
INTRODUCTION

Parkinson’s disease (PD) is the most common age-related neu-
rodegenerative disease affecting motor control. Clinically, it is 
characterized by four cardinal signs: rigidity, bradykinesia, resting 
tremor, and postural instability. The motor symptoms are accom-
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Mitochondria continuously fuse and divide to maintain homeostasis. An impairment in the balance between the fusion and fis-
sion processes can trigger mitochondrial dysfunction. Accumulating evidence suggests that mitochondrial dysfunction is related 
to neurodegenerative diseases such as Parkinson’s disease (PD), with excessive mitochondrial fission in dopaminergic neurons be-
ing one of the pathological mechanisms of PD. Here, we investigated the balance between mitochondrial fusion and fission in the 
substantia nigra of a non-human primate model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. We found 
that MPTP induced shorter and abnormally distributed mitochondria. This phenomenon was accompanied by the activation of 
dynamin-related protein 1 (Drp1), a mitochondrial fission protein, through increased phosphorylation at S616. Thereafter, we as-
sessed for activation of the components of the cyclin-dependent kinase 5 (CDK5) and extracellular signal-regulated kinase (ERK) 
signaling cascades, which are known regulators of Drp1(S616) phosphorylation. MPTP induced an increase in p25 and p35, which 
are required for CDK5 activation. Together, these findings suggest that the phosphorylation of Drp1(S616) by CDK5 is involved in 
mitochondrial fission in the substantia nigra of a non-human primate model of MPTP-induced PD.
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panied by dopaminergic neuron degeneration in the substantia 
nigra pars compacta, leading to a dopamine deficit in the striatum, 
including the caudate and putamen [1, 2]. The causes of PD patho-
genesis are complex, with various contributors, such as genetic 
susceptibility and environmental factors. Recently, accumulating 
evidence has suggested a link between PD pathogenesis and mito-
chondrial dysfunction [3, 4].

Mitochondria are the main subcellular organelles responsible 
for production of adenosine triphosphate (ATP) and regulation 
of metabolite synthesis, intracellular calcium homeostasis, and 
programmed cell death. In particular, the central nervous system 
(CNS) has a high demand for mitochondrial ATP as an energy 
source to maintain ionic gradients across the axonal membrane, 
a process that is essential for neurotransmission [5, 6]. Mitochon-
dria are highly dynamic; they continuously undergo fission, which 
is regulated by Drp1 and Fis1, and fusion, which is regulated by 
Mfn1, Mfn2, and Opa1 [7-9]. The balance between mitochondrial 
fission and fusion significantly affects the role of mitochondria in 
the maintenance of cellular process [7, 8, 10]. Excessive mitochon-
drial fission triggers mitochondrial fragmentation and dysfunc-
tion, subsequently leading to a reduction in the mitochondrial 
membrane potential, depletion of ATP, accumulation of reactive 
oxygen species (ROS), and release of apoptotic factors [11, 12]. In 
view of this, abnormal mitochondrial dynamics is also thought to 
be involved in various neurodegenerative diseases, including PD 
[13, 14]. Indeed, a change in Drp1 activity has been implicated in 
various neurodegenerative disorders [15, 16]. Drp1-dependent 
mitochondrial morphology and distribution are key factors in 
modulating mitochondrial homeostasis in dopaminergic neurons 
in models of PD [17, 18]. Drp1 activity is controlled by post-trans-
lational modifications, including phosphorylation [19]. Specifi-
cally, phosphorylation of a serine residue, S616, results in increased 
Drp1 activity, reflecting variant pathological processes [20, 21]. 
However, more information is needed on the precise relationship 
between abnormal mitochondrial dynamics and the causative fac-
tors of PD.

CDK5 is a proline-directed serine-threonine kinase that is 
mainly expressed in post-mitotic neurons [22, 23]. CDK5 activity 
is mainly controlled by neuron-specific activators, p35 and p39, 
which are activated after being cleaved into p25 and p29, resulting 
in CDK5 hyperactivity [24, 25]. CDK5 plays an important role in 
the regulation of CNS development and synaptic plasticity [26, 
27]. However, inappropriate activation of CDK5 plays an early role 
in the cell death cascade, even before the initiation of mitochon-
drial dysfunction, and CDK5 inhibition prevents mitochondrial 
damage and cell death in a model of PD [28-30]. Interestingly, 
CDK5 modulates mitochondrial morphology during neuronal 

apoptosis as an upstream signaling kinase [31, 32]. Furthermore, 
CDK5-mediated phosphorylation of Drp1 is related to mitochon-
drial morphology control during neuronal injury [33]. However, 
the mechanisms via which CDK5 regulates mitochondrial fission 
by phosphorylation of Drp1 at S616 during dopaminergic neuro-
nal loss are still not completely understood.

The neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP), can trigger parkinsonism in non-human primates, and 
has been used extensively in experimental models of PD [34-
36]. However, it is difficult to develop macaque models of MPTP-
induced chronic parkinsonism owing to symptomatic variation. 
To induce a stable non-human primate PD model, adjustments 
of MPTP administration at an individual-level are required ac-
cording to the severity of behavioral symptoms [37]. Recently, 
we established and verified a primate model of chronic stable PD 
by repeated low-dose MPTP administration based on automatic 
quantification of individual global activity in cynomolgus mon-
keys (Macaca fascicularis ) [38]. In our MPTP-treated monkeys, 
parkinsonian symptoms and decreased dopamine transporter 
activity persisted until 1 year. Dopaminergic neuronal cell death 
was confirmed by immunohistochemistry and western blotting 
[38]. Although the clinical features in human chronic PD patients 
can be observed in this model, further investigation is needed to 
support its use for chronic PD research and drug discovery. In the 
present study, we investigated pathological alterations and mo-
lecular mechanisms of mitochondrial dynamics in the substantia 
nigra of MPTP-treated cynomolgus monkeys at 1 year after the 
first MPTP administration.

MATERIALS AND METHODS

Animals 

All experimental animals were derived from our previous study 
[38]. Briefly, four female adult cynomolgus monkeys were ob-
tained from the Zhaoqing Laboratory Animal Research Centre 
(Guangdong Province, China). They were maintained in individ-
ual indoor cages (60×80×80 cm) at the National Primate Research 
Center of the Korea Research Institute of Bioscience and Biotech-
nology (KRIBB) at a temperature of 24±2℃, a relative humidity 
of 50±5%, and under a 12-h light/12-h dark cycle. The monkeys 
were able to have visual contact and voice interaction with neigh-
bors but no physical contact (to avoid aggression), as described 
previously [39, 40]. The dimensions of the cages met that provided 
by the guidelines of the USA National Institutes of Health. The 
monkeys were fed commercial monkey chow (Harlan Teklad, 
Indianapolis, IN, USA) supplemented with various fruits and were 
given water ad libitum. They were also given various rubber and 
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plastic toys and fruits as environmental enrichment. The attend-
ing veterinarian monitored the monkeys’ health in accordance 
with the recommendations of the Weatherall report on the use of 
non-human primates in research [41]. They were also monitored 
through a once yearly administration of microbiological tests for 
B virus, simian retrovirus, simian immunodeficiency virus, sim-
ian virus 40, and simian T-cell lymphotropic virus. All procedures 
were approved by the KRIBB Institutional Animal Care and Use 
Committee (Approval No. KRIBB-AEC-16068). All animal ex-
periments complied with the ARRIVE guidelines [42].

MPTP administration

MPTP (0.2 mg/kg; Sigma-Aldrich, St. Louis, MO, USA) was 
dissolved in saline to a final concentration of 2 mg/mL and intra-
muscularly injected into the left femoral region of the cynomolgus 
monkeys daily, from Monday to Friday each week, as described 
previously [38]. The total number of MPTP injections were com-
mensurate with each individual animal’s global activity intensity. 
The stop point thresholds for MPTP administration were indi-
cated by a global activity intensity lower than 8% (arbitrary) of 
baseline intensity.

Tissue preparation

Four monkeys were transcardially perfused with 400 mL of 100 
mM phosphate-buffered solution (PBS) under deep anesthesia 
induced by an intramuscular injection of ketamine (1 mg/kg) at 
48 weeks following the first MPTP administration. Whole brains 
were removed from the skull, washed in cold PBS, and bilaterally 
separated. For immunohistochemical staining, the left hemi-
spheres were post-fixed with 4% paraformaldehyde and incubated 
in 30% sucrose solution at 4℃.

Western blot analysis

The tissues were harvested from the substantia nigra of the mon-
key brains using punches on 4-mm-thick slices, snap-frozen, and 
stored at -80℃. Whole protein lysates of the substantia nigra were 
prepared using the PRO-PREP protein extraction solution (Intron 
Biotechnology, Seongnam, Korea). Equal amounts of proteins were 
separated by electrophoresis on 10~15% sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) gels and trans-
ferred onto nitrocellulose membranes (BD Biosciences, Franklin 
Lakes, NJ, USA). The membranes were blocked using incubation 
in blocking buffer (BD Biosciences) and primarily blotted with 
primary antibodies against anti-TH (MAB318; Merck Millipore, 
Darmstadt, Germany), anti-GFAP (AB5804), anti-β-actin (A5316; 
Sigma-Aldrich, St. Louis, MO, USA), anti-Iba-1 (ab108539) anti-
Mfn1 (ab57602; Abcam, Cambridge, MA, USA), anti-Drp1 

(#8570), anti-phospho(p)-Drp1 (#3455), anti-Mfn2 (#9482), anti-
Opa1 (#67589), anti-CDK5 (#2506), anti-ERK (#9102), anti-p-
ERK (#9101; Cell Signaling, Danvers, MA, USA), anti-Fis1 (PA1-
41082), and anti-p35 (MA5-14834; Thermo Scientific, Waltham, 
MA, USA) antibodies at 4℃ overnight. The membranes were 
washed with 10 mM Tris-HCl (pH 7.5) containing 150 mM NaCl 
and 0.1% Tween-20 (TBST) and incubated with horseradish 
peroxidase-conjugated secondary antibodies (Cell Signaling) for 
1 h at room temperature. After the removal of excess antibodies by 
washing with TBST, specific binding was detected using a chemi-
luminescence detection system (Thermo Scientific) according to 
the manufacturer’s instructions.

Immunohistochemistry and mitochondrial imaging

The left hemispheres of the brains were sectioned in the coronal 
plane at 30 μm of thickness using a cryostat (Leica Biosystems, 
Wetzlar, Germany). For blocking, 30-μm free-floating tissue sec-
tions were incubated with 4% normal horse serum (S-2000; Vec-
tor Laboratories, Burlingame, CA, USA) in 0.3% Triton X-100 
for 2 h at room temperature. For immunohistochemistry and 
immunofluorescent staining, the tissue sections were incubated 
with anti-TH (AB152; Merck Millipore), anti-GFAP (AB5804; 
Sigma-Aldrich), anti-Iba-1 (ab108539; Abcam), and anti-TOM20 
(#42406; Cell Signaling) antibodies at 4℃ overnight. The appro-
priate secondary antibodies (Vector Laboratories and Thermo 
Scientific) were incubated for 2 h at room temperature to allow 
binding to the primary antibody. Immunohistochemistry staining 
was visualized using the ABC method (Vector Laboratories) with 
3, 3ʹ-diaminobenzidine as the peroxidase substrate. The tissue sec-
tions were observed using the Precipoint M8 digital microscope 
(PreciPoint, Freising, Germany). Fluorescent images were acquired 
using the LSM-710 confocal microscope (Carl Zeiss, Jena, Ger-
many). Measurement of mitochondrial length was performed as 
described previously [43].

Statistical analysis

The data represent the mean and standard deviation (SD) from 
three independent experiments (n=3). Experimental differences 
were tested for statistical significance using two-way analysis of 
variance (ANOVA) using GraphPad Prism 5 software (San Diego, 
CA, USA). A p-value <0.05 was deemed to be statistically signifi-
cant and is indicated on graphs by an asterisk; p-values <0.01 and 
<0.001 are indicated by two and three asterisks, respectively.
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RESULTS

Loss of dopaminergic neurons in the basal ganglia region 

of monkeys with MPTP-induced PD

We previously developed a model of chronic PD in non-human 

primates using a novel strategy of MPTP administration that was 
based on global activity evaluation in individual cynomolgus 
monkeys [38]. In this model, we first confirmed damage of dopa-
minergic neurons in the basal ganglia region of the monkey brain 
by determining the protein level of tyrosine hydroxylase (TH), a 

Fig. 1. Effect of MPTP on dopaminergic neuronal loss and neuroinflammation in the substantia nigra of cynomolgus monkeys. (A) TH protein expres-
sion level in the substantia nigra of saline- or MPTP-injected cynomolgus monkeys was determined by using western blotting. (B) Immunohistochemis-
try staining of TH-positive neurons in the cynomolgus monkey brain injected with saline or MPTP was performed using anti-TH antibody. The bottom 
panels show magnified images of the substantia nigra pars compacta (SNpc) region indicated by the black squares in the top panels; scale bars=10 mm. 
(C) Fluorescent imaging results of TH proteins were validated using anti-TH antibody in the substantia nigra of saline- or MPTP-injected cynomolgus 
monkeys; scale bars=100 μm. (D) GFAP and Iba-1 protein expression in the substantia nigra of saline- or MPTP-injected cynomolgus monkeys was 
confirmed using western blotting. (E) Expression of GFPA and Iba-1 proteins were identified in the SNpc region of saline- or MPTP-injected cynomol-
gus monkeys using immunohistochemistry; scale bars=2 μm. C1 and C2 indicate the saline-injected group, and C3 and C4 indicate the MPTP-injected 
group. The data are presented as mean values±SD (n=2). ***denotes p<0.001.
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marker of dopaminergic neurons, using immunoblotting. Our 
results showed that the protein level of TH was dramatically re-
duced in the substantia nigra than in the saline group (Fig. 1A, 1B, 
and 1C). We also investigated neuroinflammation, an important 
physiological alteration in PD, by determining the protein level of 
GFAP (a marker of astrocytes) and Iba-1 (a marker of microglia), 
as described in our earlier study [39]. Our results indicated that 
the protein level of GFAP in the substantia nigra was higher in 
the MPTP group than in the saline group, whereas there was no 
significant difference in Iba-1 between the two groups (Fig. 1D 
and 1E). Altogether, we demonstrated that our MPTP-induced PD 
model successfully reflected dopaminergic neuronal loss and neu-
roinflammation in the substantia nigra.

MPTP-induced increase of abnormal mitochondria in the 

substantia nigra 

Abnormal mitochondrial dynamics significantly affect dopa-
minergic neuronal loss in patients with PD [3]. Therefore, we first 
observed dopaminergic mitochondrial morphology by immu-
nohistochemistry for TOM20, a mitochondria outer membrane 
protein and a marker of mitochondria, co-stained with TH. Our 
observation indicated that the mitochondria of the dopaminergic 
neurons in the substantia nigra contained a high number of inter-
connected structures and were widely distributed throughout the 
whole cell, including the perinuclear and synaptic regions in the 
saline group. On the other hand, the number of mitochondria in 
the MPTP group was markedly reduced; moreover, mitochondria 

Fig. 2. Effect of MPTP on mitochondrial morphology and synaptic function in the substantia nigra. (A) Mitochondrial morphology in the substantia 
nigra of saline- or MPTP-injected cynomolgus monkeys was observed using immunofluorescent staining with anti-TOM20 and anti-TH antibodies. 
The right end panels show magnified images of the regions indicated by white squares in the left end panels; scale bars=5 μm. (B) The graph shows the 
average mitochondrial length in the substantia nigra of saline- and MPTP-injected cynomolgus monkeys. (C) The expression of synaptophysin, a pre-
synaptic marker, was determined using western blotting with anti-synaptophysin antibody. The data are presented as mean values±SD (n=2). *denotes 
p<0.05.
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were distributed around the nuclear region in a punctate manner 
(Fig. 2A). The average length of mitochondria in the MPTP group 
was significantly shorter than that in the saline group (Fig. 2B). 
Moreover, the neurite structure in the saline-injected group was 
more developed than that in the MPTP-injected group. Therefore, 
we determined the protein level of synaptophysin, a pre-synapse 
marker, using immunoblotting to verify its possible decrease 
induced by MPTP in the substantia nigra. We noted that synapto-
physin levels was decreased after MPTP than after saline injection 
(Fig. 2C). Our findings indicated that MPTP induced abnormal 
mitochondrial morphology and distribution in the substantia 
nigra of the monkey brain.

MPTP-induced phosphorylation-mediated Drp1 activa-

tion in the substantia nigra

Drp1-mediated control of mitochondrial morphology and dis-
tribution is crucial for modulating dopaminergic neurons in mod-
els of PD [17]. Thus, we assessed the mitochondrial fission and fu-
sion proteins, including the phosphorylation level of Drp1(S616), 
using immunoblotting. Our results showed that phosphorylation 
of Drp1(S616) was markedly increased by MPTP injection, with 
no change in the expression level of the mitochondrial fission pro-

teins, Drp1 and Fis1 (Fig. 3A). The expression of mitochondrial 
fusion proteins, Mfn1, Mfn2, and Opa1 were not significantly 
changed by MPTP (Fig. 3B). Although the expression of mito-
chondrial fusion proteins was independent of MPTP, there were 
differences among individuals. Taken together, our data suggested 
that abnormal mitochondrial phenotype in the substantia nigra 
of MPTP-injected monkeys was accompanied by an increase in 
Drp1(S616) phosphorylation.

MPTP-induced activation of the CDK5/p35 signaling path-

way in the substantia nigra 

Drp1-mediated excessive mitochondrial fission was mainly 
induced by increased Drp1 phosphorylation. Drp1 can be phos-
phorylated by various kinases, such as CDK5 and ERK [44, 45]. 
Therefore, we confirmed the activity of kinases upstream of 
Drp1(S616) phosphorylation using immunoblotting. Our data 
showed that the protein level of CDK5 was unchanged, but those 
of p35 and p25, the neuron-specific activators of CDK5, were 
increased in the substantia nigra of the MPTP group (Fig. 4A). In 
contrast, other upstream kinases of Drp1(S616) phosphorylation, 
ERK, were not different between the two groups (Fig. 4B). ERK 
phosphorylation level was lower in the MPTP group than in the 

Fig. 3. Expression level of proteins involved in mitochondrial dynamics. (A) The levels of the mitochondrial fission proteins, p-Drp1(S616), Drp1, and 
Fis1, and (B) the mitochondrial fusion proteins, Mfn1, Mfn2, and Opa1, in the substantia nigra of saline- or MPTP-injected cynomolgus monkeys were 
identified using western blot analysis. Drp1 was used as the loading control for p-Drp1(S616). The data are presented as mean values±SD (n=2). **de-
notes p<0.01.
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saline group. These results suggested that Drp1-mediated abnor-
mal mitochondrial morphology involved CDK5 activation via 
elevated p35 and p25 levels.

DISCUSSION

Mitochondria are important organelles in PD, and dopaminergic 
neurons appear to be particularly sensitive to mitochondrial dys-
function. One of the possible reasons for such vulnerability is the 
lower basal level of mitochondria in dopaminergic neurons than 
in other midbrain neurons [46, 47]. Therefore, emphasis has been 
placed on maintaining mitochondrial function in dopaminergic 
neurons. The homeostasis of mitochondrial dynamics is not only 
associated with the maintenance of mitochondrial function, but 
also with an imbalance between mitochondrial fission and fusion, 
which can trigger dopaminergic neuronal loss [14, 15, 48]. Howev-
er, little is known regarding the molecular mechanisms underlying 
the mitochondrial dynamics in PD.

MPTP has been commonly used to induce stable PD in non-
human primates, with bilateral clinical features closely resembling 
idiopathic PD [35]. Therefore, we investigated the mechanisms 
of mitochondria dynamics in a non-human primate model of 
MPTP-induced PD. First, we confirmed the loss of dopaminergic 

neurons and an increase of neuroinflammation in the basal gan-
glia region of cynomolgus monkeys injected with MPTP using 
our own strategy based on global activity evaluation [38]. In this 
model of PD, mitochondrial fission as well as unusual mitochon-
drial distribution were observed in the MPTP group. In MPTP-
injected monkeys, mitochondria were located closer to the nucleus 
than was observed in the saline group. Mitochondrial distribution 
within the regions of high energy demand is critical for various 
functions, and impaired mitochondrial transport and distribution 
have been linked to abnormal neuronal synaptic functions as in 
PD [6, 49-53]. In addition, we found a decrease in the protein level 
of synaptophysin, a marker of synaptic number and function. Ac-
cordingly, we showed that mitochondrial distribution and synaptic 
function were disrupted in our experimental model. These find-
ings were consistent with those of earlier studies, which showed 
loss of dopaminergic synapses followed by substantia nigra cell 
bodies in mice treated with MPTP [54, 55]. 

Recent evidence has suggested that the balance between mi-
tochondrial fission and fusion is correlated with axonal mito-
chondrial transport and distribution [8, 14, 48, 56]. Although the 
mitochondrial fission process is essential for axonal mitochondrial 
transport and the degradation of damaged mitochondria [57, 
58], excessive mitochondrial fission is an early event of synaptic 

Fig. 4. The CDK5/p25 signaling 
pathway in the substantia nigra 
of MPTP-injected cynomolgus 
monkeys. (A) The protein levels 
of CDK5, p35, and p25, and (B) 
p-ERK in the substantia nigra 
of saline- and MPTP-injected 
cynomolgus monkeys were de-
termined using western blotting. 
ERK was used as the loading 
control for p-ERK. The data are 
presented as mean values±SD 
(n=2). *denotes p<0.05, **denotes 
p<0.01, and ***denotes p<0.001.
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degradation [59]. Furthermore, Drp1 activity has been closely as-
sociated with the fate of dopaminergic neurons [17, 18], and inhi-
bition of Drp1 activation attenuates disrupted synaptic function in 
diverse neurodegenerative models, including PD [16, 60, 61]. Our 
results indicated that excessive mitochondrial fission in MPTP-
induced PD in monkeys was accompanied by phosphorylation of 
Drp1(S616), which triggers Drp1 activation. These results are con-
sistent with other published results that an increase in Drp1(S616) 
phosphorylation is associated with various neurodegenerative dis-
eases involving dopaminergic neurons [18, 62, 63]. However, the 
precise molecular mechanisms of excessive mitochondria fission 
mediated by Drp1 phosphorylation in experimental PD models 
are still unclear.

CDK5 has been identified as a regulator of mitochondrial frag-
mentation during neuronal apoptosis by modulating Drp1 phos-
phorylation, and its suppression attenuates excessive mitochon-
drial fission leading to apoptosis [31, 32, 45]. However, the precise 
mechanism underlying the relationship between mitochondrial 
morphology and activated CDK5 in PD is not fully understood. 
Our findings indicated that Drp1(S616) phosphorylation was 
induced by CDK5 activation, which was accompanied by an in-
creased level of p35 and p25 in the substantia nigra of MPTP-in-
jected monkeys. On the other hand, another kinase of Drp1, ERK, 
remained unchanged after MPTP injection. Our results indicated 
that MPTP-induced CDK5 activation regulates mitochondrial 
fragmentation by modulating the phosphorylation of Drp1(S616). 
In PD, CDK5 hyperactivation is a classical pathology that is associ-
ated with loss of dopaminergic neurons in the substantia nigra [64]. 
Inhibition of CDK5 hyperactivation provides a neuroprotective 
effect in experimental PD models [65, 66]. Furthermore, hyperac-
tivation of CDK5 is involved in pre-synaptic loss, and ultimately 
neurodegeneration, by regulating neuronal actin cytoskeleton 
remodeling [67]. Therefore, our model of MPTP-induced PD in-
dicated that CDK5-mediated increase of Drp1 phosphorylation 
at the S616 residue may trigger mitochondrial fission, ultimately 
inducing dopaminergic neuronal loss in the substantia nigra.

Human PD symptoms were observed in our non-human pri-
mate model of MPTP-induced PD. However, the degree of physi-
cal response to MPTP varies according to each individual monkey. 
Therefore, we developed a new strategy for MPTP-induced chron-
ic PD, with consistent symptoms [38]. In this chronic PD model, 
we evaluated the molecular pathology more precisely, focusing on 
altered mitochondrial morphology, which is a marker of various 
genetic and pharmacological mechanisms of PD [68]. Thus, our 
model showed that CDK5-mediated increase of Drp1(S616) phos-
phorylation triggers mitochondrial fission, and ultimately induces 
dopaminergic neuronal loss in the substantia nigra. Therefore, in-

hibition of CDK5-relative signaling and excessive mitochondrial 
fission may provide therapeutic strategies. Altogether, our MPTP-
mediated non-human primate PD model reflects PD pathology 
with both behavioral symptoms and molecular mechanisms. 
Therefore, our findings could contribute to the development of 
therapeutic strategies.
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