivo and in vivo), cell‐types and techniques.
We grouped research articles with similar variables.

2.5 | Quality assessment and risk of bias

The selected articles' quality was assessed by two
authors (SN and AA) using a predesigned template
validated by three independent assessors (Table S3).
The quality assessors scored 10 similar questions,
compared scoring results and any disagreements
resolved through consensus. The articles were assessed
against three questions, as follows:

What's already known about this topic

� Laboratory models are used to study the
aetiology, pathogenesis and the efficacy of
therapeutic interventions for AGA. These
models, though beneficial, have only resulted
in two FDA‐approved drugs for the treat-
ment of AGA, which may be partly due to the
lack of disease‐related models.

What's new or what does this study add?

� This systematic review summarizes published
evidence of laboratory models used in AGA‐
related research and revealed the scarcity of
studies that use human or patient‐derived 3‐D
tissue culture models. These models are more
suitable and more physiologically representa-
tive than 2‐D cell culture and animal models
for pre‐clinical research. Thus, this article
could guide the selection of appropriate study
models for future research, and thus facilitate
research translation.
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1. Is the model used in the study appropriate or
relevant (i.e., the use of patients' or control direct
tissues or biopsies, patient‐derived primary or
immortalized two dimensional [2‐D] or three
dimensional [3‐D] cells/cell lines)? Studies that used
patient‐related or human tissue instead of animal
tissue as models had high scores.

2. Do the techniques and methods of analysis used in
the study adequately address the research question?

3. Are the results from the research study validated by
more than one research technique and are the re-
sults reproducible (i.e., the number of independent
experiments)? Articles with results confirmed by
three or more techniques, and a minimum of three
independent experiments, scored higher than
studies that used two or one methods.

The maximum score per question was five points.

3 | RESULTS

3.1 | Study selection

Our initial search rendered 1228 related articles after
removing duplicates. A further review of the full‐text
articles based on set eligibility criteria excluded 1128
and an additional two with the reason (spheroids but
unrelated to AGA). Three more research papers
retrieved from an updated hand search supplement the
remaining 98 articles, thus bringing the entire selected
research articles to 101. These articles included studies
involving 70 in vitro, 4 ex vivo and 27 in vivo models
(Figure 1).

3.2 | Data extraction and synthesis of
included studies

A summary of the study models from the included
studies (i.e., in vitro, ex vivo and in vivo) is illustrated
(Figure 2) and grouped under the following headings
(Table 1): Study objective(s), Models, Techniques and
Outcomes. From the 101 articles, 15 demonstrated the
requirement of androgens for AGA development using
in vitro and ex vivo models with different cell‐based
experimental techniques. These techniques include cell
proliferation assays involving androgen‐induced over-
growth and androgen receptor antagonism.3–17

Twenty‐four studies investigated gene expression
profiling18–28 and markers for AGA.29–41 Fourteen
studies focused on the action of 5‐alpha reductase
(5AR), which converts the androgen (testosterone) into
dihydrotestosterone (DHT) and the inhibition of this
enzyme42–55 using enzymatic, radiochemical and cell
proliferation assays. Thirteen studies used the same
techniques to investigate the role of other enzymes in

the mediation of AGA.4,6,10,43,56–65 To find alternative
treatments for AGA, four studies investigated the ef-
fect of plant extracts and phytocompounds on the in-
hibition of 5AR type 2 using the dermal papilla cells
(DPCs) proliferation assay.43,45,48,53 Only three studies
investigated efficient drug delivery methods, such as
nanotechnology.66–68 In contrast, 27 articles used
mice/mice xenografts, rats and monkeys as in vivo
models to study the efficacy of Finasteride, Minoxidil
and plant extracts/compounds in the treatment of
AGA. Different assays were used, including 5AR enzy-
matic action on androgens, DHT effect on hair and hair
appendages growth experiments.10,21,46,50–52,64,69–92

3.3 | Quality assessment of included
studies

The overall results show a relatively high percentage
(62%) of articles with a middle‐risk score (Figure 3). The
evaluation of these articles revealed that 75% used
appropriate models, while 25% of the studies having a
high‐risk score on the reliability of the models. The
models used are monolayer (single or co‐culture) of
immortalized cell lines, human skin tissue, or mice/mice
xenografts, or stump‐tailed macaques. The articles had
clear objectives or research questions, with methods and
procedures that precisely addressed these objectives.
About 38% of the selected studies had not validated
experimental results with more than one technique.

4 | DISCUSSION

This systematic review, which sought to appraise
models used in preclinical AGA research, rendered
three groups of models: in vitro (n ¼ 70), ex vivo (n ¼ 4)
and in vivo (n ¼ 27).

4.1 | In vitro 2‐D models

The use of in vitro models is fundamental to all
biomedical studies. The advancements made in studying
cells, bacteria and viruses are often the first strides into
understanding in vivo conditions. The in vitro models
from included studies were 2‐D monolayer (single or co‐
culture cells) of immortalized or primary epithelial and
mesenchymal cell lines. Immortalized cell lines are often
used in research in the place of primary cells because
they are cost‐effective, easy to use and provide an un-
limited supply of material. These cells can also grow
indefinitely in culture and bypass ethical concerns
associated with animal and human tissue use. However,
immortalized cell lines undergo significant mutations to
become immortal, which can alter cellular physiology.
Also, genetic changes can occur over multiple passages,
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leading to phenotypic differences among isolates and
unreproducible experimental data.

Examples of immortalized cells used in the reviewed
articles were human prostate cancer (PC3) cells, human
keratinocytes (HaCaTs), prostate adenocarcinoma
(LNCaP) cells, human sebaceous gland (SZ95 sebo-
cytes) cells, human melanoma cells, human embryonic
kidney 293 cells and the Shionogi carcinoma‐115
cells.4,6,10,43,56–65

Although the use of these epithelial cells provided
useful data to study potentialAGA therapeutics, they are
not related to this disorder. Therefore, some studies
used DPCs.43,45,48,53 Scalp DPCs are specialized
mesenchymal cells of tissues affected by AGA that exist
in the dermal papilla located at the basal layer of hair
follicles. These cells play a pivotal role in the hair cycle.
These cells were used as 2‐D in vitro models in
androgen‐based and 5AR kinetics and inhibition assays
to study the paradox of DHT, gene expression and AGA

markers in two culture systems. The first system
involved introducing growth factors (from keratino-
cytes‐conditioned growth medium with or without me-
dium containing fibroblast growth factor) to cultured
DPCs. The second system included the co‐culture of
DPCs with effector cells (e.g., HaCaTs). Although these
2‐D models are instrumental in enhancing the under-
standing of AGA's molecular pathology and mechanism,
there have been limitations associated with these 2‐D
models. For instance, 2‐D models do not accurately
recapitulate the tissue architecture and cellular mecha-
nisms present in a whole skin, impeding advancement
towards effective AGA therapeutics.

4.2 | In vivo models

Twenty‐seven studies used either mice or rats and
monkeys as in vivo models, the most common being

F I G U R E 1 A PRISMA diagram illustrating the search, screening and assessment strategy of articles reviewed, and qualitative synthesis of
the selected articles
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C57BL/6, Kunming mice and male Sprague Dawley rats,
male Wister/ST rats, C57BL/6NCrSlc strain mice, C3H/
He strain mice, B6CBACF1/J female mice, male Swiss
albino and human scalp hair grafted into nude mice (i.e.,
human scalp hair xenografts).21,46,50–52,64,69–89,91,92

These rodents are used in general as models in medical
research due to genetic, biological and behavioural
similarities to humans. More so, they are useful in
replicating many human disorders.

The stump‐tailed macaque monkey was the only
primate‐related in vivo model used in the reviewed
studies.10,88,90 Stump‐tailed macaque was the
preferred choice because they possess hereditary
balding characteristics similar, in many respects, to
those of AGA in humans. However, macaques are
found only in Asia, and the cost, risk and near extinc-
tion compromise the use of this model. Hence, the
number of studies using these monkeys has diminished
over the years. Animal models are considered suitable
for studying human diseases as their biological milieu
resembles human homoeostatic conditions. However,
the use of animals in research is subject to strict ethical
guidelines and often laden by the high human trans-
lational failures, perhaps due to inadequate mimicry of
human pathophysiology. Thus, 3‐D ex vivo models
are fast becoming more prominent in understanding
AGA.

4.3 | Ex vivo models

Only four of the included studies were ex vivo, using
either diseased (AGA) or normal excisional and punch
biopsy explants (whole skin organ cultures).6,23,60,67

These models were used to study the action of 5AR
inhibitors and the role of genes in AGA. Skin explants
can maintain the cutaneous structure of the skin and,
hence, allowing for studies, for example, that evaluate
the effects of 5AR inhibitors on tissue morphology and
gene expression. Although ex vivo organ culture is an
easy‐to‐use and relatively cheap model, its use may be
hampered by human ethical consideration and the
availability of skin organ donors leading to insufficient
skin specimens.

4.4 | Risk of bias

A validity assessment evaluated the risk of bias in the
models and experimental techniques used in the
included studies. The overall results show a relatively
high percentage of articles with a middle‐risk score. This
observation may result from the low scores in the reli-
ability of methods used and validation of results
(we recommend a minimum of three techniques for
validation). Result validation is a critical component in

F I G U R E 2 An overview of the in vitro, ex vivo and in vivo model of androgenetic alopecia (AGA) included in the review
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method evaluation because it reveals the specificity,
accuracy, precision and, ultimately, the data's reliability.
Validation is also essential to demonstrate that the
model and technique used is suitable for the intended
use. Many of the included studies (76%) were not
exhaustive, with only 24% using three or more tech-
niques to validate their results. Therefore, there is a need
for continuity in work already done and the development
of models with more relevant technologies.

Assessing the risk of bias of studies contained in the
body of evidence is foundational and central to all sys-
tematic reviews to improve the transparency, consis-
tency and scientific rigour of the research. Bias refers to
factors that can confound the overall observations and
conclusions of a study, which may lead to inappropriate
recommendations. These discrepancies can result in
wasted resources and loss of opportunities to discover
effective therapies.

5 | LIMITATIONS

None of the included studies used 3‐D models of AGA.
The use of 3‐D AGA models (e.g., organ culture from
either punch biopsies, skin tissues from patients [healthy
or diseased] or cells isolated from tissue samples) has an
advantage over 2‐D models. These models allow
experimentation with human diseased tissues under
controlled conditions than would be challenging to
achieve in 2‐D models, which may prove unachievable
with in vivo models, thus allowing for a more detailed
cellular and molecular characterization. Interestingly, 2‐
D models can be used to create 3‐D models. The 3‐D
models can either be organoid cultures or be organo-
typic skin cultures. Organoids are in vitro‐derived 3‐D
cell aggregates derived from primary tissue, which
possess similar composition and architecture to primary
tissue, and exhibit organ functionality. On the other
hand, organotypic skin cultures use primary human cells,
and cell culture inserts to recapitulate the stratified
epidermal architecture of the skin to replicate the
normal anatomy and physiology. This approach, espe-
cially with whole skin punch biopsies, allows for the in
vitro maintenance of skin appendages, for example, hair
follicles. Therefore, organotypic skin cultures may be
instrumental in preclinical AGA research to validate the
mechanisms of diseases and test the novel therapeutics.

6 | CONCLUSION

There is substantial evidence on the use of various
models in the study of many diseases, including AGA
and the discovery of effective targeted therapies. AGA
models to date have helped in the understanding of this
disorder. Howbeit, most of these models are not ideal
representatives of AGA in humans. Only four studiesT
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used whole human skin biopsies from patients
(diseased and healthy), a closer approximation of AGA
in humans. However, none of the studies used 3‐D
organoids or organotypic skin culture models. There-
fore, there is a need to improve these models with a
focus on the use of diseased and healthy biopsies or cell
lines isolated from these biopsies. These 3‐D models
allow experimentation closer to humans, which may
prove difficult or impossible with in vivo models while
minimizing harm to animals. It is also vital to validate
experiments with a minimum of three techniques.
Finally, 3‐D experimental data should ultimately be
tested in human clinical trials to achieve formidable
progress towards fast and effective treatment solutions
for AGA. A good translation of AGA preclinical
research into human trials will ensure the discovery of
new and more effective drugs.
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