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Klebsiella pneumoniae is a major cause of severe healthcare-associated infections
and often shows MDR phenotypes. Carbapenem resistance is frequent, and colistin
represents a key molecule to treat infections caused by such isolates. Here we evaluated
the antimicrobial resistance (AMR) mechanisms and the genomic epidemiology of
clinical K. pneumoniae isolates from Serbia. Consecutive non-replicate K. pneumoniae
clinical isolates (n = 2,298) were collected from seven hospitals located in five Serbian
cities and tested for carbapenem resistance by disk diffusion. Isolates resistant to at
least one carbapenem (n = 426) were further tested for colistin resistance with Etest
or Vitek2. Broth microdilution (BMD) was performed to confirm the colistin resistance
phenotype, and colistin-resistant isolates (N = 45, 10.6%) were characterized by Vitek2
and whole genome sequencing. Three different clonal groups (CGs) were observed:
CG101 (ST101, N = 38), CG258 (ST437, N = 4; ST340, N = 1; ST258, N = 1)
and CG17 (ST336, N = 1). mcr genes, encoding for acquired colistin resistance,
were not observed, while all the genomes presented mutations previously associated
with colistin resistance. In particular, all strains had a mutated MgrB, with MgrBC28S

being the prevalent mutation and associated with ST101. Isolates belonging to ST101
harbored the carbapenemase OXA-48, which is generally encoded by an IncL/M
plasmid that was no detected in our isolates. MinION sequencing was performed on
a representative ST101 strain, and the obtained long reads were assembled together
with the Illumina high quality reads to decipher the blaOXA-48 genetic background.
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The blaOXA-48 gene was located in a novel IncFIA-IncR hybrid plasmid, also containing
the extended spectrum β-lactamase-encoding gene blaCTX-M-15 and several other AMR
genes. Non-ST101 isolates presented different MgrB alterations (C28S, C28Y, K2∗, K3∗,
Q30∗, adenine deletion leading to frameshift and premature termination, IS5-mediated
inactivation) and expressed different carbapenemases: OXA-48 (ST437 and ST336),
NDM-1 (ST437 and ST340) and KPC-2 (ST258). Our study reports the clonal expansion
of the newly emerging ST101 clone in Serbia. This high-risk clone appears adept at
acquiring resistance, and efforts should be made to contain the spread of such clone.

Keywords: blaOXA-48, K. pneumoniae, colistin, mgrB, Serbia, ST101, WGS

INTRODUCTION

Klebsiella pneumoniae has emerged as one of the most
challenging antibiotic-resistant pathogens, since it can cause
a variety of infections, including pneumonia and bloodstream
infections, and exhibits a remarkable propensity to acquire
antimicrobial resistance (AMR) traits. In particular, carbapenem-
resistant K. pneumoniae (CRKP) are challenging pathogens
due to the limited treatment options, high mortality rates,
and potential for rapid dissemination in health care settings
(Paczosa and Mecsas, 2016).

Treatment options for CRKP infections are usually limited
to aminoglycosides, tigecycline, fosfomycin, and colistin.
Novel β-lactam-β-lactamase inhibitors combinations, such as
ceftazidime-avibactam and meropenem-vaborbactam, have
represented a major breakthrough for treatment of some CRKP
(e.g., those producing KPC-type and OXA-48-like enzymes),
but unfortunately they do not cover strains producing metallo-
carbapenemases (Bassetti et al., 2018). Colistin, despite its
nephrotoxicity and neurotoxicity, remains a key component of
some anti-CRKP regimens (Karaiskos et al., 2017).

Colistin resistance (colR) is mainly mediated by modifications
of the lipid A moiety of the bacterial lipopolysaccharide (LPS)
by addition of positively charged 4-amino-4-deoxy-L-arabinose
(LAra4N) and/or phosphoethanolamine (pEtN) residues. A large
panel of genes and operons is involved in modifications of the
LPS, and mutations conferring colistin resistance have mainly
been observed in mgrB, phoP/phoQ, pmrA/pmrB, and crrB genes
(Cheng et al., 2010; Cannatelli et al., 2013, 2014a; Wright et al.,
2015). Recently, several plasmid-mediated colistin resistance
genes, named mcr, encoding pEtN transferases, have also been
reported in E. coli and other members of Enterobacterales,
including K. pneumoniae (Sun et al., 2018).

Global dissemination of CRKP is mainly caused by the
spread of a few successful clones. Major representatives of these
high-risk clonal lineages include the clonal group (CG) 11,
CG15, CG307, CG17, CG37, CG101, and CG147 strains. CG258
strains, and in particular those of ST258, are major players in
the worldwide spread of KPC-type carbapenemases, and are
responsible for 68% of the CRKP outbreaks (Navon-Venezia
et al., 2017). CG101 strains harbor different clinically-relevant
resistance determinants, such as carbapenemases of the KPC,
OXA-48, VIM, and NDM types. This feature, together with
their ability to produce biofilm and several additional virulence

factors, is likely a major factor in the ecological success of
CG101 strains. Indeed, spreading of this clone is on the rise
(Navon-Venezia et al., 2017).

Multidrug resistance (MDR) prevalence in clinical isolates
of K. pneumoniae, including resistance to third-generation
cephalosporins, fluoroquinolones and aminoglycosides, may be
as high as 50% in Southern Europe, and even higher proportions
have been observed in Eastern Europe. In Serbia, in 2016,
MDR K. pneumoniae accounted for 63% of all K. pneumoniae
infections in humans, of which 35% were also carbapenem
resistant (WHO Regional Office for Europe, 2017). Previous
studies reported that NDM-1 was the main K. pneumoniae-
associated carbapenemase observed in Serbia in the period 2013–
2014 followed by OXA-48, while KPC was only sporadically
reported (Grundmann et al., 2017; Trudic et al., 2017). Novović
et al. (2017) performed a molecular epidemiology study of
carbapenem- and colistin-resistant strains from Serbia, showing
prevalence of CG258 and CG101 strains, producing NDM-1 and
OXA-48 carbapenemases, respectively. However, the proportion
of colistin resistance among those isolates was not reported, and
the mechanisms of colistin resistance of those isolates were not
elucidated (Novović et al., 2017).

In this study, we used whole genome sequencing (WGS)
to study the genomic epidemiology and AMR mechanisms
of colR K. pneumoniae isolates from Serbia, including some
representative of the previously mentioned collection as
reference to study the dynamic changes of population structure
(Novović et al., 2017).

MATERIALS AND METHODS

Bacterial Isolates and Susceptibility
Testing
In the period between November 2013 and May 2017,
K. pneumoniae isolates were obtained from routine
microbiological cultures of clinical samples (e.g., urine,
blood, skin, bronchial aspirate) from seven Serbian medical
centers distributed in five Serbian cities (Niš, Novi Sad, Belgrade,
Kraljevo, and Subotica). Bacteria were not isolated by the authors
but provided by the respective medical centers. Therefore,
an ethics approval was not required as per institutional and
national guidelines and regulations. Information about patients
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antimicrobial treatment were not available. Identification at
the species level was performed by Vitek2 (bioMérieux, Marcy-
l’Etoile, France), and carbapenem susceptibility was determined
by disk diffusion and interpreted according to the EUCAST
breakpoints (EUCAST, 2019). Isolates non-susceptible to at least
one carbapenem (ertapenem, meropenem, and imipenem) were
tested for colistin resistance by Vitek2 or Etest (bioMérieux,
Marcy-l’Etoile, France) according to manufacturer’s instructions
(note that the warning by EUCAST about colistin susceptibility
testing was only issued in July 2016, and for this reason the
above methods were used for colistin susceptibility testing of
the isolates collected in this study). Antimicrobial susceptibility
testing of the colR isolates was performed using the Vitek2
automated system, and results were interpreted according to
EUCAST breakpoints (EUCAST, 2019). Colistin minimum
inhibitory concentrations (MICs) were confirmed using the
broth microdilution method performed according to the CLSI
guidelines (CLSI, 2019) and interpreted by using the EUCAST
breakpoints (EUCAST, 2019). For carbapenems (ertapenem,
imipenem, and meropenem), MICs were obtained by using
Etests (bioMérieux, Marcy-l’Etoile, France). To note, 25 colR
isolates were from the previously described collection by
Novović et al. (2017), and were included in this study for
comparative purposes.

Mass Spectrometry Analysis of Lipid A
Preparations of lipid A were obtained as previously described
(Kocsis et al., 2017). An aliquot of 0.7 µL of each preparation
was spotted on a matrix-assisted laser desorption/ionization–
time of flight mass spectrometry (MALDI-TOF MS) sample plate,
mixed with an isovolume of norharmane matrix (Sigma-Aldrich,
St. Louis, MO, United States) and then air-dried. Samples were
analyzed with a Vitek MS instrument (bioMérieux, Marcy-
l’Étoile, France) in the negative-ion mode.

DNA Extraction and Whole Genome
Sequencing
Genomic DNA was extracted with the DNeasy UltraClean
kit (Qiagen, Hilden, Germany), quantified by using the Qubit
fluorometer (Thermo Fisher Scientific, United States) and quality
checked by using the 260/280 ratio absorbance parameter
as determined by the DS-11 FX + instrument (DeNovix,
Wilmington, DE, United States). Sequencing was performed
using a NextSeq platform (Illumina, Inc., San Diego, CA,
United States) and a 2 bp × 150 bp paired-end approach. Raw
data from paired-end sequencing were quality checked with the
FastQC tool (v.0.11.6) and assembled with SPAdes (v.3.10.1)
(Bankevich et al., 2012). One representative strain (KB-2017-
139) was also sequenced with the MinION sequencer (ONT,
Oxford, United Kingdom) using an R9.5.1 flow cell and the
protocol 1D Genomic DNA by Ligation (SQK-LSK109). Illumina
and Nanopore raw data from KB-2017-139 were assembled
with a hybrid approach using Unicycler (Wick et al., 2017).
Whole genome sequencing data of the 45 clinical isolates have
been deposited under BioProject PRJNA4492931. The complete

1www.ncbi.nlm.nih.gov/bioproject/PRJNA449293

sequence of the plasmid pSRB_OXA-48 obtained by Illumina
and Nanopore sequencing was deposited on GenBank under
accession number MN218814.

Bioinformatics Analysis
MLST was performed in silico by using the tool mlst2 and
the Pasteur database3. BLAST + (2.7.1) was used to detect
mutations in genes potentially involved in colistin resistance
(mgrB, pmrA/B, phoP/Q, crrA/B), and only mutations leading to
amino acid variations were considered. For the characterization
of colistin resistance mechanisms, strains of CG258, ST101 and
ST336 were compared to colistin susceptible reference strains of
the same CG, i.e., NJST258_2 (accession no. NZ_CP006918.1),
BA33875 (NEWA00000000) and MGH-78578 (NC_009648.1),
respectively. Phylogenetic relatedness was investigated with
the parsnp tool (v1.2) (Treangen et al., 2014) by using
default parameters and the strain NTUH-K2044 (accession no.
NC_012731.1) as reference. The phylogenetic tree obtained was
visualized with the online tool iTol (Letunic and Bork, 2016).
The ABRicate tool4 was used to detect acquired AMR genes
using the ResFinder database (Zankari et al., 2012), while plasmid
replicons were predicted by PlasmidFinder (Carattoli et al., 2014).
Kaptive was used for the capsular type detection (Wyres et al.,
2016). Comparative analysis of plasmids was performed with
BLAST Ring Image Generator (Alikhan et al., 2011) and Easyfig
(Sullivan et al., 2011).

For the comparative genomic analysis of ST101 isolates, on
31 October, 2018 all the K. pneumoniae genomes available on
NCBI (N = 5,820) were downloaded with the ncbi-genome-
download tool5. MLST was performed and all ST101 (N = 195)
(Supplementary Table S2) together with ST101 strains from
this study were used for phylogenetic investigations by using
parsnp and the closed ST101 chromosome from Kp_Goe_121641
(accession no. NZ_CP018735.1) as reference.

RESULTS

Klebsiella pneumoniae Isolates and
Antimicrobial Susceptibilities
In the period between November 2013 and May 2017, a total
of 2,298 clinical isolates of K. pneumoniae were isolated from
patients admitted to seven medical settings located in five Serbian
cities. Among those, 426 isolates (18.5%) were non-susceptible
to at least one carbapenem by disk diffusion, and were tested
for colistin resistance. A total of 45 strains (10.6%) out of this
subset showed a colistin resistant phenotype. At the time of the
collection, colistin susceptibility testing was routinely performed
with the Vitek2 instrument or Etest, although these methods had
several limitations (Tan and Ng, 2007). Thus, the number of colR
isolates may be underestimated.

2https://github.com/tseemann/mlst
3https://bigsdb.pasteur.fr/
4https://github.com/tseemann/abricate
5https://github.com/kblin/ncbi-genome-download
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All the strains were confirmed as colistin resistant by
the broth microdilution method (considering the EUCAST
susceptibility breakpoint of 2 mg/L) with MICs that ranged
between 8 and 32 mg/L (Supplementary Table S1). Etest
results for carbapenemes showed that all the strains were
resistant to ertapenem, while meropenem and imipenem had
susceptibility rates of 93.3 and 91.1%, respectively. Vitek2 results
showed that none of the fluoroquinolones, penicillins combined
with β-lactamase inhibitors and cephalosporins (including
cefoxitin and the 4th generation cephalosporin cefepime) were
effective against the 45 colR isolates. Conversely, amikacin
(86% susceptibility) and trimethoprim/sulfamethoxazole (78%
susceptibility) were the most active agents together with
imipenem and meropenem (Supplementary Table S1).

Genomic Epidemiology
Genome sequence data were used to investigate the population
structure of the colR K. pneumoniae strains circulating in Serbia.
Five different STs were detected among the investigated collection
(ST101, ST437, ST258, ST336, and ST340), with the majority of
strains belonging to ST101 (N = 38) or CG258 (ST258, N = 1;
ST340, N = 1 and ST437, N = 4) (Figure 1). The remaining strain
belonged to CG17 and was typed as ST336. Isolates of ST101 were
closely related to each other [single nucleotide polymorphism
(SNP) variation: 5–893, mean 107, median 61], with only two
of them (i.e., KV-2017-142 and KV-2017-143) having more than
200 SNPs when compared to other ST101 isolates and to each
other. The ST101 isolates were detected in all the cities involved
in this study, except Niš, thus demonstrating the endemicity at
the national level of this clone. Moreover, there was not a clear
clustering of isolates obtained from different hospitals, suggesting
inter-hospital cross infections.

The genomes of the ST101 Serbian isolates were compared
with 195 ST101 genomes available in the INSDC databases, and
their phylogenetic relation is showed in Figure 2. Strains from
our study (red lines) cluster together in the tree in a well-
defined branch containing other strains from Serbia, Slovenia,
Turkey and Greece. Overall, the number of SNPs among all
analyzed ST101 isolates ranged between 1 and 1,547 (mean 195,
median 135), and two major lineages within this group can be
observed. The majority of SNPs separating these two lineages fell
in the gene cluster, and this was consistent with the previous
observations that strains of ST101 are characterized by two
different K-loci, KL17 and KL106, associated with wzi alleles 137
and 29, respectively (Roe et al., 2019). While KL17 is prevalent
among ST101 strains, KL106 is less frequent but, interestingly, it
is the second most abundant capsular variant of CG258 (Wyres
et al., 2015), reinforcing the hypothesis that capsular exchange
in K. pneumoniae is a common event (Chen et al., 2014; Bowers
et al., 2015).

All non-ST101 isolates (excluding KB-2015-119) were part
of a single monophyletic subclade within the CG258 (Bowers
et al., 2015) and produced different carbapenemases or were
carbapenemase negative (Figure 1), while the remaining
isolate of ST336 was a OXA-48-producer and harbored the
KL25 capsular type.

Colistin Resistance Mechanisms
No mcr genes were observed in the genomes of the colR isolates.
Conversely, all of them showed alterations in the PhoP/PhoQ
regulator mgrB gene. These alterations were mainly SNPs, with
the majority of ST101 isolates from this study characterized by
the mutation MgrBC28S (N = 37; 97.4%). Although different
substitutions of the cysteine amino acid at position 28 have
already been described (e.g., MgrBC28F and MgrBC28Y), and their
role in colistin resistance has been experimentally demonstrated
(Cannatelli et al., 2014b; Olaitan et al., 2014; Cheng et al., 2015;
Wright et al., 2015), the MgrBC28S is first described here. This
cysteine residue has been previously shown to be involved in a
key disulfide bond relevant to MgrB function (Lippa and Goulian,
2012), thus its substitution by Serine or by any other amino
acid is expected to interfere with the ability to repress PhoQ,
leading to the overexpression of the pmrHFIJKLM operon and
to a colistin resistance phenotype. The isolate CN-2013-099,
belonging to ST340, displayed the previously studied MgrBC28Y

substitution (Cheng et al., 2015). Different mutations leading
to premature stop codons were MgrBK2∗ in the ST101 isolate
KV-2017-143, firstly described here, MgrBK3∗ in the ST437
isolate GZ-2017-145 (Nordmann et al., 2016) and MgrBQ30∗ in
the ST336 strain KB-2015-119 (Nordmann et al., 2016). The
ST258 isolate was characterized by an insertion sequence of the
family IS5 which interrupted the mgrB gene at nucleotide 75.
Disruption of the mgrB gene by insertion sequences has been
shown as a common mechanism of colistin resistance in KPC
harboring strains (Cannatelli et al., 2014b). Three ST437 strains
were characterized by an adenine deletion within the polyadenine
region present from nucleotide 4 to 9 in mgrB, resulting in a
frameshift mutation. Collectively, the results of these analyses
demonstrated that all colistin resistant strains investigated in this
study were characterized by genetic alterations in the mgrB gene.

Other genetic alterations potentially involved in colistin
resistance were: PmrAE57G (KB-2015-119, ST336), PmrBT157P

(CCV-2015-105, ST101) and PhoQV446G (CCDM-2017-135,
ST258). Among these, only PmrBT157P was previously reported,
and its role in reducing colistin susceptibility was demonstrated
(Jayol et al., 2014). Accordingly, the ST101 isolate CV-2015-105
having PmrBT157P together with MgrBC28S, showed a colistin
MIC 1- to 2-fold higher than isogenic strains carrying only
MgrBC28S.

Mass spectrometry of lipid A was performed on a subset
of isolates representative of the different alterations potentially
involved in colistin resistance. Compared to the colistin
susceptible reference ATCC11296 strain, colR isolates showed an
additional peak at 1,971 m/z resulting from the addition of a 4-
amino-4-deoxy-L-arabinose moiety (131 m/z) to lipid A (peak at
1,840 m/z), as previously reported (Leung et al., 2017) (results
not shown). This supports the role of the observed mutations in
the overexpression of the pmrHFIJKLM operon and consequent
lipid A modification, leading to reduced colistin interactions.
Moreover, no addition of pEtN moieties to lipid A were observed,
consistently with the absence of mcr-like genes (Liu et al., 2017).

To note, our findings concerning MgrB alterations differ from
those previously reported by Novović et al. (2017), as they did not
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FIGURE 1 | Phylogenetic tree of the colR Klebsiella pneumoniae isolates from Serbia. For each isolate, the medical setting (CN, Clinical center of Niš, Niš; CV,
Clinical center of Vojvodina, Novi Sad; KB, Konzilijum, Belgrade; DM, University hospital center “Dr. Dragiša Mišovic-Dedinje,” Belgrade; KV, The General hospital
“Studenica,” Kraljevo; GZ, The Institute of Public health of Belgrade, Belgrade; SU, General Hospital Subotica, Subotica), the year of isolation and the sample
number are reported. Colored nodes indicate MLST, while the presence/absence of ESBLs, carbapenemases, resistance genes (black) and plasmid replicons is
indicated by filled boxes.

detect significant MgrB alterations for most of the isolates. This
underline the importance of using well-characterized colistin
susceptible reference isolates, as the one used in the mentioned
study was not characterized with reference methods for colistin
susceptibility testing (Mirovic et al., 2012).

Other Antibiotic Resistance Mechanisms
All strains were positive for an ESBL-encoding gene, with
blaCTX-M-15 harbored by all strains except the only ST258,
which carried a blaSHV-12 gene. Analysis of the ompK35 gene,
encoding a major outer membrane protein, showed that all
non-ST258 strains had deletions leading to frameshift and
premature stop codons, while the ompK36 gene was intact in
all the genomes. Outer membrane impermeability most likely
explains resistance to cefoxitin (a cephamycin) and to ertapenem
for those isolates negative for a carbapenemase encoding gene

(Ardanuy et al., 1998). Two ST437 and the ST336 isolate
harbored the 16S rRNA methylase gene armA, which confers
high level resistance to aminoglycosides. Several other AMR
genes were observed for the following antimicrobial classes:
aminoglycosides (presence of aac-, aad-, aph-, and ant-type
modifying enzymes), fluoroquinolones (oqxAB, qnrB1, aac(6′)-
Ib-cr, parCS80I , gyrAS83Y-S83I-D87G-D87N), phenicol (floR, catA1
and catB4 genes), sulfonamide (sul1 and sul2 genes), tetracycline
(tetA and tetD genes) and trimethoprim (dfrA).

Novel IncR/IncFIA OXA-48 Plasmid
Within ST101 Isolates
The production of OXA-48 was at the basis of carbapenem
resistance in the K. pneumoniae of ST101 analyzed in this study.
For this reason, we deeply investigated the genetic context of
this gene. Spreading of the blaOXA-48-encoding gene among
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FIGURE 2 | Phylogenetic tree of the ST101 K. pneumoniae isolates from this study (red lines) in comparison to ST101 isolates retrieved from NCBI (black lines). The
two types of capsular polysaccharides (KL17 and KL106) are indicated by colored ranges. Two datasets are also present, indicating the type of carbapenemase
(inner circle) and the country of origin (outer circle).

Enterobacterales is mainly related to the dissemination of a
single ∼62-kb IncL/M-like conjugative plasmid (Poirel et al.,
2012). However, PlasmidFinder analysis did not detect any
IncL/M replicon among ST101 isolates from Serbia. Therefore,
MinION sequencing was performed on one representative strain
(KB-2017-139) with the aim to fully characterize the genomic
background of the blaOXA-48 gene.

The blaOXA-48 gene was located on a plasmid of 83,654 bp,
named pSRB_OXA-48, carrying both the IncR and the IncFIA
type replicons, the blaCTX-M-15 and several other AMR
genes (tet(D), aac(6′)-Ib-cr, blaOXA-1, catB3-like, aac(3′)-IIa and
dfrA14). A BLAST analysis showed that pSRB_OXA-48 is a
hybrid plasmid composed by (i) a fragment having 99.7% identity
with the IncFIA-IncR pKp_Goe_641-1 plasmid (CP018737.1)
and carrying the blaCTX-M-15 gene and several other AMR genes
[aac(3)-IIa, catB3, blaOXA-1, aac(6′)-Ib-cr, aac(6′)-Ib, ant(3′′)-Ia,

blaOXA-9, blaTEM-1A, dfrA14], and (ii) a fragment identical to
the IncL/M plasmid pKp_Goe_641-2 (CP018736.1) carrying
the blaOXA-48 gene (Figure 3). Both these plasmids have been
described in K. pneumoniae strain Kp_Goe_121641 (accession
no. NZ_CP018735.1), isolated from a refugee from North Africa
hospitalized in Germany, in 2013. The latter strain belongs
to ST101 and has a median of 142 SNPs (minimum 134,
maximum 601) compared to the Serbian ST101 isolates from
this study. Collectively these results suggest that pSRB_OXA-48
likely originated by recombination events between two plasmids
within an ST101 strain related to Kp_Goe_121641. In order
to elucidate the recombination mechanisms at the origin of
pSRB_OXA-48, we compared this plasmid to pKp_Goe_641-
1 and to pRA35 (LN864821.1), an IncL/M plasmid similar to
pKp_Goe_641-2 but with an intact structure of the transposon
Tn6237 carrying blaOXA-48 (Beyrouthy et al., 2014) (Figure 3).
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FIGURE 3 | BLAST ring image generator output of the OXA-48 plasmid pSRB_OXA-48 from the ST101 isolate KB-2017-139 (violet) against the two major plasmids
from the ST101 isolate Kp_Goe_1216141 (pKp_Goe_641-1, in red and pKp_Goe_641-2 in green). Only identities > 95% are indicated. Antimicrobial resistance
genes are indicated in red, plasmid replicons in blue and all other genes in black.

A detailed analysis showed that pSRB_OXA-48 contained a
copy of Tn6237 which was disrupted by a IS26 composite
transposon of 73.7 kbp sharing similarity with pKp_Goe_641-
1. This hypothesis was corroborated by the presence of 8-bp
target site duplication sequences (5′-GCGAATAA-3′) flanking
the composite transposons regions (Figure 4). The results
of reads-mapping performed against pSRB_OXA-48 using
Illumina short-reads from the other ST101/OXA-48 strains
was consistent with the presence of a pSRB_OXA-48-related
plasmid in all the ST101/OXA-48 isolates. Non-ST101 OXA-
48 strains (ST336 KB-2015-119 and ST437 GZ-2017-145) had
the IncL/M replicon, while lacking the IncFIA and IncR

replicons, suggesting that the blaOXA-48 gene was located in
a classic IncL/M plasmid and not in a pSRB_OXA-48-like
plasmid (Figure 1).

DISCUSSION

This study exploited WGS to characterize a collection of colR
CRKP isolates obtained from seven medical settings and five
Serbian cities over a nearly 4-year period. Results showed that
all the isolates presented alterations in the PhoP/PhoQ regulator
MgrB, confirming its major role in colR in K. pneumoniae. Lipid
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FIGURE 4 | Comparison of plasmids pSRB_OXA-48, pKpGoe_641-1 and pRA35. Antimicrobial resistance genes, plasmid replicons and mobile elements are also
indicated. TSD: target site duplication.

A alterations associated with colR were also studied with MALDI-
TOF MS. The analysis revealed the addition of a 4-amino-4-
deoxy-L-arabinose moiety to lipid A, but no addition of pEtN
moieties, for all isolates tested. These results support the role of
the MgrB mutations in colistin resistance, and also confirm the
absence of mcr-like genes.

The predominant ST observed was ST101, an emerging high-
risk clone detected worldwide and associated with different
carbapenemases and high mortality (Navon-Venezia et al., 2017;
Can et al., 2018). In a recent European survey of CRKP
isolates, including 244 hospitals in 32 countries, four major
clonal lineages accounted for roughly 70% of the carbapenemase-
producing isolates, including ST 11, 15, 101, 258/512 and
their derivatives (David et al., 2019). The first ST101 strain
from Serbia was isolated in 2013, and coproduced the OXA-
48 and the NDM-1 carbapenemases (Seiffert et al., 2014).
Most of the colR ST101 from this study were carbapenemase-
producers, and OXA-48 was the only carbapenemase expressed.
ST101/OXA-48 has been frequently reported, and in an 11-year
epidemiology study of OXA-48 producers among European and
north- African countries, a quarter of the OXA-48 K. pneumoniae
isolates belonged to ST101 (Potron et al., 2013). Outbreaks
of ST101/OXA-48 were also described, with reports from
Spain (Pitart et al., 2011; Cubero et al., 2015), Algeria (Loucif
et al., 2016), Czech Republic (Skálová et al., 2016) and Greece
(Avgoulea et al., 2018). The challenging phenotypic detection
of OXA-48 carbapenemases and the rapid horizontal transfer
of OXA-48-encoding plasmids favor hospital outbreaks linked
to patient transfer (Skálová et al., 2016) and draw attention to
the need for continuous and meticulous surveillance, as well as
timely investigation.

The blaOXA-48 gene spread is mainly related to the
dissemination of a single ∼62-kb IncL/M-like conjugative
plasmid that does not carry additional resistance determinants
(Poirel et al., 2012). Conversely, ST101/OXA-48 isolates from
this study carried a novel hybrid plasmid (pSRB_OXA-48) with

replicons IncR and IncFIA and encoding OXA-48, the CTX-M-
15 ESBL and several other AMR genes. Such plasmids confer
an MDR phenotype which limits the use of most β-lactams,
including carbapenems. In fact, even if most isolates (91%) were
susceptible to imipenem, carbapenems have been proven to be
not effective in an in vivo murine model (Wiskirchen et al.,
2014). Moreover, there have been a number of case reports
and series describing treatment failures with carbapenem-
containing regimens in the treatment of OXA-48-producing
bacterial infections (Stewart et al., 2018). Ceftazidime-avibactam
may represent an effective alternative against such isolates, as
previously reported (Kazmierczak et al., 2018).

Similarities among the Serbian ST101 strains, supported by
the limited number of SNPs observed and the presence of the
same alteration in the mgrB gene, suggest a clonal expansion
of this clone among Serbian medical settings. This observation
underscores the need to strengthen contact precautions for
patients diagnosed with or suspected of having CRKP infections
to limit the diffusion of colR CRKP of ST101.

Of note, colR ST101 strains have recently been associated with
high mortality rates. Indeed, a prospective cohort study showed
that among colR isolates, ST101 was found to be a significant
independent predictor of patient mortality, with a 30 day patient
mortality of 72% (Can et al., 2018).

CONCLUSION

This work corresponds to the first genomic investigation of
colistin resistance in K. pneumoniae isolates from Serbia.
The major role of MgrB mutations in colistin resistance
in K. pneumoniae, observed in strains of CG258, is here
confirmed for those of ST101. We also report the full
sequence of a novel plasmid, pSRB_OXA-48, conferring MDR
phenotype and encoding for the ESBL CTX-M-15 and the
carbapenemase OXA-48.
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