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Abstract: Direct-acting antiviral agents (DAAs) that allow for rapid clearance of hepatitis C virus
(HCV) may evoke immunological changes. Some cases of rapid de novo hepatocellular carcinoma
(HCC) development or early recurrence of HCC after DAA treatment have been reported. During
chronic HCV infection, natural killer (NK) cells exhibited a deviant functional phenotype with
decreased production of antiviral cytokines and increased cytotoxicity; however, DAA treatment
rapidly decreased their cytotoxic function. Effective DAA therapy also suppressed the intrahepatic
activation of macrophages/monocytes. This was followed by a decrease in mucosal-associated
invariant T (MAIT) cell cytotoxicity without normalization of cytokine production. Rapid changes in
the phenotypes of NK and MAIT cells after DAA treatment may attenuate the cytotoxicity of these
cells against cancer cells. Moreover, DAA treatment did not normalize the increased frequencies of
regulatory T cells even after clearance of HCV infection. Thus, the persistently increased frequency
of regulatory T cells may contribute to a local immunosuppressive milieu and hamper the clearance
of cancer cells. This review will focus on recent studies describing the changes in innate and adaptive
immune responses after DAA treatment in patients with chronic HCV infection in the context of de
novo occurrence or recurrence of HCC.
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1. Introduction

Approximately 71 million individuals are infected with hepatitis C virus (HCV) world-
wide, and acute HCV infections frequently result in chronic, long-term infections [1]. Since
its discovery, significant advances have been made in HCV diagnosis and treatment [1].
However, hepatocellular carcinoma (HCC) is highly likely to develop in cases of chronic
hepatitis C (CHC) due to the direct oncogenic effect of viral proteins and the indirect
oncogenic effect of chronic inflammation, fibrogenesis, and dysfunctional immunity [2].
Globally, HCC is the sixth most common malignancy and the third most common cause of
malignancy-related deaths [1].

Pegylated interferon-alpha (peg-IFN-α) and ribavirin have been used as a therapeutic
combination for chronic HCV infection. Newer direct-acting antivirals (DAAs) targeting
non-structural viral proteins are better tolerated by patients and result in a markedly
increased rate of sustained virological response (SVR) [3]. This significant breakthrough has
been reinforced by the use of pan-genotypic agents. These agents also have a favorable side
effect profile, and their administration periods are shorter than those of their traditional
counterparts. Despite a nearly 100% cure rate, DAA therapy does not prevent HCV
reinfection [4].
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The immune cell population within the liver comprises both innate and adaptive
immune cell types, such as natural killer (NK) and natural killer T (NKT) cells, and B
and T lymphocytes [5]. Interestingly, several significant differences have been observed
between the murine liver immune cell population and their human counterparts. A higher
proportion of NK cells are generally found in human than in murine liver, although the
frequencies of dendritic cells (DCs) and Kupffer cell populations are similar in mouse and
human livers [6]. In addition, mucosal invariant T (MAIT) cells are present at a higher
frequency in the human liver, whereas NKT cells are present in greater numbers in the
murine liver [6]. Chronic HCV infection causes alterations in the frequency, function, and
phenotype of these immune cells [7]. However, whether the innate and adaptive immune
systems, affected by several years of constant antigenic stimulation and endogenous
interferon (IFN) production, are restored to normal function after elimination of HCV
by DAAs has not been completely elucidated. In the last few years, studies have shown
that exhausted HCV-specific CD8+ T cells fail to recover entirely, although DAAs rapidly
eliminate HCV from the whole body [8,9]. Thus, when the patient is re-exposed to HCV,
there seems to be a deficient, memory-like adaptive response.

Patients with HCV-induced liver cirrhosis (LC) who achieved SVR by IFN-based
treatment presented a lower risk of HCC development than those without treatment [10].
Since this study was published in 1995, further trials including control groups of IFN-
non-responders have verified this result, including the Hepatitis C Antiviral Long-term
Treatment against Cirrhosis (HALT-C) trial [11] and a trial conducted by the Swedish
Hepatitis Group [12]. The clinical introduction of DAA therapy for HCV is relatively recent;
therefore, long-term data on patients receiving DAAs are lacking. In very recent reports
with patients who showed a complete response to HCC treatment, DAA therapy was
associated with a significantly longer overall survival [13–16]. In patients with chronic
HCV and pre-existing LC, the incidence of HCC seems to be diminished, but not completely
eliminated, by DAA treatment [17–22]. A recent consensus recommended clinical vigilance
after DAA treatment to detect new tumors in patients with advanced hepatic fibrosis
(F3-4) [1,23]. Moreover, a high risk of recurrence or de novo occurrence of HCC shortly
after DAA treatment in patients with cirrhosis was noted in some case studies [17,18,24].
These results have evoked considerable controversy and discussion among international
experts in this field. Recent meta-analyses have concluded minimal differences in the
possibility of HCC development between the use of DAAs and IFN-based agents [25–27].
Compared to those treated with IFN-based regimens, a higher number of elderly patients
with additional risk factors for HCC have been treated with DAAs. This discrepancy seems
to be responsible for the higher incidence of HCC among patients treated with DAAs [25].
However, there is still a possibility that HCC may develop shortly after completion of DAA
treatment due to the abrupt change in the immune microenvironment in the liver.

HCC is a typical example of a malignancy associated with chronic non-resolving
inflammation [28–30]. Immune subtyping using data collected from The Cancer Genome
Atlas (TCGA) describes HCC as a C4 subtype [31,32]. This subtype is associated with
an enriched population of M2 macrophages and the suppression of Th1 CD4+ T cells.
Moreover, NK cells are dysfunctional in the HCC tumor microenvironment [33]. These
data indicate that the HCC microenvironment is largely controlled by immune cells that
regulate and suppress antitumor immune responses [31,34]. When DAA therapy is ad-
ministered without IFNs, the exclusive impact of HCV elimination on the immune system
can be studied. In some patients, sudden alterations in the immune response may trigger
two concerning events: hepatitis B virus (HBV) reactivation in subjects with HBV–HCV
co-infection and HCC recurrence in individuals despite prior apparent clearance of the
tumors [35].

This review focuses on recent studies describing changes in the innate and adaptive
immune cell populations after DAA therapy for HCV infection in the context of HCC
occurrence or recurrence. Each section of our review covers a single important player of
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intrahepatic innate and adaptive immunity: hepatocytes, NK cells, T cells (including γδ T
cells, and MAIT cells), macrophages, and immune regulatory cells.

2. Possible Immunological Mechanisms of HCC Development following
DAA-Induced Viral Clearance

The number of new cases of HCC seems to decrease when SVR is achieved by DAA
therapy. However, the likelihood of HCC recurrence shortly after DAA administration
remains controversial. A possible hypothesis to explain these findings is that HCV elimina-
tion with DAAs may influence the intrahepatic immune environment to create conditions
that allow HCC tumorigenesis. The following sections will discuss the possible immuno-
logical mechanisms underlying HCC development following DAA-induced HCV clearance
(Table 1).

Table 1. Potential immunological mechanisms involved in hepatocellular carcinoma (HCC) develop-
ment after direct-acting antivirals (DAA)-mediated hepatitis C virus (HCV) clearance.

Chronic HCV Infection After HCV Clearance by DAAs

NK cell
Phenotype Activated (NKG2D upregulation) Normalized

Function Increased cytotoxicity
Defective IFN-γ production Normalized

Diversity Reduced Not normalized

MAIT cell
Phenotype Activated Normalized

Function Increased cytotoxicity
Defective IFN-γ production Not normalized

Frequency Reduced Not normalized

Treg cell Phenotype Activated Not normalized
Frequency Increased Not normalized

MDSC Frequency Increased Not normalized
MAIT cell, mucosal-associated invariant T cell; MDSC, myeloid-derived suppressor cell; NK cell, natural killer
cell; NKG2D, NK group 2D.

2.1. Downregulation of IFN-Stimulated Genes in Hepatocytes after DAA Treatment

HCV-infected hepatocytes exhibit ongoing production of type I and III IFNs [7]. The
influence of type I IFNs on tumor, immune, and endothelial cells through a range of
pathways may delay the growth of tumors. Specifically, cancer progression may be slowed
through the action of type I IFNs on malignant cells, leading to the cessation of the cell
cycle, cell death, and augmented immunogenicity via the major histocompatibility complex
(MHC)-1 molecule upregulation on the cell surface [36]. Furthermore, type I IFNs enhance
pro-inflammatory cytokine release [36]. Cell cycle arrest and apoptosis are also induced
through direct targeting of malignant cells by IFN-λs [37–39].

In the HCV-infected liver, type I and III IFNs produced in the infected liver are not
sufficient to eliminate HCV infection. Moreover, HCV successfully replicates even when
high IFN-stimulated gene (ISG) expression levels are sustained [40,41]. This upregulated
expression of ISGs has been shown to negatively affect the outcome of peg-IFN-α and
ribavirin treatments [7,41]. The IFNL4 genotype, which determines whether functionally
active IFN-λ4 protein is produced, is the primary polymorphism explaining the unsuccess-
ful responses to IFN-α-based therapy [7,40]. The allele that codes for the production of the
fully active form of IFN-λ4, rs368234815-∆G, is directly associated with ISG upregulation in
the livers of HCV-infected patients [40]. Following DAA-induced HCV clearance, prompt
ISG downregulation is seen in the liver. Using in vitro methods, our group recently demon-
strated that HCV-infected primary human hepatocytes halted the production of IFN-λs,
including IFN-λ4, after DAA treatment [42]. Even in cases in which the liver exhibited high
ISG expression, DAA therapy rapidly downregulated the expression in patients for whom
previous IFN treatment was ineffective [43–46]. A recent report elegantly demonstrated
that HBV reactivation after DAA treatment is the result of attenuated hepatic type I and III
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IFN responses following HCV clearance in patients co-infected with HBV [47]. Treatment
with DAAs also resulted in rapid normalization of the type I IFN response in peripheral
blood mononuclear cells (PBMCs) based on ISG expression levels and STAT1 phosphoryla-
tion [46,48,49]. This downregulation of type I and III IFNs and ISGs in hepatocytes and
immune cells, respectively, which include antitumor ISGs, may contribute to the occurrence
or recurrence of HCC, similar to the reactivation of HBV replication.

2.2. Defective Tumor Surveillance by NK Cells after DAA Treatment

NK cells function as effectors through cytotoxic mechanisms and the production of
cytokines [33,50]. In HCV infection, NK cells play a critical antiviral role in patients who
are exposed to the virus at a subclinical level, such as intravenous drug users who are
exposed to high HCV titers but do not become infected [51,52] or healthcare workers who
are not infected with HCV despite a contaminated needle stick injury [53]. An elevated
number of NK cells, together with augmented IFN-γ production and cytotoxicity, has been
noted in such cases.

NK cells are also involved in the antitumor immune response by directly killing
tumor cells. Early in hepatocarcinogenesis, deregulation of multiple immune-related genes
associated with NK cell function was noted in a murine transgenic model (c-myc/tgfa) of
an aggressive form of human liver cancer [33,54]. Notably, the frequency of NK cells in
the peripheral blood of patients with HCC has been positively associated with recurrence-
free survival [55]. Within the HCC microenvironment, the functions of NK cells are
defective, which has been attributed to various causes [33,50,56]. Activating receptors,
such as the NK group 2D (NKG2D), are critical for tumor immunosurveillance by NK
cells. Major histocompatibility complex class I chain-associated molecules (MICs) A/B are
recognized by NKG2D, and diminished MIC A/B expression has been associated with
early hepatocarcinogenesis [33]. A previous study demonstrated that intratumoral NK cells
exhibited NKG2D downregulation compared to NK cells in a non-tumor liver, resulting
in the defective antitumor function of NK cells [57]. Rapid HCC development following
DAA therapy has been postulated to be a consequence of the prompt downregulation of
NKG2D-mediated immune surveillance by DAAs [58]. A previous study with 101 CHC
patients treated with DAAs reported rapid recurrence of the tumors in 12 patients. A more
abrupt decrease in NKG2D levels in NK cells following DAA treatment was associated
with a higher risk of HCC recurrence in these patients [58,59].

In chronic HCV infection, IFN-α has been identified as an activator of intrahepatic NK
cells [60]. Consequently, the function of NK cells is altered during chronic HCV infection,
with amplified cytotoxicity and decreased levels of cytokine production, including IFN-γ
(Figure 1) [61–63]. Thus, a functional dichotomy is created. After DAA treatment, the
phenotype of NK cells changes rapidly. Golden-Mason et al. [64] observed decreased
cytotoxicity of NK cells and downregulation of NKp30, NKp46, and tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) after DAA treatment. Another study showed
that NKp30 and NKp46 expression wee downregulated after DAA treatment [59,65]. Over-
all, these studies demonstrated the downregulation of NK cell cytotoxicity receptors and
normalization of NK cell function following DAA treatment (Figure 1), which may para-
doxically allow HCC development. Moreover, sustained defective NK cell diversity after
DAA-mediated HCV clearance may also contribute to HCC development. Chronic HCV
infection has been demonstrated to increase inter-individual, but decrease intra-individual,
NK cell diversity. Furthermore, the defect in the NK cell repertoire diversity appears to be
irreversible even after DAA treatment [66,67]. Thus, the global impact of HCV infection on
the NK cell compartment may remain for years even though NK cell function (cytotoxicity
or cytokine production) seems to be normalized with DAA treatment [66,67]. This impaired
restoration of the NK cell repertoire may also be involved in hepatocarcinogenesis.
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duction of interferon (IFN)-γ in HCV-infected livers, resulting in defective overall IFN-γ production by MAIT cells. DAA 
treatment failed to recover the function of MAIT cells in response to T-cell receptor stimulation. An increase in the regu-
latory T (Treg) cell frequency is well-documented in chronic HCV infection. DAA treatment does not normalize the fre-
quencies of regulatory T cells after clearance of HCV infection. The increased frequency of M-MDSC cells is not normalized 
6 months after the end of DAA treatment. 
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to not restore virus-specific T-cell function even after HCV is cleared [7]. An initial report 
regarding DAA treatment, demonstrated that it may partially reinvigorate exhausted vi-
rus-specific T cells [72]. Following DAA therapy, some degree of enhancement in the in 
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DAA therapy [74]. In chronic HCV infection, virus-specific CD8+ T cells are usually ex-
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Figure 1. Changes in the phenotypes of immune cells after DAA-mediated HCV clearance. During chronic HCV infec-
tion, NK cells exhibited a deviant functional phenotype with decreased production of antiviral cytokines and increased
cytotoxicity (represented by NKG2D upregulation). DAA treatment rapidly decreased their cytotoxic function. MAIT
cells exhibited an activated phenotype with high expression of CD69, programmed cell death protein (PD)-1, and human
leukocyte antigen (HLA)-DR. T-cell receptor-mediated stimulation of MAIT cells does not significantly contribute to the
production of interferon (IFN)-γ in HCV-infected livers, resulting in defective overall IFN-γ production by MAIT cells. DAA
treatment failed to recover the function of MAIT cells in response to T-cell receptor stimulation. An increase in the regulatory
T (Treg) cell frequency is well-documented in chronic HCV infection. DAA treatment does not normalize the frequencies of
regulatory T cells after clearance of HCV infection. The increased frequency of M-MDSC cells is not normalized 6 months
after the end of DAA treatment.

2.3. Sustained Impairment of T Cells after DAA Treatment

Immune cells need to penetrate the tumor tissue to exert antitumor effects. A higher
number of infiltrated lymphocytes in the tumor correlates with reduced risk of HCC
recurrence [55]. CD8+ T cells specific to tumor antigens are the main antitumor effector
cells [68–70].

In chronic HCV infection, virus-specific T cells are exhausted and functionally im-
paired [7,71]. Whether the function of HCV-specific T cells is fully restored following
achievement of SVR is a critical question. Peg-IFN-α-based therapies have been reported
to not restore virus-specific T-cell function even after HCV is cleared [7]. An initial re-
port regarding DAA treatment, demonstrated that it may partially reinvigorate exhausted
virus-specific T cells [72]. Following DAA therapy, some degree of enhancement in the
in vitro proliferation of HCV-specific CD8+ T cells was observed after peptide stimula-
tion [72]. However, our group recently demonstrated that DAA-mediated viral clearance
only transiently restores ex vivo virus-specific T-cell function [73]. This provides sup-
port to the theory that the exhausted phenotype of HCV-specific CD8+ T cells fails to
recover after DAA therapy [74]. In chronic HCV infection, virus-specific CD8+ T cells
are usually exhausted by persistent viral antigen stimulation [75]. These exhausted virus-
specific T cells exist as two different subsets: TCF-1+CD127+PD-1+ memory-like T cells and
PD-1highEomeshighCD127- terminally exhausted T cells [9]. Among these populations, the
memory-like cells are maintained after DAA-mediated viral clearance and exhibit sustained
impairment of functionality, unlike actual memory cells [9,76]. This persistent impaired
functionality of memory-like HCV-specific CD8+ T cells may result in re-infection upon
exposure to HCV after successful DAA treatment [77]. Another recent report demonstrated
that HCV-specific CD8+ T cells remain functionally impaired after HCV clearance due
to the constant, non-restorative mitochondrial dysfunction [8]. For CD4+ T cells, a DAA-
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mediated viral clearance does not reinvigorate exhausted CD4+ memory T-cells in chronic
HCV infection [78]. Functional impairment of gamma delta T cells has also been shown
to not be restored by DAA therapy [79]. Functional changes in tumor antigen-specific T
cells after DAA treatment need to be investigated in HCV-infected patients with previously
recovered HCC. If sustained functional impairment of HCV-specific T cells and gamma
delta T cells is involved in the occurrence or recurrence of HCC after DAA treatment, this
also needs to be examined.

Currently, the approved second-line treatments in HCC are the immune checkpoint
inhibitors (ICIs) nivolumab and pembrolizumab, and atezolizumab (+ bevacizumab) is a
first-line treatment for unresectable tumors. Nivolumab and pembrolizumab are anti-PD-1
while atezolizumab is an anti-PD-L1. In the adjuvant setting, remnant cancer cells invisible
in imaging studies may cause early recurrence of HCC. An anti-PD-1/PD-L1 treatment
may be promising in this case as these agents reinvigorate exhausted tumor-specific T cells
and clear remnant cancer cells by immune-mediated cytotoxicity. In contrast, NK cells
express minimal levels of the PD-1 molecule; therefore, anti-PD-1/PD-L1 treatment is not
likely to have direct effects on NK cell function [80].

2.4. Changes in Macrophage-Derived Cytokines and Sustained Dysfunction of MAIT Cells after
DAA Therapy

Chronic inflammation is accompanied by crosstalk between immune cells and is
largely dependent on the secreted cytokines [56]. The HCV-core protein is a potent ago-
nist of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome,
resulting in the production of active interleukin-1 β (IL-1β) from intrahepatic activated
macrophages [59,81]. Serum CD163 is a functional marker of activated macrophages, and
its serum titers significantly correlate with the levels of aspartate transaminase [82,83]. After
clearance of HCV by DAAs, serum CD163 levels quickly decrease and the inflammatory ac-
tivity of intrahepatic macrophages is markedly attenuated [83]. Other reports demonstrated
that HCV-induced disruption of t soluble inflammatory mediators does not completely nor-
malize even after DAA-mediated viral clearance [84,85]. Debes et al. [85] assessed serum
cytokines in 13 patients who developed HCC following DAA therapy and found that the
serum levels of chemokine (C-X-C motif) ligand 9, IL-22, TRAIL, a proliferation-inducing
ligand (APRIL), vascular endothelial growth factor (VEGF), IL-3, tumor necrosis factor-like
weak inducer of apoptosis (TWEAK), stem cell factor (SCF), and IL-21 were elevated to
higher levels in patients who developed HCC after DAA treatment than in those who did
not develop tumors [85].

The liver contains a considerable number of MAIT cells, which are sensitive to intra-
hepatic cytokines and bacterial products that translocate from the gastrointestinal system.
MAIT cells are characterized by the expression of an invariant T-cell receptor segment
(Va7.2), and CD161, and these cells can be activated by type I IFNs, IL-12, IL-15, and
IL-18 [86]. The peripheral and intrahepatic frequencies of MAIT cells have been reported
to be lower in individuals with HCV than in healthy controls [86,87]. MAIT cells exhibit
signs of chronic immune activation and resulting immune exhaustion in chronic HCV
infection [88,89]. Activation markers such as CD69, PD-1, and HLA-DR are upregulated
on MAIT cells from chronic HCV-infected patients. Expression of exhaustion markers
such as PD-1, CTLA-4, and Tim-3 are also increased (Figure 1) [88,89]. The cytokine IL-18,
which is produced by macrophages and Kupffer cells, promotes inflammation in HCV-
infected livers [90]. IFN-γ production by MAIT cells, which relies on IL-18, and T-cell
receptor-mediated stimulation of these cells, does not contribute significantly to the pro-
duction of IFN-γ in HCV-infected livers, resulting in defective overall IFN-γ production
by MAIT cells (Figure 1) [86]. The IFN-γ-producing function of MAIT cells may be more
severely impaired in HCV-HIV co-infection due to the marked dysbiosis that features both
infections [91].

DAA therapy has been associated with an immediate and fast reduction of serum IL-
18 levels [92,93]. Accordingly, DAA therapy rapidly decreases intrahepatic inflammation
and MAIT cell cytotoxicity [86]. Moreover, throughout the 12-weeks of DAA treatment,
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the MAIT cell response (IFN-γ production) to T-cell receptor-mediated stimulation was
constantly weak (Figure 1) [86]. This failure of MAIT cell recovery in response to T-
cell receptor stimulation is also observed in patients with HCV-HIV co-infected patients
treated with DAAs [94]. The defective functional recovery of MAIT cells in response to
T-cell receptor stimulation and declining cytotoxicity of MAIT cells with the reduction of
intrahepatic cytokine levels may be associated with HCC development or recurrence after
DAA treatment.

2.5. Sustained Immune Suppression by Regulatory Cells after DAA Treatment

CD4+CD25+FoxP3+ regulatory T (Treg) cells contribute to the amelioration of intra-
hepatic T-cell activities in chronic HCV infection [75]. An increase in the Treg cell frequency
in both the liver and peripheral blood is well documented in chronic HCV infection
(Figure 1) [7,95–98]. Moreover, the frequency of Treg cells in the blood positively correlates
with viral load [98]. However, neither IFN-based treatment nor DAA treatment decreases
the Treg frequency (Figure 1). Recent studies have demonstrated that the numbers and
functions of Treg cells do not return to normal status after DAA administration, even
when evaluated after a lengthy follow-up period following viral eradication [99–101]. In-
terestingly, a higher frequency of Treg cells was reported following DAA therapy than
before treatment in individuals who developed HCV-associated overt cryoglobulinemia
vasculitis [101]. Thus, it has been postulated that the influence of Treg cells on the immune
response is persistent, despite the apparent HCV eradication [99]. Notably, an increase in
the frequency of circulating Treg cells with increasing HCC stage has been observed and
inversely correlated with the number of tumor-specific CD8+ T cells [102]. This indicates
that the sustained increase in Treg frequency after DAA-mediated HCV treatment may
contribute to HCC occurrence or recurrence.

In several types of tumors, tumor-infiltrating Treg cells express high levels of PD-1
molecule, and recent reports demonstrated that blocking PD-1 enhanced their suppres-
sive function [103,104]. A previous report showed the high expression of PD-1 on liver-
infiltrating Treg cells in HCV-infected liver [105,106]. In that report, blocking the interaction
between PD-1 and PD-L1 with anti-PD-L1 enhanced the in vitro suppressive function of
Treg cells isolated from HCV-infected livers [105]. Therefore, when Treg cells are constantly
increased with PD-1 upregulation even after DAA-mediated HCV clearance, adjuvant
anti-PD-1 treatment may paradoxically contribute to the recurrence of HCC.

Myeloid-derived suppressor cells (MDSCs) also block T-cell responses in many human
diseases. The frequency of peripheral monocytic-MDSCs in HCV-infected patients is
significantly increased compared to healthy controls, which may favor viral escape and
disease progression in HCV infection (Figure 1) [107]. Moreover, the frequency of MDSCs,
defined as CD14-HLA-DR-CD11b+ CD33+ cells, correlates with the frequency of Treg cells
in HCC [55,108]. HCV RNA was reported to be undetectable in most patients after a few
weeks of DAA treatment, and the frequency of M-MDSC cells did not normalize 6 months
after the end of the treatment (Figure 1) [109]. These results suggest that a sustained
increase in the frequency of MDSCs in HCV infection may contribute to the occurrence
or recurrence of HCC. The increases in Treg cells, MDSCs, or dysfunction of MAIT cells
may be sustained for more than several months and may contribute to the later HCC
development whereas the changes in NK cell phenotypes seem to occur abruptly and may
contribute to the early development of HCC.

3. Summary and Conclusions

Although DAAs are unavailable to a considerable number of patients with CHC in
some developing countries, they are anticipated to change the grim prognosis of hepatic
morbidities related to HCV infection and improve the clinical outcomes of patients. Unfor-
tunately, despite attaining viral clearance, the risk of HCC appears to remain in patients
with HCV-related cirrhosis. Moreover, some patients develop de novo HCC or recurrent
tumors shortly after DAA treatment. Insights into changes in the phenotypes and crosstalk
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among diverse immune cells after rapid viral clearance by DAA treatment assist clinicians
in screening for the occurrence or recurrence of HCC after DAA treatment.
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