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Tropheryma whipplei is the agent of Whipple’s disease, a rare systemic disease
characterized by macrophage infiltration of the intestinal mucosa. The disease first
manifests as arthralgia and/or arthropathy that usually precede the diagnosis by years,
and which may push clinicians to prescribe Tumor necrosis factor inhibitors (TNFI) to treat
unexplained arthralgia. However, such therapies have been associated with exacerbation
of subclinical undiagnosed Whipple’s disease. The objective of this study was to delineate
the biological basis of disease exacerbation. We found that etanercept, adalimumab or
certolizumab treatment of monocyte-derived macrophages from healthy subjects
significantly increased bacterial replication in vitro without affecting uptake. Interestingly,
this effect was associated with macrophage repolarization and increased rate of
apoptosis. Further analysis revealed that in patients for whom Whipple’s disease
diagnosis was made while under TNFI therapy, apoptosis was increased in duodenal
tissue specimens as compared with control Whipple’s disease patients who never
received TNFI prior diagnosis. In addition, IFN-g expression was increased in duodenal
biopsy specimen and circulating levels of IFN-g were higher in patients for whom
Whipple’s disease diagnosis was made while under TNFI therapy. Taken together, our
findings establish that TNFI aggravate/exacerbate latent or subclinical undiagnosed
Whipple’s disease by promoting a strong inflammatory response and apoptosis and
confirm that patients may be screened for T. whipplei prior to introduction of TNFI therapy.

Keywords: Tropheryma whipplei, Whipple’s disease, macrophages, TNF inhibitor, IFNg
INTRODUCTION

Whipple’s disease (WD) is a rare chronic and systemic disorder, caused by the bacterium
Tropheryma whipplei and characterized by diarrhea, abdominal pain, and weight loss. Advances
in epidemiology and molecular biology have revealed that, beside WD, T. whipplei infections cover
several clinical entities including localized chronic infections without digestive involvement, acute
infections and asymptomatic carriage (1, 2). Although initially thought as a rare disease caused by a
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rare bacterium, some specific, not yet fully resolved host immune
deficiencies explain the rarity of the disease in front of the
ubiquity of the bacterium (2, 3).

WD predominantly occurs in white middle-aged men.
Histological examination of lesions reveals confluent areas of
foamy macrophages strongly colored by periodic acid-Schiff
(PAS) staining, containing numerous bacteria and representing
the hallmark of the disease (1). However, the first prodromal sign
of infection, which typically precedes gastrointestinal signs by
several years is arthritis and/or arthralgia (4). As a result, the
mean time from joint symptom onset to the diagnosis is 6.7 years
(4) and is influenced by immunosuppressive therapy, such as
corticosteroids or tumor necrosis factor (TNF) inhibitors (TNFI)
(5, 6).

In the last two decades, TNFI have been successfully used to
treat and reduce symptoms of both rheumatic conditions such as
rheumatoid arthritis, psoriatic arthritis, juvenile arthritis,
ankylosing spondylitis and non-rheumatic diseases such as
Crohn’s disease, ulcerative colitis, and psoriasis (7). However,
the use of such therapies is associated with an increased risk of
opportunistic infections and malignancies (8), and also with
reactivation of latent tuberculosis or chronic Hepatitis B virus
(HBV) infection (9, 10). Several publications have reported the
exacerbation of WD or the apparition of gastrointestinal
symptoms in patients under immunosuppressive therapy and/
or TNFI and for whom the diagnosis of WD was made later (5,
6). In addition, most of the patients who had previous
immunosuppressive therapy develop immune reconstitution
inflammatory syndrome after effective antibiotic treatment (6).
Five TNF antagonists have been developed and approved for
clinical use: etanercept, infliximab, adalimumab, certolizumab
and golimumab (11). All TNF antagonists are immunoglobulin
G1 (IgG1) monoclonal antibodies excepted etanercept, which
consists in two extracellular domains of the p75 TNF receptor
fused to the Fc portion of a human IgG1. Infliximab is a chimeric
mouse/human monoclonal antibody with a murine variable
region and human IgG1 constant region, while adalimumab
and golimumab are fully human anti-TNF. Finally,
certolizumab is an Fab’ fragment of a humanized monoclonal
antibody covalently linked to polyethylene glycol (11). All can
bind soluble and membrane-bound TNF, but their structural
differences account for different mechanistic effects, such as
reverse signaling, apoptosis induction, antibody-dependent cell
cytotoxicity or complement-dependent-cytotoxicity, both in
vitro and in vivo.

In this study, we aimed at evaluating the effect of etanercept,
adalimumab and certolizumab on macrophage responses upon
T. whipplei infection. We found that all anti-TNF drugs favored
T. whipplei replication. Surprisingly, TNFI reversed T. whipplei-
induced M2 macrophage polarization and exacerbate
T. whipplei-induced macrophage apoptosis. These findings
were further confirmed ex vivo in intestinal biopsies and in
sera from patients that have received or not anti-TNF therapies
prior diagnosis of WD. Altogether our results suggest that
exacerbation of latent or asymptomatic undiagnosed WD
under TNFI is mediated by inflammation and apoptosis and
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confirm that screening T. whipplei infection or carriage should be
performed before starting TNFI therapy.
MATERIALS AND METHODS

Cell Culture, Treatment, and Bacteria
Peripheral blood mononuclear cells were isolated by ficoll
gradient from buffy coats obtained at the French blood bank
after informed consent of the donors according to the
convention n°7828 established between our laboratory and the
“Etablissement Français du Sang” (Marseille, France).
Monocytes were then purified by CD14 selection with MACS
magnetic microbeads (Miltenyi Biotec) and differentiated into
macrophages as previously described (12). Briefly, monocytes
were incubated in RPMI 1640 containing 10% human AB serum
(Corning) for 7 days. In some experiments, THP-1 cells were
cultured in 10% FCS 2 mM glutamine RPMI-1640 and
differentiated into macrophages after treatment with 50 ng/ml
phorbol-12-myristate 13-acetate (PMA, Sigma-Aldrich) for 48
hours. Macrophages were infected with T. whipplei strain Twist-
Marseille (CNCM I-2202; bacterium to cell ratio of 50:1) or with
100 ng/ml Escherichia coli lipopolysaccharide (LPS, Sigma-
Aldrich). The cells were treated with 10 mg/ml etanercept,
certolizumab or adalimumab, as previously described (13).

Patients
Duodenal biopsies from 2 patients were examined retrospectively.
Before being diagnosed for WD, both patients were presenting
unexplained arthralgias refractory to methotrexate but only one
had been further treated with TNFI without improvement.
Similarly, serum samples from 12 patients of which 5 had been
treated with TNFI before diagnosis were analyzed retrospectively.
Patient demographics and characteristics are detailed in Table 1.
This study was approved by the Local Clinical Ethics Committee of
IFR 48 (Marseille, France; n°09-021), all subjects gave their written
consent for the use of information and data in the present study.

Uptake and Survival of T. whipplei
Cells were infected with T. whipplei for 4 hours in the presence or
not of TNFI, washed to eliminate free bacteria, and incubated for
12 days in 10% FCS 2 mM glutamine RPMI-1640 in the presence
or not of TNFI. Bacterial uptake after 4 hours of infection and
survival every 3 days for 12 days were assessed by real-time
quantitative PCR (qPCR) as previously described (12). Briefly, at
the indicated timepoints, cells were lyzed with 1% Triton X-100,
and DNA was extracted using the EZNA Tissue DNA Kit
(Omega) and qPCR was performed using the SyberGreen Fast
Master Mix (Roche Diagnostics) on a CFX96 Touch Real-Time
PCR Detection System (Bio-Rad) with primers specific for the
T. whipplei 16S–23S ribosomal intergenic spacer region
(Table 2). For each qPCR run, a standard curve was generated
using a serial dilution ranging from 108 to 102 copies of
T. whipplei DNA.

For immunofluorescence, cells were fixed with 4%
paraformaldehyde in PBS for 15 min and incubated with
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rabbit anti-T. whipplei antibodies for 45 min followed by anti-
rabbit AlexaFluor 555-conjugated antibody for 45 min.
AlexaFluor 488-conjugated Phalloidin was used to stain the
actin cytoskeleton and 4′, 6-diamidino-2-phenylindole (DAPI,
Thermo Fisher Scientific) for nucleus staining. For colocalization
studies, the mouse anti-LAMP2 antibody (H4B4, Santa Cruz)
was used for 45 min followed by anti-mouse AlexaFluor647-
conjugated antibody for 45 min. Coverslips were mounted with
Mowiol and observed using an LSM 800 Airyscan confocal
microscope (Zeiss) with a 63X oil objective.

RNA Extraction and qPCR
RNA was extracted using the RNeasy kit (Qiagen), treated with
DNase I (Qiagen) before quantification with the NanoDrop
Spectrophotometer (NanoDrop Technologies). RNA was
retrotranscribed to cDNA using the MMLV-RT kit and oligo
(dT) primers (Invitrogen) before qPCR using the SyberGreen
Fast Master Mix (Roche Diagnostics) on a CFX96 Touch Real-
Time PCR Detection System (Bio-Rad) with the primers listed in
Table 2. Expression of target genes was estimated based on the
endogenous household ACTB gene and expressed as fold change
(FC) using the following formula: FC = 2-DDCt, where DDCt =
Frontiers in Immunology | www.frontiersin.org 3
(CtTarget – CtACTB)stimulated – (CtTarget – CtACTB)unstimulated. FC
values were then log2-transformed and analyzed by the ClustVis
webtool. Expression of target genes was also expressed as relative
quantity (RQ) to the endogenous household ACTB transcript using
the following formula: RQ = 2-DCt, where DCt = (CtTarget – CtACTB).

Immunoassays
Cell culture supernatants or serum samples were respectively
assayed for TNF, IL-1 b, IL-6 and IL-10 (all from R&D Systems)
or TNF, IL-10 and IFN-g (BD Biosciences) by ELISA according
to the manufacturer’s instructions.

Cell Viability and Apoptosis Assays
Cell viability was indirectly estimated by assessing cellular
metabolism with 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl
tetrazolium bromide (MTT) assay. Briefly, cells were stimulated
with T. whipplei in the presence or not of TNFI for 24 h. Ten ml of
MTT (5 mg/ml, Sigma-Aldrich) were added to the cell cultures and
incubated at 37°C for 4 hours. The formed formazan crystals were
solubilized with 50 ml of dimethylsulphoxide (DMSO) for 30
minutes at 37°C and quantified at 540 nm using a Synergy MxF
plate reader (Biotek Instruments). Cell apoptosis was assessed by
May 2021 | Volume 12 | Article 667357
TABLE 2 | Primers used in this study.

Target Forward Reverse

ACTB (human) ggaaatcgtgcgtgacatta aggaaggaaggctggaagag
IL1B (human) cagcacctctcaagcagaaaac gttgggcattggtgtagacaac
IL6 (human) ggaaggttcaggttgttttctg ccaggagaagattccaaagatg
TNF (human) gagggagagaagcaactacagacc aggagaagaggctgaggaacaag
CXCL9 (human) gggagatggtgtggtaattgat acacttgcggatattctggact
CXCL10 (human) tcccatcttccaagggtactaa ggtagccactgaaagaatttgg
IL10 (human) gggggttgaggtatcagaggtaa gctccaagagaaaggcatctaca
TGFB1 (human) tctatgacaagttcaagcaga gacatcaaaagataaccactc
IL1RN (human) cctaatcactctcctcctcttcc tctcatcaccagacttgacaca
CD163 (human) cggtctctgtgatttgtaaccag tactatgctttccccatccatc
IL1R2 (human) cactcaggtcagggcatactaa aggagaagaagagacacggatg
ITS (T. whipplei) ccgaggcttatcgcagattg ggtgacttaacctttttggag
TABLE 1 | Characteristics of Whipple’s disease patients.

Patient group

TNFI Non TNFI

Number (n) 6 8
Sex (n) 5 males and 1 female 4 males and 4 females
Median age at diagnosis (min - max) 59.5 (39 – 67) 62 (31 – 80)

Symptoms at diagnosis
Arthralgia 6 6
Weight loss 3 3
Abdominal pain 1 2
Diarrhea 3 3
Fever 3 1
Adenopathy 3 1
Pericarditis/endocarditis 1 1
Uveitis 0 1

Treatment before diagnosis
NSAID 1 0
Corticoids 2 4
Methotrexate 2 4
TNF inhibitors 6 0
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Annexin-V/7-AAD staining according to the manufacturer
instructions (AbCys). Flow cytometry analysis was performed on
a BD FACSCanto II (BD Biosciences) and data were analyzed using
FlowJo software. Cell apoptosis was also evaluated by
immunofluorescence and confocal microscopy after staining with
a rabbit anti-active caspase-3 antibody (BD Biosciences) as
described above.

Histology and Immunohistofluorescence
Duodenal tissue was fixed in formalin and embedded in paraffin. Five
mm tissue sections were prepared to perform diastase-digested PAS as
previously described (14). Apoptosis was evaluated by Terminal
transferase deoxytidyl uridine end labeling (TUNEL) using the In
situ Cell Death Detection Kit, TMR red (Roche) according to the
manufacturer’s instructions. For immunostaining, tissue sections
were incubated in blocking reagent (3% BSA, 0.5% Triton X-100 in
PBS) for 30 min and incubated for 1 h with anti-IFN-g antibody (BD
Biosciences). The images were obtained using an LSM 800 Airyscan
confocal microscope (Zeiss) with a 63X oil objective.

Statistical Analysis
Statistical analysis was performed with the GraphPad Prism
Software. Significant differences were evaluated using the
Mann-Whitney U test and whenever applicable, multiple
comparisons were performed by two-way ANOVA followed by
the Dunnett’s or Tukey’s posttest or multiple T tests. Differences
were considered significant when P < 0.05.
Frontiers in Immunology | www.frontiersin.org 4
RESULTS

TNFI Favor T. whipplei Replication
We first aimed at determining the effect of different TNF
antagonists on macrophage phagocytic and bactericidal activity
towards T. whipplei. Macrophages were infected in the presence
or not of etanercept, certolizumab or adalimumab and bacterial
internalization was evaluated by qPCR after 2, 4 and 8 hours. In
untreated cells, we observed a time-dependent increase of
T. whipplei DNA copy number (Figure 1A). When the cells
were treated with etanercept, certolizumab or adalimumab,
bacterial uptake was not affected, and similar bacterial loads
were measured at every time points (Figure 1A). Macrophages
were next infected with T. whipplei for 4 hours in the presence or
not of TNFI and bacterial survival was evaluated for 12 days by
qPCR. When cells were left untreated, the number of bacterial
DNA copy dramatically reduced at day 3 and gradually increased
from day 6 to day 12 (Figure 1B), as previously described (12,
15). As expected, upon etanercept treatment, bacterial replication
was significantly increased. Treatment with certolizumab or
adalimumab also resulted in significantly increased bacterial
DNA copy number, without significant difference between the
anti-TNF drug used (Figure 1B). Analysis of infected cells by
confocal microscopy confirmed those results and showed that
numerous macrophages in TNFI-treated cultures were heavily
infected at day 12 as compared with untreated cells (Figure 1C),
suggesting that increased replication of bacteria did not occur
A B

C

FIGURE 1 | TNFI increase T. whipplei replication in macrophages. (A) Macrophages were infected with T. whipplei (50 bacteria per cell) alone (black bars) or in the presence
of etanercept (white bars), certolizumab (grey bars) or adalimumab (hashed bars) and washed after 2, 4 or 8 h. (B) Macrophages were infected with T. whipplei (50 bacteria
per cell) alone (black bars) or in the presence of etanercept (white bars), certolizumab (grey bars) or adalimumab (hashed bars) for 4 h, washed to remove free bacteria and
incubated for the indicated periods with etanercept (white bars), certolizumab (grey bars) or adalimumab (hashed bars) or left untreated (black bars). Bacterial DNA copy
number was determined by qPCR. (C) Representative pictures of infected macrophages incubated for 12 days under the indicated treatment and stained with an anti
-T. whipplei antibody (red), phalloidin (green) and DAPI (blue), scale bar = 20 mm). The experiment was performed using three different donors (N = 3), and the values represent
the mean ± standard error of the mean. * and ***P < 0.05 and 0.001, respectively by two-way ANOVA and the Dunnett’s test for post-hoc comparisons.
May 2021 | Volume 12 | Article 667357
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uniformly but rather in a subset of cells. Altogether, these results
suggest that TNF blockade favors T. whipplei replication in
macrophages without affecting bacterial uptake.

TNFI Repolarize T. whipplei-
Infected Macrophages
In order to understand the mechanisms underlying increased
bacterial replication in TNFI-treated macrophages, we measured
the expression of M1 and M2 genes following infection. Cells were
stimulated for 6 hours with T. whipplei or LPS in the presence or
not of TNFI and transcript expression was evaluated by qRT-PCR.
Hierarchical clustering analysis of transcriptional responses
Frontiers in Immunology | www.frontiersin.org 5
showed that as expected, T. whipplei induced the expression of
M2 genes, such as CD163, IL10, TGFB1, IL1RN and IL1R2, while
that of theM1 genes investigated (IL1B, TNF, CXCL9, CXCL10 and
IL6) remained low or repressed (Figure 2A). However, when cells
were treated with TNF blockers, macrophage responses against
T. whipplei were markedly different and characterized by a strong
induction of M1 genes (Figure 2A). Some variations were seen
depending on the anti-TNF drug used, but the differences seemed
rather attributable to the donor rather than the TNFI by itself
(Supplementary FIgure 1). Interestingly, we did not observe
significant differences following TNFI treatment when cells were
stimulated with LPS (Figure 2B and Supplementary Figure 2).
A B

D

C

FIGURE 2 | TNFI interfere with macrophage polarization. (A, B) Macrophages were stimulated for 6 h with T. whipplei (A) or LPS (B) in the presence or not of
etanercept, certolizumab or adalimumab. The expression of macrophage M1 (purple) and M2 (green) polarization genes was investigated by qRT-PCR after
normalization to the actin endogenous control and expressed as log2-transformed-foldchanges relative to the appropriate unstimulated condition. The experiment
was performed using three (N = 3) or six different donors (N = 6) for T. whipplei or LPS stimulation, respectively. The mean log2-transformed-foldchange value was
used in the ClustVis webtool to generate the heat-maps. (C, D) Macrophages were stimulated for 24 h with T. whipplei (C) or LPS (D) in the presence of etanercept
(white bars), certolizumab (grey bars) or adalimumab (hashed bars) or left untreated (black bars) and TNF, IL-6, IL-1b and IL-10 release in the culture supernatants
was assessed by ELISA (N = 3). The experiment was performed using three different donors (N = 3), and the values represent the mean ± standard error of the
mean. * and ***P < 0.05 and 0.001, respectively by two-way ANOVA and the Tukey’s test for post-hoc comparisons.
May 2021 | Volume 12 | Article 667357
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We next measured TNF, IL-6, IL-1b and IL-10 in the
supernatant from cells stimulated with T. whipplei or LPS and
treated or not with TNFI. In unstimulated cells, addition of
etanercept, certolizumab or adalimumab did not significantly
affect basal TNF, IL-6, IL-1b or IL-10 levels (Figure 2C). When
cells were stimulated with T. whipplei in the presence of TNFI,
TNF secretion was decreased. However, all three anti-TNF drugs
significantly increased IL-6 release from macrophages, while that
of IL-10 was not significantly modulated. Release of IL-1b was
also increased in the presence of TNFI, although not significantly
(Figure 2C). Stimulation with LPS induced the secretion of TNF,
IL-6, IL-1b and IL-10 but only TNF release was affected by the
presence of TNFI (Figure 2D). Overall, these data suggest that
etanercept, adalimumab and certolizumab interfere with
T. whipplei-mediated M2 macrophage polarization and
cytokine release in response to T. whipplei.

TNFI Favor Macrophage Apoptosis
As anti-TNF drugs have been associated with cell apoptosis (16), we
next investigated whether etanercept, adalimumab or certolizumab
Frontiers in Immunology | www.frontiersin.org 6
modulate T. whipplei-induced apoptosis. We first assessed cell
viability by MTT assay which is rather a measure of cellular
metabolism. We found that addition of TNFI for 24 h did not
significantly alter cell metabolism of uninfected cells (Figure 3A).
Infection of cells with T. whipplei induced a significant diminution
of cellular metabolism, which may be due to increased cell death.
This effect was not significantly affected by the presence of TNFI
(Figure 3A). Second, cell apoptosis was determined using annexin
V staining on PMA-differentiated THP-1 macrophages. Addition of
TNFI had no effect on uninfected cells after 24 hours (Figure 3B),
confirming data obtained from the MTT experiments. As expected
(15, 17, 18), T. whipplei induced macrophage apoptosis, but
interestingly, treatment of cells with TNFI significantly increased
T. whipplei-mediated apoptosis (Figure 3B). These results were
further confirmed by investigating activation of caspase 3 in
macrophages after incubation with etanercept, certolizumab or
adalimumab. As shown in Figure 3C, T. whipplei alone induced
caspase 3 activation at 24 hours. Cotreatment of cells with
T. whipplei and TNFI increased active caspase 3 staining with a
maximal effect obtained when the cells were treated with
A

B

C

FIGURE 3 | TNFI increase T. whipplei-induced macrophage apoptosis. (A) Macrophages were infected or not with T. whipplei (50 bacteria per cell) alone (black
bars) or in the presence of etanercept (white bars), certolizumab (grey bars) or adalimumab (hashed bars) for 24 h. Cell metabolic activity was assessed by MTT
assay and expressed as % of uninfected and untreated cells (N = 3). (B) THP-1 macrophages were infected or not with T. whipplei (50 bacteria per cell) alone (black
bars) or in the presence of etanercept (white bars), certolizumab (grey bars) or adalimumab (hashed bars) for 24 h. Apoptosis was assessed by flow cytometry after
annexin V staining (N = 3). Representative plots are shown (red line: untreated; blue line: etanercept; orange line: certolizumab and green line: adalimumab). (C)
Macrophages were infected or not with T. whipplei (50 bacteria per cell) alone or in the presence of etanercept (eta.), certolizumab (certo.) or adalimumab (ada.) for
24 h. As a positive control, cells were treated with staurosporine for 4 h. Representative pictures of macrophages stained with anti-active caspase-3 antibody
(green), phalloidin (purple) and DAPI (blue) are shown (scale bar = 20 mm). Values represent mean ± standard error of the mean. * and **P < 0.05 and 0.01,
respectively by two-way ANOVA and the Tukey’s test for post-hoc comparisons.
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certolizumab or adalimumab (Figure 3C). Overall, these results
show that TNFI exacerbate T. whipplei-induced macrophage
apoptosis and that this effect correlates with activation of caspase 3.

Apoptosis and IFN-g Are Increased in
Patients Diagnosed Under Anti-
TNF Therapy
We next extended our results in patients by comparing duodenal
biopsy specimens from a patient who was diagnosed for WD
while under TNFI and from a patient who was diagnosed for WD
but never received TNFI, as control. Immunohistochemical
analysis of PAS-stained samples did not reveal obvious
differences between the two samples (Figure 4A). However,
when cell apoptosis was assessed, the patient diagnosed for
WD while treated with TNFI showed increased number of
TUNEL-positive cells in the lamina propria as compared with
the control patient (Figure 4B). We next hypothesized that, as
TNFI treatment is associated with M1 macrophage polarization
upon T. whipplei infection in vitro, immune response would be
shifted towards a Th1 response in tissues from patient diagnosed
for WD during TNFI therapy. Staining for the prototypal Th1
cytokine IFN-g confirmed our hypothesis and was increased in
Frontiers in Immunology | www.frontiersin.org 7
the duodenal specimen from the patient who was under TNFI
therapy as compared with the control patient (Figure 4C). These
results were further extended by analyzing IFN-g, IL-10 and TNF
levels in the sera from patients who had been given (N = 5) or not
(N = 7) TNFI before WD diagnosis. In accordance with the
results obtained on duodenal tissue, we found that the amount of
IFN-g was significantly higher in the sera from patients who
received TNFI therapy before WD diagnosis as compared with
control patients (Figure 4D). Similarly, we found that IL-10
levels were also significantly increased in the sera from patients
who received TNFI therapy before WD diagnosis (Figure 4E)
while TNF levels were not significantly affected (Figure 4F).
Altogether, these results indicate that the use of TNFI in the
setting of WD is associated with increased local cell apoptosis
and IFN-g expression, and increased systemic IL-10 and
IFN-g levels.
DISCUSSION

Several studies have reported that in the context of undiagnosed,
subclinical WD, immunosuppression with corticoids or
A

B E

C F

D

FIGURE 4 | TNFI increase apoptosis in duodenal tissue and local and systemic IFN-g expression. (A) Duodenal biopsy specimen from patients diagnosed under TNFI
treatment (left) or not (right) were stained with PAS. Arrows indicate PAS-positive cells (original magnification × 250). (B) Cell apoptosis on duodenal biopsy specimen was
assessed by TUNEL assay and observed by confocal microscopy. Representative images are shown. Nuclei are visualized in blue after DAPI staining and TUNEL-positive
cells (arrows) appear in red, scale bar = 20 mm. (C) IFN-g expression was evaluated by immunohistofluorescence staining and observed by confocal microscopy.
Representative images are shown. Nuclei are visualized in blue after DAPI staining and IFN-g -positive cells (arrows) appear in green, scale bar = 20 mm. IFN-g (D), IL-10
(E) and TNF (F) were measured by ELISA in the sera from patients diagnosed under TNFI treatment (square) or not (circle). **P < 0.01 by Mann-Whitney U test.
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methotrexate and/or biological therapies such as anti-TNF drugs
that are commonly given to treat unclear joint manifestations
could accelerate and aggravate the onset of symptoms (5). In a
systemic review from 19 publications, 41 patients have been
diagnosed for WD while treated for unclear arthropathy with
etanercept, infliximab, adalimumab alone or in combination
(19). The use of TNF antagonists has been associated with an
increased incidence of opportunistic infections, including
Staphylococcus aureus infections, listeriosis, Legionella
pneumophila infections, nocardiosis and non-tuberculous
mycobacterial infections, cryptococcosis, histoplasmosis,
coccidioidomycosis, pneumocystosis, histoplasmosis,
candidiasis, and aspergillosis, but also with reactivation of
chronic HBV and latent tuberculosis infections (9).

We found that treatment of macrophages with TNFI resulted in
increased T. whipplei replication. This was associated with the
repolarization of macrophages and induction of apoptosis.
Increased bacterial replication upon anti-TNF treatment has
previously been observed in other infection models. Indeed, TNFI
have been shown to promote the intracellular replication of
M. avium subspecies paratuberculosis (20). Similarly, treatment of
macrophage with TNF-neutralizing drugs increases the growth of
Legionella pneumophila (21). T. whipplei interferes with phagosome
maturation and replicates in a phagosome expressing both early and
latemarkers but lacking acidic hydrolases such as cathepsinD (17). It
has been shown that inflammatory cytokines such as IFN-g or TNF
promote phagolysosomal fusion in macrophages (22). Interestingly,
in the case of L. pneumophila, IFN-g does not restore anti-TNF-
mediated inhibition of rat macrophage microbicidal activities (23).
Similar observations were made in human monocytes infected with
L. pneumophila (24), suggesting that autocrine secretion of TNF
potentiates intracellular killing. Therefore, during T. whipplei
infection, inhibition of TNF may reduce phagolysosome fusion,
resulting in increased intracellular replication, as previously shown
during M. tuberculosis infection (25). However, colocalization
studies with the late phagosome marker Lamp2 did not reveal
major differences between untreated cells and cells treated
with TNFI (Supplementary Figure 3). Antimicrobial activity of
macrophage towards intracellular bacteria includingM. tuberculosis,
L. pneumophila or Listeria monocytogenes is largely mediated by the
formation of reactive oxygen and nitrogen species (26–28). As TNF
regulates these oxidative mechanisms (29), its inhibition may also
favor T. whipplei replication through decreased production of
reactive oxygen and nitrogen intermediates. Further studies are
required to decipher the mechanism by which TNF inhibition
supports T. whipplei replication.

We previously reported that T. whipplei induced macrophage
apoptosis and that inhibition of T. whipplei-induced macrophage
apoptosis was associated with decreased bacterial replication (17,
18). In the present study, we found that macrophage apoptosis
was increased when cultures were treated with TNFI, as
demonstrated by increased membrane phosphatidyl serine
expression and caspase 3 activity. Etanercept and infliximab
were previously shown to promote apoptosis of monocytes
stimulated by staphylococcal enterotoxin B (30). In addition,
infliximab, etanercept, and adalimumab may have cytotoxic
Frontiers in Immunology | www.frontiersin.org 8
effects and induce apoptosis of monocytes and T cells in vitro
(31). In patients with Crohn’s disease, infliximab induces
apoptosis of lamina propria T lymphocytes (32) while in
rheumatoid arthritis patients, etanercept and infliximab induce
synovial cell type-specific apoptosis in the monocyte/
macrophage population, without affecting T cell populations
(33). These pro-apoptotic activities may explain at least in part
the clinical efficacity of these drugs in inflammatory conditions
such as rheumatic arthritis or Crohn’s disease. However, it is
tempting to speculate that during T. whipplei infections, anti-
TNF drugs may worsen the disease and provide a suitable niche
for the bacterial replication. Indeed, we previously reported that
levels of circulating apoptosis markers were associated with the
activity and the severity of the disease (34). In line with these
observations, we detected TUNEL-positive cells in the intestinal
biopsies from a patient with WD, suggesting that T. whipplei
induces apoptosis at the systemic level but also locally.
Interestingly, apoptosis staining was increased in a patient for
whom WD was diagnosed while he was under anti-TNF
treatment, confirming our in vitro data which evidenced
increased macrophage apoptosis in the presence of TNF
inhibitors (see above). Similar observations were made in a
rabbit model of tuberculosis reactivation, in which etanercept
was shown to activate the transcriptional pathways/networks
related to cell death, apoptosis and necrosis (35).

We and other have shown that macrophages from WD patients
undergo, both in the mucosa and in the blood M2 polarization (36–
38). The intestinal anti-inflammatory milieu may exacerbate this M2
polarization, resulting in reduced T cell functions both locally and
systemically (36, 38, 39) as revealed by reduced T. whipplei-specific
Th1 activity (40) and increased activity of regulatory T cells (39). In
addition, T. whipplei upregulates the expression of Human Leukocyte
Antigen-G (HLA-G), which is inversely correlated with that of TNF.
Inhibition of HLA-G restores TNF expression while TNF inhibition
is associated with increased bacterial replication (12). It was
previously described that TNF antagonists induced the formation
of immunosuppressive regulatory macrophages producing anti-
inflammatory cytokines (41). Other investigators found that TNF
blockade with adalimumab inhibited M1 polarization and resumed
the M1/M2 ratio both ex vivo and in vitro in patients with psoriasis
(42). These data are in contrast to our current results, in which we
found that TNFI revert T. whipplei-inducedmacrophage polarization
and promote M1 polarization. These discrepancies might arise from
technical differences since in our study, macrophages were
simultaneously infected and treated with TNFI while other studies
have addressed the effects of TNFI alone (41) or the effect of TNFI on
cells that were already polarized (42). Nevertheless, we previously
found that TNFI exacerbate M1 polarization in an in vitro model of
human tuberculous granuloma (13). Similarly, in the rabbit model of
tuberculosis reactivation discussed above, etanercept treatment was
also associated with a strong pro-inflammatory response (35). Our
data are further confirmed by the fact that in the intestinal biopsies
from a patient who was diagnosed for WD while under anti-TNF
treatment, the staining for IFN-g (the hallmark of Th1 polarization)
was increased as compared with samples from a patient who was
diagnosed for WD but never received TNFI. One limitation of our
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study is the fact that the biopsy specimens were analyzed for only two
patients who received or not TNFI. Indeed, T. whipplei infections and
WD are very rare conditions and thus the availability of suchmaterial
is limited. However, this increase of IFN-g was also observed at the
systemic level, as revealed by the higher levels of IFN-g in the sera
from additional patients who received TNFI before diagnosis. We
also found higher IL-10 levels in the sera from patients who received
TNFI before diagnosis, the increase of which may be the reflect of a
feedback regulation of inflammation. Hence, inflammation and Th1
polarization in the context of WD may arise from a defect of
clearance of apoptotic cells that are increased with anti-TNF.
Although phagocytosis of apoptotic cells is usually associated with
anti-inflammatorymediators (43), the local increase of danger signals
may lead to a prolonged inflammatory response (44). Alternatively,
TNFI may restore Th1 responses and IFN-g expression by
counteracting the side effects of chronic TNF exposure as described
for rheumatoid arthritis (45), ankylosing spondylitis (46) ormoderate
psoriasis (47). This anti-inflammatory role of TNF has also been
described in murine models of infection including Corynebacterium
parvum (48) or M. bovis BCG (49). Interestingly, TNF blockade in
mice chronically infected with M. tuberculosis results in a marked
pro-inflammatory response involving IFN-g in the lungs (50).

Taken together, these data showed that TNF blockers favor
T. whipplei replication in macrophages. This was associated with
increased apoptosis and increased inflammation both in vitro
and ex vivo. Interestingly, we did not observed differences
between the different TNFI used in our study, while in the case
of tuberculosis reactivation, the risk is lower for etanercept than
other agents (51). However, this is not the case for WD since no
association was made between the class of TNFI and the number
of patients later diagnosed for WD (6). Overall, our study
highlights the changes induced by TNFI in the context of T.
whipplei infection. Such changes may constitute or at least
contribute to the biological basis of the exacerbation of WD
and suggest that in addition toM. tuberculosis and HBV, patients
with unexplained arthropathy should be screened for T. whipplei
infection prior to introduction of anti-TNF therapy.
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