
REVIEW ARTICLE
published: 15 March 2012

doi: 10.3389/fmicb.2012.00097

Role of humanTRIM5α in intrinsic immunity
Emi E. Nakayama andTatsuo Shioda*

Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan

Edited by:

Atsushi Koito, Kumamoto University,
Japan

Reviewed by:

Elisa Vicenzi, San Raffaele Scientific
Institute, Italy
Akatsuki Saito, Kyoto University,
Japan

*Correspondence:

Tatsuo Shioda, Department of Viral
Infections, Research Institute for
Microbial Diseases, Osaka University,
3-1, Yamada-oka, Suita, Osaka
565-0871, Japan.
e-mail: shioda@biken.osaka-u.ac.jp

Human immunodeficiency virus (HIV) has a very narrow host range. HIV type 1 (HIV-1)
does not infect Old World monkeys, such as the rhesus monkey (Rh). Rh TRIM5α was
identified as a factor that confers resistance, intrinsic immunity, to HIV-1 infection. Unfor-
tunately, human TRIM5α is almost powerless to restrict HIV-1. However, human TRIM5α

potently restricts N-tropic murine leukemia viruses (MLV) but not B-tropic MLV, indicating
that humanTRIM5α represents the restriction factor previously designated as Ref1. African
green monkeyTRIM5α represents another restriction factor previously designated as Lv1,
which restricts both HIV-1 and simian immunodeficiency virus isolated from macaque
(SIVmac) infection. TRIM5 is a member of the tripartite motif family containing RING, B-
box2, and coiled-coil domains. The RING domain is frequently found in E3 ubiquitin ligase,
and TRIM5α is thought to degrade viral core via ubiquitin–proteasome-dependent and -
independent pathways.The alpha isoform ofTRIM5 has an additional C-terminal PRYSPRY
domain, which is a determinant of species-specific retrovirus restriction by TRIM5α. On
the other hand, the target regions of viral capsid protein (CA) are scattered on the surface
of core. A single amino acid difference in the surface-exposed loop between α-helices 6
and 7 (L6/7) of HIV type 2 (HIV-2) CA affects viral sensitivity to human TRIM5α and was
also shown to be associated with viral load in West African HIV-2 patients, indicating that
human TRIM5α is a critical modulator of HIV-2 replication in vivo. Interestingly, L6/7 of CA
corresponds to the MLV determinant of sensitivity to mouse factor Fv1, which potently
restricts N-tropic MLV. In addition, human genetic polymorphisms also affect antiviral activ-
ity of humanTRIM5α. Recently, humanTRIM5α was shown to activate signaling pathways
that lead to activation of NF-κB and AP-1 by interacting withTAK1 complex.TRIM5α is thus
involved in control of viral infection in multiple ways.
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INTRODUCTION
The acquired immune response, both humoral and cellular immu-
nity, requires lymphocyte differentiation and education for effec-
tive protection of the host from invasive infection. It requires
priming and takes time. On the other hand, innate immunity
provides antiviral defenses that can be deployed more rapidly.
It does not require education, but most innate immune effec-
tors generally require intracellular and intercellular signaling
events, including receptor–ligand binding, adaptor protein phos-
phorylation, and interferon release from infected cells as well as
the interferon signaling pathway to induce an antiviral state in
bystander cells. Most toll-like receptors (TLRs), which play a criti-
cal role in pattern recognition of invaders, such as double-stranded
RNA, lipopolysaccharide (LPS), and CpG DNA, are expressed on
macrophages and dendritic cells.

Aside from these conventional immunological definitions,
many pieces of evidence provide a new concept of potent pro-
tection from viral infection designated as intrinsic immunity. It
is constitutively expressed and active in many cells, and does not
require any virus-triggered signaling or intercellular communi-
cation. The molecules involved in intrinsic immunity are called
restriction factors. Two major cellular defense mechanisms against
retrovirus infection are Fv1 and TRIM5α that target incoming

retroviral core and the Rfv3/APOBEC3 family that causes viral
genome hypermutation. This review focuses on the roles of Fv1
and TRIM5α in intrinsic and innate immunity.

THE PROTOTYPE RESTRICTION FACTOR Fv1
Mammalian cells show differences in susceptibility to retrovirus
infection. The idea that cellular genes could encode constitutive
inhibitors of retroviral replication was first suggested in genetic
studies of laboratory mice (Odaka and Yamamoto, 1965; Lilly,
1967). Susceptibility of mouse cells to murine leukemia virus
(MLV) infection is determined by a restriction factor called Fv1
(Lilly, 1970; Pincus et al., 1971, 1975). The virus resistance induced
by Fv1 is genetically dominant over susceptibility, and is evident in
cells in vitro (Goff, 2004). Two major allelic variants of Fv1, called
Fv1n and Fv1b, were shown to restrict infection by specific strains
of MLV (Pincus et al., 1971). The Fv1b allele present in BALB/c
mice blocks infection by so-called N-tropic MLV (N-MLV). The
Fv1n allele present in NIH/Swiss mice blocks infection by B-tropic
MLV (B-MLV). NB-tropic viruses are blocked by neither Fv1b

nor Fv1n (Hartley et al., 1970). A less common third allele, Fv1nr,
restricts B-MLVs and certain strains of N-MLV (Kozak, 1985). N-
MLVs that are not restricted by Fv1nr are called NR-tropic MLVs
(Jung and Kozak, 2000; Stevens et al., 2004). The inhibition of a
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particular virus infection could be abrogated by prior or simul-
taneous infection by other virus particles. Abrogating particles
themselves do not need to be infectious, but they do need to be
derived from a restrictive viral strain (Bassin et al., 1978; Boone
et al., 1990). These data indicated that Fv1 encodes a unique
inhibitor that targets the incoming viral capsid but could be sat-
urated and overwhelmed by simultaneous challenge by multiple
virion particles.

The Fv1 gene was successfully isolated by a positional cloning
strategy (Best et al., 1996). The Fv1 gene product is a retroviral
Gag-like protein, with sequence similarity to the HERV-L family
of endogenous retroviral DNAs in the human genome, and to the
MuERV-L family in the mouse (Benit et al., 1997). The B and N
alleles differ in positions 358 and 399 and the C-terminal portion,
all of which seem to contribute to the phenotype (Bock et al., 2000;
Bishop et al., 2001). Fv1nr is identical to Fv1n, except for a single
point mutation at position 352 (Stevens et al., 2004). A predicted
coiled-coil region containing a dimerization domain is located in
the N-terminus, and there is a second multimerization domain in
the C-terminal half of the molecule (Yap and Stoye, 2003; Bishop
et al., 2006). It is likely that multimerization is important for Fv1
function.

Infection of non-permissive cells by a restricted virus is blocked
after reverse transcription. The virus enters the cell and syn-
thesizes the viral cDNA by reverse transcription, but the DNA
does not enter the nucleus and integrated proviral DNAs are not
found (Pryciak and Varmus, 1992; Figure 1). Genetic studies have
shown that the viral target of Fv1 is the MLV capsid protein (Des-
Groseillers and Jolicoeur, 1983) and subsequent work identified
position 110 as the major determinant of susceptibility to Fv1
restriction (Kozak and Chakraborti, 1996). B-MLV has a gluta-
mine (Q) at this position, and N-MLV has an arginine (R). More
recently, many other residues in CA have been implicated in NB-
and NR-tropism (Jung and Kozak, 2000; Stevens et al., 2004).
Direct allele-specific binding between Fv1 and MLV CA has not

been observed. Most recently, Hilditch et al. (2011) developed a
method for the ordered assembly of MLV CA protein on the sur-
face of lipid nanotubes and succeeded in showing specific binding
between Fv1 and MLV CA protein. However, the mechanism of
action remains unclear.

Fv1 LIKE RESTRICTION FACTORS
Cells from several mammalian species, including humans, acted as
if they were homozygous for Fv1b in that they specifically resisted
N-MLV infection (Towers et al., 2000). In humans, the postulated
inhibitor was designated as Ref1 (for restriction factor 1) and the
same capsid residue at the 110th position that controlled sensitiv-
ity to Fv1 also controlled sensitivity to Ref1 (Towers et al., 2000).
The equine infectious anemia virus (EIAV) was also restricted in
human cells, and this was abrogated by both EIAV itself and N-
MLV particles (Towers et al., 2002). As analysis of the human
genome revealed no intact Fv1 like endogenous retroviral Gag
sequences that seemed likely to be responsible for Fv1 like activity
(Best et al., 1996), Ref1 was thought to be independent from Fv1.
Interest in these restriction systems increased markedly with the
finding that several non-human primates restrict human immun-
odeficiency virus type 1 (HIV-1; Shibata et al., 1995; Himath-
ongkham and Luciw, 1996) in a saturable manner (Hofmann et al.,
1999; Towers et al., 2000). HIV-1 infects humans and chimpanzees
but not Old World monkeys (OWMs), such as rhesus monkey (Rh)
and cynomolgus monkey (CM). HIV-1 efficiently enters cells of
OWMs but encounters a block before reverse transcription, and
the resistance is dominant over sensitivity in human–monkey het-
erokaryons (Cowan et al., 2002; Munk et al., 2002). The gene
responsible was named Lv1, for lentivirus restriction factor 1. Sev-
eral primate species were shown to restrict a broader or different
range of viruses than just HIV-1. African green monkey (AGM)
cells, for example, restrict HIV-1, HIV-2, EIAV, and simian immun-
odeficiency virus isolated from macaque (SIVmac; Besnier et al.,
2002; Hatziioannou et al., 2003).

FIGURE 1 | Proposed models ofTRIM5α and Fv1 restriction pathways.

(Left) Proteasome-dependent and -independent pathways of
TRIM5α-mediated human immunodeficiency virus (HIV) restriction in
monkey cells. 1. Ubiquitin–proteasome-dependent pathway. Oligomerized
TRIM5α recognizes the incoming HIV-1 core. Subsequently, TRIM5α is
polyubiquitinated, and ubiquitinated TRIM5α along with HIV-1 core

complex are degraded in the proteasome (bold red arrow). 2.
Proteasome-independent pathway. Direct binding of TRIM5α with HIV-1
core causes destruction of the viral core without any cellular factors (thin
red arrow). (Right) Fv1 inhibits nuclear transport of pre-integration complex
of murine leukemia virus (MLV). The precise mechanism of Fv1-mediated
restriction is unclear.
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In 2004, the screening of a Rh cDNA library identified TRIM5α

as a cellular antiviral factor (Stremlau et al., 2004; Figure 1). Rh
TRIM5α shows strong restriction of HIV-1, is less effective against
SIVmac and N-MLV, and does not restrict B-MLV (Hatziioannou
et al., 2004; Stremlau et al., 2004). CM TRIM5α restricts HIV-1
but not SIVmac (Nakayama et al., 2005). Human TRIM5α shows
little restriction of HIV-1, has a slight effect against SIVmac, and
is potently restrictive against N-MLV but shows no effect on B-
MLV. It is now widely accepted that human TRIM5α represents the
restriction factor Ref1 (Hatziioannou et al., 2004; Keckesova et al.,
2004; Perron et al., 2004; Yap et al., 2004). On the other hand, AGM
cells have been shown to possess Lv1, which restricts HIV-1, HIV-
2, N-MLV, EIAV, and SIVmac infection, and our group and others
identified the factor as AGM TRIM5α (Hatziioannou et al., 2004;
Keckesova et al., 2004; Nakayama et al., 2005). AGM TRIM5α fails
to restrict SIV isolated from AGM (SIVagm) and B-MLV (Song
et al., 2005b; Figure 2). It is now known that type I interferon
upregulates the transcription of TRIM5α in human (Asaoka et al.,
2005) and monkey cells (Carthagena et al., 2008), and this in turn
enhances restriction activity against N-MLV (Sakuma et al., 2007a;
Carthagena et al., 2008).

TRIM5α
TRIM5α is a member of the tripartite motif family containing
RING, B-box2, and coiled-coil domains (Figure 3). The RING
domain is frequently found in E3 ubiquitin ligase and TRIM5α

degrades incoming viral core via the ubiquitin–proteasome-
dependent (Stremlau et al., 2006) and -independent pathways
leading to potent suppression of HIV-1 reverse transcription
(Anderson et al., 2006; Wu et al., 2006; Maegawa et al., 2010; Kim

et al., 2011; Figure 1). The levels of HIV-1 late reverse transcription
products recovered in the presence of the proteasome inhibitor
MG132. However, the resultant HIV-1 cDNA still could not enter
the nucleus, suggesting the presence of a proteasome-independent
pathway of HIV-1 restriction. The distinct molecular mechanism
of the proteasome-independent pathway has yet to be elucidated.
TRIM5α has been shown to form a dimer via the coiled-coil region
(Kar et al., 2008; Langelier et al., 2008), while the B-box2 domain
mediates higher-order self-association of Rh TRIM5α oligomers
(Li and Sodroski, 2008; Diaz-Griffero et al., 2009; Ganser-Pornillos
et al., 2011). The α-isoform of TRIM5 has an additional C-terminal
PRYSPRY (B30.2) domain. The sequence variations in variable
regions of the PRYSPRY domain among different monkey species
affect species-specific retrovirus infection, while differences in
amino acid sequences in the viral capsid protein determine viral
sensitivity to restriction (Nakayama and Shioda, 2010). TRIM5α

recognizes the multimerized capsid (viral core) of an incoming
virus by its PRYSPRY domain and is thus believed to control
retroviral infection. Biochemical studies have shown that TRIM5α

associates with CA in detergent-stripped N-MLV virions (Sebast-
ian and Luban, 2005) or with an artificially constituted HIV-1 core
structure composed of the capsid–nucleocapsid (CA–NC) fusion
protein in a PRYSPRY domain-dependent manner (Stremlau et al.,
2006). The PRYSPRY domain is thus thought to recognize viral
cores.

Studies on human and Rh recombinant TRIM5αs have shown
that the determinant of species-specific restriction against HIV-1
infection resides in variable region 1 (V1) of the PRYSPRY domain
(Perez-Caballero et al., 2005; Sawyer et al., 2005). We found that 17
amino acid residues and the adjacent 20-amino acid duplication

FIGURE 2 | Species-specific restriction byTRIM5α. “Yes” denotes
restriction. “Weak” denotes weak restriction. “No” denotes no restriction.
“N. D.” denotes no result has yet been published. P and Q/A indicate human
immunodeficiency virus type 2 (HIV-2) with proline and glutamine/alanine
residues at position 120 of the capsid protein, respectively (Song et al., 2007).
HIV-1: human immunodeficiency virus type 1 (Yap et al., 2004; Song et al.,
2005a; Stremlau et al., 2005); SIVmac: simian immunodeficiency virus
isolated from a macaque; SIVsm: simian immunodeficiency virus isolated
from sooty mangabey (Kirmaier et al., 2010); N-MLV: N-tropic murine leukemia
virus (Ohkura et al., 2006); B-MLV: B-tropic murine leukemia virus (Ohkura

et al., 2006); AGM: CV1 (Nakayama et al., 2005); or Vero cells (Kim et al., 2011)
from African green monkey. Rhesus monkey TFP and Q alleles (Stremlau
et al., 2004; Ylinen et al., 2005; Ohkura et al., 2006; Kono et al., 2008; Wilson
et al., 2008a; Kirmaier et al., 2010), cynomolgus monkey (Nakayama et al.,
2005; Song et al., 2007), owl monkey TRIMCyp (Nisole et al., 2004; Sayah
et al., 2004; Virgen et al., 2008), pig-tailed monkey TRIMCyp (Brennan et al.,
2008; Virgen et al., 2008; Kuang et al., 2009), rhesus monkey TRIMCyp
(Wilson et al., 2008b; Kirmaier et al., 2010), and the major and minor
haplotypes of CM TRIMCyp (TRIMCypDK and TRIMCypNE, respectively;
Ylinen et al., 2010; Dietrich et al., 2011; Saito et al., 2012) are also included.

www.frontiersin.org March 2012 | Volume 3 | Article 97 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Virology/archive


Nakayama and Shioda Human TRIM5α and immunity

in the V1 of AGM TRIM5α determined species-specific restric-
tion against SIVmac (Nakayama et al., 2005). Interestingly, a study
comparing human and Rh TRIM5α showed that a single amino
acid change from R to proline (P) at position 332 in the V1
of human TRIM5α (R332P) conferred potent restriction ability
against not only HIV-1 but also SIVmac strain 239 (SIVmac239;
Stremlau et al., 2005; Yap et al., 2005). In the case of human
immunodeficiency virus type 2 (HIV-2) infection, we found that
three amino acid residues of threonine, phenylalanine, and proline
(TFP) at positions 339–341 of Rh TRIM5α V1 are important for
restricting particular HIV-2 strains that are still resistant to CM
TRIM5α (Kono et al., 2008).

Furthermore, a comparison of human and Rh TRIM5α restric-
tion of N-MLV showed that the amino acid residues of human
TRIM5α at positions 409 and 410 in variable region 3 (V3) of the
PRYSPRY domain are important for restricting N-MLV (Perron
et al., 2006).

TRIM5α ON VIRAL PRODUCTION
Sakuma et al. (2007b) reported that Rh but not human TRIM5α

blocks HIV-1 production through rapid degradation of HIV-1 Gag
polyproteins. They reported that the RING structure was essen-
tial for this activity. Subsequently, Zhang et al. (2008) at Aaron
Diamond AIDS Research Center argued against this new path-
way of TRIM5α-mediated restriction. Both groups found reduced
HIV-1 Gag expression when they cotransfected high levels of Rh
TRIM5α expression plasmid (1 μg) with HIV-1 proviral plasmids
(0.1 μg) in 293T cells. However, Zhang et al. did not observe
increased yield of virus production from TRIM5α knockdown
Rh FRhK4 cells, even though they succeeded in almost complete
knockdown of endogenous Rh TRIM5α by siRNA transfection as
shown by Western blotting analysis. They transfected siRNA first
and then transfected siRNA again together with plasmid express-
ing HIV-1 24 h later. In contrast, Sakuma et al. (2007b) showed
increased levels of Gag precursor protein in cell lysates and 10-fold
increased virus titers in the culture supernatant of siRNA-treated
FRhK4 cells, in which TRIM5 mRNA was knocked down by siRNA.
The results of these two studies were inconsistent, although both

FIGURE 3 | Domains of humanTRIM5α and single nucleotide

polymorphisms (SNPs). The RING (R), B-box2 (B), coiled-coil (CC), and
PRYSPRY domains of human TRIM5α are indicated by squares.
Polymorphisms are shown outside the squares. Downward and upward
arrows show common and rare SNPs, respectively. SNPs discussed in this
review are shown in bold.

groups clearly showed TRIM5 knockdown in the same cell line.
In the author reply to Zhang et al., Sakuma et al. (2008) suggested
that the discrepancies in the results were due to differences in
the method of siRNA transfection, in that they transfected HIV-1
plasmid first and siRNAs were transfected 6 h later. However, it is
still unclear why the different transfection protocols led to differ-
ent results in HIV-1 production even though both methods led
to complete knockdown of TRIM5α expression. We feel that the
importance of late-phase inhibition by Rh TRIM5α is limited, as it
is widely accepted that Rh TRIM5α potently inhibits HIV-1 infec-
tion at the early phase before HIV-1 particle production (Stremlau
et al., 2004, 2006). Consistent with this, Uchil et al. (2008) ana-
lyzed 55 TRIM family proteins along with Rh TRIM5α but failed
to find an inhibitory effect of Rh TRIM5α on the late-phase of
HIV-1 infection, while they did detect a potent inhibitory effect of
Rh TRIM5α on the early phase of HIV-1 infection.

Sakuma et al. (2010) speculated that the species specificity for
late-phase infection was determined by the coiled-coil region, as
introduction of human TRIM5α-specific amino acid residues to
Rh TRIM5α, M113T, and/or T146A, abrogated late-phase inhibi-
tion activity of Rh TRIM5α, while chimeric Rh TRIM5α contain-
ing PRYSPRY of human TRIM5α still inhibited HIV-1 production.
On the other hand, the same group showed that the effects of
CM and AGM TRIM5α on viral production were lower than that
of Rh TRIM5α (Ohmine et al., 2011), consistent with the fact
that AGM derived COS7 cells were widely used to recover HIV-1
stock by transfection with proviral plasmid. The experiment of
chimeric TRIM5α showed that the C-terminal halves of CM and
AGM TRIM5α are responsible for the weakened late-phase inhi-
bition, in contrast to chimeric TRIM5α between Rh and human
described above. Finally, Zhang et al. (2010) at Hokkaido Univer-
sity confirmed that human TRIM5α used in the first study had no
effect on HIV-1 production and demonstrated that this human
TRIM5α contained R437C substitution at the PRYSPRY domain.
R437C substitution was not found in the NCBI single nucleotide
polymorphism (SNP) database. In addition, they found that a
human TRIM5α with authentic R at position 437 reduced HIV-1
production to the same extent as Rh TRIM5α in the high-dose
cotransfection experiments (Zhang et al., 2010), consistent with
the findings of Zhang et al. (2008). Furthermore, Zhang et al.
(2008) found that high-level expression of Rh TRIM5α reduced
production of virus with CA derived from SIVmac, while the first
and third groups did not. The species specificity of the inhibition
of viral production by TRIM5α is therefore controversial.

VIRAL DETERMINANT OF TRIM5α SENSITIVITY
To determine the CA region that interacts with TRIM5α, we
focused on HIV-2, which highly resembles SIVmac (Hahn et al.,
2000). Previous studies have shown that HIV-2 strains vary widely
in their ability to grow in OWM cells such as baboon, Rh, and
CM cells (Castro et al., 1990, 1991; Locher et al., 1998, 2003;
Fujita et al., 2003), and HIV-2 isolates with various growth capa-
bilities in OWM cells were evaluated for their sensitivity to CM
TRIM5α (Song et al., 2007). We found that viral sensitivity to CM
TRIM5α was inversely correlated with growth capability in OWM
cells. Sequence analysis showed that the CM TRIM5α-sensitive
viruses had proline (P) at position 119 or 120 of CA, while the CM

Frontiers in Microbiology | Virology March 2012 | Volume 3 | Article 97 | 4

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Virology
http://www.frontiersin.org/Virology/archive


Nakayama and Shioda Human TRIM5α and immunity

TRIM5α-resistant viruses had either alanine (A) or glutamine (Q)
at the same position (Figure 4). Replacing the P of a CM TRIM5α-
sensitive HIV-2 molecular clone with A, Q, or glycine (G) changed
the phenotype from sensitive to resistant and the mutant viruses
replicated well in the presence of CM TRIM5α (Song et al., 2007;
Miyamoto et al., 2011). Similar results, although to a lesser extent,
were observed when human TRIM5α was used (Song et al., 2007).
In the case of Rh TRIM5α, multiple regions of CA including the
N-terminal region, L4/5, and amino acid 120 were shown to affect
recognition by Rh TRIM5α (Ylinen et al., 2005; Lin and Emerman,
2008; Kono et al., 2010; Pacheco et al., 2010; Ohkura et al., 2011).

Positions 119 and 120 are located in the loop between α-helices
6 and 7 (L6/7; Figure 5). Previously, a single amino acid substitu-
tion at position 110 of MLV CA had been shown to determine viral
susceptibility to Fv1 (Kozak and Chakraborti, 1996). The recently
published 3-D structure of MLV CA (Mortuza et al., 2004, 2008)

revealed that position 110 of N-MLV CA is located at a position
in the surface-exposed loop analogous to position 119 or 120 of
HIV-2 CA. HIV-2 is assumed to have originated from SIV iso-
lated from sooty mangabey (SIVsm) as a result of zoonotic events
involving monkeys and humans (Hahn et al., 2000). Almost all the
SIV isolates in the Los Alamos database contain Q at the position
corresponding to position 119 or 120 of HIV-2 CA (Figure 4). In
contrast, HIV-2 strains possess a mixture of Q, A, and P at the
corresponding position.

Does amino acid residue at position 119 or 120 in HIV-2 CA
affect HIV diseases in infected individuals? It is known that HIV-1
and HIV-2 have distinct natural histories, levels of viremia, trans-
mission rates, and disease associations despite strong sequence
homology between the two viruses (Rowland-Jones and Whittle,
2007). Although some HIV-2-infected patients progress to AIDS as
rapidly as HIV-1-infected patients, virus replication is controlled

FIGURE 4 | Amino acid variation in HIV-2/SIV capsid (CA). (Upper) A
phylogenetic tree of amino acid sequences of capsid of the HIV-2 (shaded
area) or SIV isolates obtained from the Los Alamos database. P, Q, A, and G
indicate amino acid residue 120 of GH123 or the corresponding position of

each virus. (Lower) Filled arrows indicate the possible evolution of amino acid
residue 120 of SIV or HIV-2 capsid proteins in humans (shaded area). Open
arrows indicate the effects on viral load. Boxes show the codons of glutamine
(Gln, Q), proline (Pro, P), alanine (Ala, A), and glycine (Gly, G).
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FIGURE 5 | Human immunodeficiency virus (HIV)-1/-2 capsid sequence

variations and epitopes of cytotoxicT lymphocytes (CTL). The amino acid
sequences of the NL4-3 CA (amino acids 85–140) and GH123 CA (amino acids
82–140) are shown. The loop between α-helices 4 and 5 (L4/5) and the loop
between α-helices 6 and 7 (L6/7) are underlined. The CTL epitopes are
indicated in pink (TW10), sky blue (KK10), and green (NY9). Amino acid

residues that are commonly mutated and were mentioned in this review are
indicated. The amino acid residues are numbered both according to the amino
acid residues in CA and the whole Gag precursor polyprotein (numbers in
parentheses). Cyclophilin A (CypA) catalyzes the 90th proline residue of HIV-1
CA, and alanine residue at the 88th position is critical for CypA binding (Price
et al., 2009).

in the majority of HIV-2 patients (Poulsen et al., 1989; Berry et al.,
2001) and those with low viral load (VL) achieve much longer
survival than those with high VL (Ariyoshi et al., 2000). Detailed
sequence analysis of HIV-2 CA variations within a large commu-
nity cohort in Guinea-Bissau comprised of both high- and low-VL
patients indicated that CA from viruses in low-VL patients had P
residues at position 119 or 120, but in patients with higher VL,
position 119 or 120 was frequently occupied by non-P residues.
Stratification of the subjects according to the presence or absence
of P at position 119 or 120 showed a threefold difference in the
median VL of the two groups. These results indicated that HIV-2
replication in infected individuals can be linked to CA variation
and human TRIM5α sensitivity (Onyango et al., 2010).

CTL ESCAPE, DRUG RESISTANCE, COMPENSATORY
MUTATION, AND TRIM5α RESISTANCE
Recently, Leligdowicz et al. (2010) reported that HLA-B∗3501
was associated with HIV-2 with P at position 119 or 120 in the
community cohort in Guinea-Bissau. The cytotoxic T cell (CTL)
NY9-epitope (NPVPVGNIY) was located two amino acids down-
stream of position 119 or 120. It is thus possible that viruses
were forced to change Q to P at position 119/120 to escape from
HLA-B∗3501-specific immune response, even though the virus
became more sensitive to human TRIM5α due to this substitution
(Figure 5). After transmission to individuals lacking HLA-B∗3501,
viruses may have evolved from the P virus to become more resis-
tant to human TRIM5α (Figure 4). Moreover, several patients
with HIV-2 that had a high VL and developed AIDS rapidly have
recently been identified in Japan. Sequence analysis of viruses iso-
lated from these patients indicated that they carried G at position
119 or 120. The selection pressure for G substitution is not clear at
present but it is worth noting that G was found only in clade A/B
recombinants (Ibe et al., 2010).

In the case of HIV-1, Kootstra et al. proposed that a histidine
(H)-to-Q substitution at position 87 (H87Q; H219Q in Gag) was
a result of escape from human TRIM5α, as the H87Q mutation
occurred in 7 of 30 HIV-1-infected individuals in the late-phase
of the asymptomatic period and ultimately became the domi-
nant virus population. They also showed that H87Q mutation was

associated with resistance to human TRIM5α-mediated inhibition
(Kootstra et al., 2007), although the restriction activity of human
TRIM5α is much weaker than that of monkey TRIM5α. H87Q
mutation was previously observed in HIV-1 variants isolated from
HLA-B57-positive individuals. In these individuals, escape muta-
tions in the HLA-B57-restricted CTL epitope TW10 (Figure 5)
were observed and it was suggested that H87Q was a compensatory
mutation to restore replicative capacity of the otherwise attenu-
ated phenotype of the TW10 escape mutant (Leslie et al., 2004).
Amino acid residue 87H is located in the L4/5 and H87Q muta-
tion reduces incorporation of cyclophilin A (CypA) into HIV-1
virions (Gatanaga et al., 2006). H87Q was also observed in pro-
tease inhibitor-resistant viruses (Gatanaga et al., 2002) as well
as non-nucleoside reverse transcriptase inhibitor-resistant viruses
(Ibe et al., 2008). It remains to be elucidated whether mutations
in CTL escape or drug-resistant viruses and compensatory muta-
tions in revertant viruses affect viral sensitivity to human TRIM5α.
From this point of view, Battivelli et al. (2011) recently reported
that some Gag CTL escape mutations indeed increased sensitivity
to human TRIM5α. In addition to the H87Q mutation, valine (V)-
to-A or V-to-P at position 86, I-to-H or I-to-V at position 91, and
A-to-P at position 92 were frequently found in the CypA bind-
ing site of HIV-1 in infected individuals, resulting in decreased
binding affinity to CypA (Figure 5). Furthermore, Pacheco et al.
(2010) adapted HIV-1 to cells expressing Rh TRIM5α and found
that a mutant with V-to-M at position 86 showed reduced affinity
for Rh TRIM5α but retained the ability to bind CypA efficiently.
The relationship between CypA binding and TRIM5α sensitivity
should also be evaluated.

POLYMORPHISMS IN THE HUMAN TRIM5 GENE
Human immunodeficiency virus-1 infection in humans is gener-
ally characterized by a long-term chronic disease course gradually
progressing to AIDS. Polymorphisms in human CCR5 and other
genes have been reported to affect susceptibility to HIV-1 trans-
mission and/or the rate of disease progression to AIDS (O’Brien
and Nelson, 2004; Shioda and Nakayama, 2006). Sawyer et al.
(2006) reported a common H-to-tyrosine (Y) polymorphism at
amino acid residue 43 (H43Y, rs3740996) of the human TRIM5
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gene. This SNP is located in the RING domain (Figure 3) and was
shown to greatly reduce the ability of TRIM5α to restrict N-MLV
(Sawyer et al., 2006). Several studies have indicated that the anti-
HIV-1 activity of TRIM5α with 43Y was lower than that with 43H
in vitro (Javanbakht et al., 2006; Sawyer et al., 2006; Nakayama
et al., 2007), although the difference in anti-HIV-1 activity was
very small.

Associations of H43Y with the rate of progression to AIDS have
been tested in several studies, but with inconsistent results (Javan-
bakht et al., 2006; Speelmon et al., 2006; Nakayama et al., 2007; van
Manen et al., 2008). Despite the lower anti-N-MLV and anti-HIV-
1 activities of TRIM5α with 43Y (Sawyer et al., 2006), Javanbakht
et al. (2006) reported a paradoxical protective effect of TRIM5α

with 43Y against HIV-1 transmission in African-Americans. Inter-
estingly, we also found that the 43Y-allele was found less frequently
in Japanese and Indian HIV-1-infected subjects than in ethnicity-
matched controls (Nakajima et al., 2009). Furthermore, Liu et al.
(2011) reported that the frequency of H43Y homozygotes was
higher in seronegative intravenous drug users than in HIV-infected
drug users. The reasons for the discrepancy between the epidemio-
logical and functional effects of H43Y remain unclear, and further
studies are required to clarify the impact of H43Y on suscepti-
bility to HIV-1 transmission and/or rate of progression to AIDS.
H43Y polymorphism was frequently found in humans but not in
monkey species (Johnson and Sawyer, 2009).

In the B-box2 domain, we recently found a novel and rare G-to-
R substitution at position 110 of TRIM5α (G110R, rs146215995)
in Japan, and this 110R allele was observed more frequently in
HIV-1-infected subjects than in controls. As observed epidemi-
ologically, this substitution weakened the anti-HIV-1 and anti-
HIV-2 activity in vitro (Nakajima et al., 2009). Price et al. (2010)
sequenced exon 2 of the TRIM5 gene in 1032 women enrolled in
a long-term monitored Pumwani sex worker cohort, and found
that women with the R136Q polymorphism (rs10838525) were
less likely to seroconvert despite heavy exposure to HIV-1 through
active sex work. The B-box2 domain is important for higher-order
multimerization, which is required to form the hexagonal struc-
ture to stabilize the interaction between TRIM5α and the capsid
(Ganser-Pornillos et al., 2011). It is likely that R136Q substitution
affects higher-order multimerization.

Position 332 in the V1 region of the PRYSPRY domain is criti-
cal for species-specific recognition of capsid by TRIM5α (Stremlau
et al., 2005; Yap et al., 2005). There is no human SNP in this region
except for a rare null allele 332X (Figure 3). Torimiro et al. reported
that 332R changed to a stop codon in Baka pygmies at an allele
frequency of 0.02. This rare allele encoded a truncated form of
TRIM5α lacking part of the PRYSPRY domain and showed a dom-
inant negative effect against authentic TRIM5α in vitro (Torimiro
et al., 2009). These findings suggest that anti-HIV-1 activity of
human TRIM5α may affect HIV-1 transmission although it can
hardly protect humans from an HIV-1 pandemic.

EVOLUTION OF THE TRIM5 GENE
TRIM5 homologs have been found in the genomes of primates,
mice, rats, rabbits, dogs, cows, and pigs, but not in chickens (Sawyer
et al., 2007; Schaller et al., 2007; Tareen et al., 2009). TRIM5
homolog genes are found in several copies in cows, rats, and

FIGURE 6 |TRIM5α andTRIMCyp. (A) Diagram indicating splicing of
TRIM5α or TRIMCyp in New World monkey (NWM) and Old World monkeys
(OWMs). Non-coding and coding exons and cyclophilin A (CypA) sequences
are shown in gray, black, and red, respectively. (B) The RING (R), B-box2 (B),
coiled-coil (CC), PRYSPRY, and CypA domains of TRIM5α and TRIMCyp
proteins are indicated by squares.

mice, but the human genome contains only a single copy of the
TRIM5 gene, and the canine homolog is inactivated by a trans-
poson (Johnson and Sawyer, 2009). TRIM5 mRNA expressed in
cat cells lacks the PRYSPRY domain (McEwan et al., 2009). No
antiviral activity against eight retroviruses, i.e., HIV-1, SIVmac,
EIAV, N-MLV, B-MLV, NB-MLV, feline immunodeficiency virus
(FIV), and Mason-Pfizer monkey virus, has been reported for the
mouse TRIM5 homologs (TRIM12 and TRIM30; Tareen et al.,
2009) and mouse TRIM30 targets TAK1-binding protein (TAB) 2
for degradation (Shi et al., 2008).

The TRIM5 gene sequence varies considerably among primate
species. The distribution of positively selected amino acid site is
located in the PRYSPRY domain and coiled-coil domains (Sawyer
et al., 2005; Song et al., 2005a; Newman et al., 2006). It is not sur-
prising that the beginning of the PRYSPRY domain (V1) is highly
variable because TRIM5α interacts with several different retrovi-
ral cores through this region, as discussed above. Interestingly, in
Rh, there is a 339-threonine–phenylalanine–proline (TFP)-341-
to-Q polymorphism in TRIM5α (Newman et al., 2006), which
reduces the anti-HIV-2 (Kono et al., 2008) and anti-SIVsm (Kir-
maier et al., 2010) activity. In the case of SIVsm challenge in vivo,
Rh TRIM5αTFP/TFP homozygotes markedly diminished viral repli-
cation compared to Rh TRIM5αQ/Q homozygotes (Kirmaier et al.,
2010; Reynolds et al., 2011; Yeh et al., 2011). Position 332 in
human TRIM5α is arginine (R). Kaiser et al. (2007) showed that a
4-million-year-old endogenous retrovirus from the chimpanzee
genome (ptERV1) was suppressed by chimpanzee and human
TRIM5α bearing R at position 332 but not gorilla, gibbon, or
orangutan TRIM5α bearing Q at the same position. Although
Perez-Caballero et al. (2008) failed to reproduce the sensitivity of
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ptERV1 to human TRIM5α, the main positive selection pressure
for TRIM5α is likely to be endogenous retroviruses.

Among New World monkeys, owl monkeys possess CypA as
a fusion protein with TRIM5 (TRIMCyp) as a result of LINE-1-
mediated retrotranspositional insertion in addition to the authen-
tic CypA (Nisole et al., 2004; Sayah et al., 2004; Figure 6). CypA
can bind to the CA of HIV-1, so that the TRIMCyp expressed in
owl monkey cells recognizes the HIV-1 core and shows an anti-
HIV-1 effect. Retrotransposition of CypA into the TRIM5 gene
also occurred independently in OWM, an ancestor of Rh, CM
and the pig-tailed monkey (PM; Brennan et al., 2007; Newman
et al., 2008; Virgen et al., 2008; Wilson et al., 2008b; Kuang et al.,
2009; Figure 6). Dietrich et al. and our group also found major
and minor haplotypes of CM TRIMCyp with SNPs in the CypA
domain. The major haplotype of CM TRIMCyp bears aspartic acid
(D) and lysine (K) at positions 66 and 143 of the CypA domain,
respectively. In contrast, the minor haplotype of CM TRIMCyp
encodes asparagine (N) and glutamic acid (E) at positions 66 and
143, respectively (Dietrich et al., 2011; Saito et al., 2012). N66 and
E143 were also found in PM and Rh TRIMCyps, and the CypA
portion of the minor haplotype of CM TRIMCyp has the same
amino acid sequence as that of Rh TRIMCyp. Rh, PM, and minor
haplotype of TRIMCyp restrict infection of HIV-2, SIVsm, and
FIV, but not HIV-1 or SIVmac, while the major haplotype of CM
TRIMCyp restricts infection by HIV-1 but not HIV-2 or SIVmac

(Brennan et al., 2007; Virgen et al., 2008; Wilson et al., 2008b;
Kuang et al., 2009; Dietrich et al., 2011; Saito et al., 2012; Figure 2).
As we reviewed recently, genotyping of the monkey TRIM5 gene is
important to control animal experiments (Nakayama and Shioda,
2012).

TRIM5α AND TAK1 COMPLEX
Ovyannikova et al. genotyped healthy children receiving rubella-
containing vaccine for 14 candidate genes, including TLR3, TLR4,
RIG-I, TRIM22, and TRIM5. They measured 6 interleukins, INF-
γ, TNF-α, and GM-CSF secretion levels in peripheral blood
mononuclear cell culture before and after rubella virus stimula-
tion. An allelic dose-related decrease was observed between H43Y
of TRIM5 and TNF-α secretion in response to stimulation, as the
medians of 553 HH homozygotes, 131 HY heterozygotes, and 8
YY homozygotes were 34.7 pg/ml (IQR: −3.6 to 95.6), 16.2 pg/ml
(IQR: −15.1 to 65.9), and −13.8 pg/ml (IQR: −37.5 to 61.5),
respectively. They concluded that TRIM5 gene polymorphism
could influence adaptive cytokine responses to rubella vaccination
(Ovsyannikova et al., 2010).

How does TRIM5α affect immunological response against
non-retroviruses? There have been several reports that TRIM5α

has additional activities that are uncoupled from retroviral cap-
sid recognition (Pertel et al., 2011; Tareen and Emerman, 2011).
The observation that mouse TRIM30, one of the mouse TRIM5

FIGURE 7 | Cellular factors involved in toll-like receptor (TLR)

4-mediated innate signaling and possible involvement of human

TRIM5α in HIV-1 infection. Upon lipopolysaccharide (LPS) stimulation,
TLR4 recruits tumor necrosis factor receptor-associated factor 6 (TRAF6) to
activate the TGF-β-activated kinase 1 (TAK1) complex (TAK1, TAK1-binding
protein (TAB) 2 and TAB3) for NF-κB (p50/RelA heterodimer) activation.
TRAF6 is polyubiquitinated by the ubiquitin-conjugating enzyme
UBC13–UEV1A. TRIM5α is ubiquitinated by UbcH5B (Xu et al., 2003), but
the recognition of HIV-1 core by human TRIM5α and proteasomal

degradation (dotted arrow in red) cannot inhibit HIV-1 integration into the
human genome. When human TRIM5α recognizes an invasive pathogen
(dotted arrow in black), human TRIM5α catalyzes the synthesis of
unattached K63-linked ubiquitin chains that activate the TAK1 complex
(Pertel et al., 2011). On the other hand, TAB2 is degraded by human
TRIM5α (dotted arrow in green; Tareen and Emerman, 2011). Activation of
IRF3 and NF-κB-dependent gene expression causes both (+) positive
status favorable for viral replication and (−) negative status suppressive for
viral replication in macrophages and T cells.
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homologs described above, inhibits NF-κB activation by target-
ing TLR4 signaling intermediates TAB2 and TAB3 for lysosome-
mediated degradation (Shi et al., 2008) prompted Tareen and
Emerman (2011) to evaluate the interaction between TRIM5α and
TAB2. They showed that human TRIM5α was able to decrease
the expression levels of human, mouse and Rh TAB2, while
Rh TRIM5α was unable to affect the levels of either Rh or
human TAB2 (Tareen and Emerman, 2011). Using an NF-κB-
inducible luciferase reporter gene, they assessed the effects of
overexpressing human or Rh TRIM5α in 293T cells; however,
they found that the expression of human TRIM5α by itself
resulted in activation of NF-κB-driven transcription, which was
not the case with the mouse TRIM30. At a higher concentration
(1.5 μg DNA of TRIM5α vs. 0.5 μg of TAB2), human but not
Rh TRIM5α reached saturation and resulted in a drop in NF-
κB activation, as human but not Rh TRIM5α degraded TAB2.
Both abilities of TRIM5α to target TAB2 and to upregulate NF-
κB were independent of the PRYSPRY domain, which is critical
for capsid recognition. The RING domain of TRIM5α was nec-
essary to activate NF-κB, while RING and B-box2 of human
TRIM5α were sufficient to degrade TAB2 (Tareen and Emerman,
2011).

Subsequently, Pertel et al. (2011) reported similar upregula-
tion of NF-κB and AP-1 activation in human TRIM5α-transfected
HEK-293 cells and further confirmed interaction with TAB2,
TAB3, and TAK1 complex by immunoprecipitation; however,
they did not mention TAB2 degradation reported by Tareen and
Emerman (2011). LPS recognized by TLR4 activates AP-1 and
NF-κB-signaling, and this culminates in the expression of inflam-
matory genes. The knockdown of human TRIM5α in THP-1 cells
attenuated the induction of AP-1 and NF-κB-dependent genes,
indicating that TRIM5α makes a major contribution to LPS-
signaling. Acting with the ubiquitin-conjugating enzyme UBC13–
UEV1A, human TRIM5α catalyzed the synthesis of unattached
K63-linked ubiquitin chains that activate the TAK1 complex. Anti-
HIV-1 activity of LPS (Kornbluth et al., 1989) and Escherichia
coli infection (Ahmed et al., 2010) were previously reported in

macrophages. TRIM5, UBC13, or TAK1 knockdown in THP-1
macrophages rescued HIV-1, SIV, rhabdovirus vesicular stomati-
tis virus, and paramyxovirus Newcastle disease virus from LPS-
induced antiviral state. Finally, they compared induced cytokine
levels between stimulation with restricted (e.g., SIVmac) and unre-
stricted (e.g., HIV-1) virus by human TRIM5α in THP-1 and con-
cluded that antiviral potency was correlated with TRIM5α avidity
for the retrovirion capsid lattice, although it is not clear whether
the induced cytokines are sufficient to protect macrophages them-
selves and bystander T cells from viral infection (Figure 7). Espe-
cially in HIV-1 infection, it has been speculated that LPS-signaling
caused by microbial translocation stimulates cells non-specifically
and chronically, resulting in exhaustion of immunity (Brench-
ley and Douek, 2008). As HIV-1 prefers stimulated T cells, it is
reasonable that H43Y RING mutation of TRIM5α showed the
paradoxical protective effect on HIV-1 transmission described
above.

CONCLUSION
The mechanism of antiviral intrinsic immunity via capsid recog-
nition of monkey TRIM5α has been elucidated, although it is still
unclear how the prototype antiviral factor Fv1 in mice suppresses
nuclear import of MLV. Many TRIM family members, includ-
ing TRIM21, TRIM23, TRIM27, and TRIM30α, were found to
be involved in the TLR4 signaling pathway in mice (Kawai and
Akira, 2011). Human TRIM5α has also recently been shown to be
involved in this innate immunity (Pertel et al., 2011), and there-
fore the significance of human TRIM5α in vivo must be clarified
in future studies. As the function of mouse TRIM30α is not iden-
tical to that of human TRIM5α, it would be interesting to perform
human genetic association study with other infections, including
bacterial infection.
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