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Abstract 43 

Secondary bacterial infections, including ventilator-associated pneumonia (VAP), lead to 44 

worse clinical outcomes and increased mortality following viral respiratory infections including in 45 

patients with coronavirus disease 2019 (COVID-19). Using a combination of tracheal aspirate 46 

bulk and single-cell RNA sequencing (scRNA-seq) we assessed lower respiratory tract immune 47 

responses and microbiome dynamics in 28 COVID-19 patients, 15 of whom developed VAP, and 48 

eight critically ill uninfected controls. Two days before VAP onset we observed a transcriptional 49 

signature of bacterial infection. Two weeks prior to VAP onset, following intubation, we observed 50 

a striking impairment in immune signaling in COVID-19 patients who developed VAP. Longitudinal 51 

metatranscriptomic analysis revealed disruption of lung microbiome community composition in 52 

patients with VAP, providing a connection between dysregulated immune signaling and outgrowth 53 

of opportunistic pathogens. These findings suggest that COVID-19 patients who develop VAP 54 

have impaired antibacterial immune defense detectable weeks before secondary infection onset.  55 
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Introduction 56 

Secondary bacterial pneumonia results in significant morbidity and mortality in patients 57 

with viral lower respiratory tract infections (LRTI)1. This problem was evident in the 1918 influenza 58 

pandemic during which the majority of deaths were ultimately attributed to secondary bacterial 59 

pneumonia2. SARS-CoV-2 infection, like influenza, confers an increased risk of late onset 60 

secondary bacterial infection, often manifesting as ventilator-associated pneumonia (VAP)3. 61 

Marked heterogeneity exists with respect to the risk of VAP in patients with coronavirus disease 62 

2019 (COVID-19), with incidence ranging from 12-87% between published cohort studies4–7.  63 

The mechanisms underlying VAP susceptibility in COVID-19 remain unknown, and no 64 

biomarkers yet exist to inform risk of VAP at the time of intubation. Animal models of influenza 65 

may provide some insight, suggesting a role for interferon-mediated suppression of cytokines 66 

essential for bacterial defense, including neutrophil recruitment, antimicrobial peptide production 67 

and the Th17 response8–10. Few human immunoprofiling studies have been conducted in VAP 68 

however, and none have been reported in a prospective cohort of COVID-19 patients. 69 

Lower respiratory infections represent a dynamic relationship between pathogen, host 70 

response and the lung microbiome11. Despite their interconnected roles, no studies to date have 71 

simultaneously profiled host immune responses and lung microbiome dynamics in the context of 72 

VAP. For instance, while prior work has described lung microbiome disruption in patients with 73 

VAP11,12, the question of whether host immune responses following viral infection may contribute 74 

to this dysbiosis, leading to subsequent infection, remains unanswered. 75 

Given the marked heterogeneity in VAP incidence among patients with COVID-194–7, as 76 

well as gaps in mechanistic understanding of secondary bacterial pneumonia, we sought to 77 

assess the molecular determinants of VAP in the setting of SARS-CoV-2 infection. We employed 78 

a systems biology approach involving immunoprofiling the host transcriptional response and 79 

simultaneously assessing lung microbiome dynamics, using a combination of bulk and single cell 80 

RNA sequencing and extensive clinical phenotyping. We observed a striking impairment in 81 
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antibacterial immune signaling at the time of intubation, that correlated with disruption of the lung 82 

microbiome, weeks before the onset of VAP. 83 

 84 

Results 85 

We conducted a prospective case-control study of adults requiring mechanical ventilation 86 

for COVID-19 or for illnesses other than pneumonia. Of 84 patients with COVID-19 initially 87 

enrolled, tracheal aspirate (TA) specimens from 28 patients met inclusion criteria for analysis 88 

(Methods, Figure 1). In addition, eight critically ill patients from a second cohort (Study 2, 89 

Methods) were included as controls. Patients were enrolled at one tertiary care hospital and one 90 

safety net hospital in San Francisco, California under research protocols approved by the 91 

University of California San Francisco Institutional Review Board (Methods). We collected TA 92 

periodically following intubation and performed bulk and scRNA-seq (Methods).  93 

Patients with VAP were adjudicated using the United States Centers for Disease Control 94 

(CDC) definition13, including a requirement for a positive bacterial TA culture (N=10). Patients who 95 

met CDC VAP criteria but had negative bacterial TA cultures were only included in a secondary 96 

analysis (N=5). We defined onset of VAP as the first day a patient developed any of the criteria 97 

used to meet the definition, in accordance with CDC guidance. Patients who did not meet the 98 

CDC-NHSN criteria for VAP, and for whom there was no sustained clinical suspicion for bacterial 99 

pneumonia during the admission, were adjudicated as No-VAP (N=13). 100 

We compared lower respiratory tract host transcriptional responses between the VAP and 101 

No-VAP groups at two time points. “Early” time point TA samples were collected a median of two 102 

days post-intubation and 17 days before VAP onset (bulk RNA-seq analysis) or nine days before 103 

VAP onset (scRNA-seq). “Late” time point samples were collected a median of two days before 104 

VAP onset for both bulk and scRNA-seq analyses and compared against samples collected from 105 

No-VAP patients at similar timepoints post-intubation (Figure 1, Table S1, Table S2). We 106 

additionally evaluated eight intubated patients with non-pneumonia illnesses as controls at the 107 
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“early” time-point. There were no significant differences between groups with respect to age, 108 

gender, race or ethnicity (Table S1, S2). In addition, there were no differences between groups 109 

with respect to in-hospital receipt of any immunosuppressant or antibiotics prior to sample 110 

collection (Table S3).  111 

 112 

COVID-19 VAP is associated with a transcriptional signature of bacterial infection two days 113 

before VAP onset 114 

We began by assessing the lower respiratory host transcriptional response two days 115 

preceding VAP onset in COVID-19 patients. Differential gene expression analysis was carried out 116 

on TA bulk RNA-seq data from five patients who developed VAP (samples collected a median of 117 

two days before VAP onset) and eight patients who did not develop VAP collected within a similar 118 

time frame after intubation (Table S1). We identified 436 differentially expressed genes at a False 119 

Discovery Rate (FDR) < 0.1 (Figure 2A) and performed gene set enrichment analysis (GSEA) 120 

(Figure 2B). The patients who developed VAP exhibited upregulation of pathways related to anti-121 

bacterial immune responses, such as neutrophil degranulation, toll-like receptor signaling, 122 

cytokine signaling, and antigen presentation (Figure 2B). Interferon alpha/beta signaling was the 123 

most upregulated pathway, suggesting prolonged viral infection in patients with VAP. Ingenuity 124 

pathway analysis (IPA) additionally predicted broad activation of upstream inflammatory cytokines 125 

in patients who developed VAP, in particular IFNa and IFNg (Figure 2C).  126 

 127 

COVID-19 patients who develop VAP have attenuated immune signaling two weeks before 128 

VAP onset 129 

Given our findings of a unique lower respiratory host transcriptional signature in the 48 130 

hours preceding VAP onset, we next asked whether differences in host immune signaling might 131 

exist even earlier, two or more weeks before clinical diagnosis of VAP, and whether such 132 

differences might explain the increased susceptibility to secondary bacterial infection in these 133 
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patients. We thus compared TA gene expression soon after the time of intubation between 134 

patients who eventually developed VAP (samples collected a median of two days post-intubation, 135 

17 days before VAP onset, n= 4) and patients who did not develop VAP (samples collected a 136 

median of two days after intubation, n = 8) (Table 1). We identified 154 differentially expressed 137 

genes at FDR <0.1. The COVID-19 patients who developed VAP had lower expression of several 138 

genes with roles in innate immunity including IFI30, MMP2, TLR9, and DEFB124 (Figure 3A). 139 

GSEA further revealed that patients who developed VAP had lower expression of pathways 140 

related to antibacterial immune responses including neutrophil degranulation, toll-like receptor 141 

signaling, IL-17 signaling, antigen presentation and complement pathways and higher expression 142 

of IFN-alpha/beta signaling pathways, more than two weeks before the onset of VAP (Figure 3B). 143 

Additionally, pathways related to adaptive immunity such as T and B cell receptor signaling were 144 

also downregulated in patients who subsequently developed VAP (Figure 3B).  145 

To gauge the degree of immune signaling suppression compared to controls, we 146 

performed a similar analysis on critically ill intubated patients without infection (Figure 3C). 147 

Relative to the control group, multiple antibacterial immune pathways were downregulated in 148 

COVID-19 patients, with the greatest attenuation in the VAP group (Figure 3C). Upstream 149 

regulator analysis identified impaired activation of diverse cytokines in those with VAP, while 150 

IFNB1 was notably upregulated (Figure 3D). Several pro-inflammatory cytokines were 151 

downregulated in both groups compared to the controls (Figure S1). We expanded the 152 

comparison at the “early” time-point to include patients with culture-negative VAP (VAP: n=6, No-153 

VAP: n=11) and observed similar differences at the pathway level (Figure S2).  154 

Given prior reports demonstrating correlation between SARS-CoV-2 viral load and 155 

interferon related gene expression14 we next asked whether viral load differed between VAP and 156 

No-VAP patients. No differences in SARS-CoV-2 qPCR or viral reads per million (rpM) in bulk 157 

RNA-seq data were found in the days following intubation (P = 0.84 (RNA-seq), P = 0.53 (PCR), 158 

Figure S3). We also considered the possibility that differences in the number of days of steroid 159 
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exposure prior to sample collection might explain results, but found no differences (P = 0.343) 160 

(Table S1).  161 

 162 

COVID-19 VAP is associated with impaired anti-bacterial immune signaling in monocytes, 163 

macrophages and neutrophils  164 

To further understand the mechanism of early downregulation of key pathways involved 165 

in antibacterial responses, we next asked whether this was driven by any one local immune cell 166 

type. We performed scRNA-seq on TA specimens obtained early during disease course (median 167 

of nine days before VAP) and enriched for immune cells using CD45 selection (Methods). 168 

Clustering based upon cellular transcriptional signatures indicated that monocytes, macrophages 169 

and neutrophils were the most abundant cell types (Figure 4A, S4A) and thus we focused 170 

transcriptional assessment on these populations. A comparison of cell type proportions did not 171 

reveal statistically significant differences in populations of mono/macs, neutrophils or T cells in 172 

COVID-19 patients who subsequently developed VAP (Figure 4B).  173 

COVID-19 patients who developed VAP had distinct cell type-specific transcriptional 174 

signatures compared to those without VAP at this “early” post-intubation time-point (Figure 4, S5, 175 

S6). With respect to mono/macs and neutrophils, we identified 532 and 693 differential expressed 176 

genes, respectively, at FDR< 0.05. Several genes with key roles in innate immunity were 177 

downregulated in both cell types in the COVID-19 patients who subsequently developed VAP 178 

versus those who did not, including IL1Rn, ICAM1, NFKB2, and ITGAX in neutrophils, as well as 179 

the neutrophil chemokines CXCL2 and CXCL8 in mono/macs (Figure 4C, 4F, S5). In addition, 180 

similar to the bulk RNA-seq results demonstrating upregulation of type I IFN signaling at this time-181 

point in patients who developed VAP, we noted upregulation of several interferon-induced genes 182 

including IFI27 and IFI30 in mono/macs, and IFI30, IFITM1, and IFITM3 in neutrophils (Figure 183 

4C, F). 184 
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IPA canonical pathway analysis of gene expression within each cluster revealed 185 

downregulation of several cytokine and innate immune signaling pathways in the patients who 186 

later developed VAP at the “early” post-intubation time-point. In the mono/mac cluster, this 187 

included downregulation of IL-1, IL-6, and iNOS signaling, as well as Th17 and TNFR2 signaling 188 

(Figure 4D). Analysis of the neutrophil cluster also demonstrated attenuated IL-1, IL-6, and 189 

TNFR2 signaling and NF-κB pathways (Figure 4G). COVID-19 patients who subsequently 190 

developed VAP demonstrated upregulation of oxidative phosphorylation and glutathione 191 

detoxification in the mono/mac subset, and interferon signaling, oxidative phosphorylation and 192 

EIF2 signaling in the neutrophil cluster. Computational prediction of upstream cytokine activation 193 

by IPA revealed impaired activation of multiple pro-inflammatory cytokines in both the mono/macs 194 

and neutrophils in patients who developed VAP, including TNF, CXCL8, and IL1B, as well as 195 

downregulation of key factors important in monocyte to macrophage differentiation (CSF2, CSF3, 196 

PF4) (Figure 4E, H).  197 

In the T cell population, we identified 1318 differentially expressed genes at FDR < 0.05. 198 

Genes associated with T cell recruitment, including CXCR6, ITGA1 and ITGA4, which have been 199 

shown to regulate localization and retention of T cells in the lung during viral infection15,16, were 200 

downregulated in patients with VAP. Additionally, genes indicative of T cell activation (CD69, 201 

CD96, LAG3, ICOS, CD27), signaling (CD3, ZAP70, ITK, CD8A, CD8B), and effector functions 202 

(IFNG, GZMA, GZMB, KLRG1) were significantly downregulated in patients with VAP, suggesting 203 

an impairment in T cell responses (Figure S6A). IPA revealed downregulation of signaling 204 

pathways crucial for T cell recruitment, such as integrin signaling, and activation, such as CD28 205 

signaling in helper T cells and phospholipase C signaling (Figure S6B). 206 

 207 

Temporal dynamics of the host response in COVID-19 patients who develop VAP 208 

We next investigated temporal dynamics of the lower airway host inflammatory response 209 

in COVID-19 patients from the time of intubation to development of VAP by evaluating differential 210 
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gene expression between COVID-19 VAP patients at the “early” time point (median of 17 days 211 

before VAP onset, n=4) versus “late” time point (median of two days before VAP onset, n=5) by 212 

bulk RNA-seq. We identified 2705 differentially expressed genes (FDR<0.1) and unsupervised 213 

hierarchical clustering of the 50 most significant genes demonstrated clear separation of the two 214 

time-points (Figure 5A). GSEA revealed that type I interferon signaling was notably 215 

downregulated at the “late” time-point most immediately preceding VAP onset in comparison to 216 

the “early” timepoint (Figure 5B); however, expression was still significantly higher than in the 217 

No-VAP patients (Figure 2B). Several other immune signaling pathways were more highly 218 

expressed at this “late” time-point, presumably reflecting activation of an antibacterial response 219 

in the setting of bacterial pneumonia (Figure 5B). Consistent with this, upstream regulator 220 

analysis indicated increased activation of several pro-inflammatory cytokines and decreased 221 

IFNa and IFN-l signaling at the “late” versus “early” time-points (Figure 5C).  222 

In contrast, comparing No-VAP patients at the “early” (n=8) versus “late” (n=8) time-points 223 

yielded only two genes with a padj <0.1, both of which were interferon-stimulated genes (RSAD2 224 

and CMPK2) downregulated at the “late” time-point, suggesting that while the host response was 225 

relatively unchanged in these patients, the antiviral response attenuated over time. Indeed, GSEA 226 

revealed that type I interferon signaling, and other antiviral immune pathways were downregulated 227 

in the patients who did not develop VAP at the later time-point (Figure S7). 228 

Next, we performed a similar comparison between the “early” and “late” time-points based 229 

on scRNA-seq data from patients who developed VAP. Differential gene expression analysis on 230 

these two populations identified 1368 differentially expressed genes (FDR<0.05) in the mono/mac 231 

cluster, and 1028 in the neutrophil cluster. IPA revealed upregulation of antibacterial signaling 232 

pathways at the later time-point, including signaling by several cytokines in the mono/mac cluster 233 

(IL-17, IL-6, IL-1, TNF, IL-23, IFN) (Figure 5D-E), congruent with the bulk RNA-seq analysis. 234 

Furthermore, we identified 1397 differentially expressed genes (FDR < 0.05) in the T cell cluster 235 

between the two time-points and noted upregulation of signaling pathways indicative of an active 236 
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T cell response17 (e.g. ERK/MAPK, Tec kinase, and phospholipase C) in the days preceding VAP, 237 

which was also in agreement with the bulk RNA-seq results (Figure S6C). 238 

We further assessed dynamics of host immune responses between VAP and No-VAP 239 

patients by performing longitudinal analyses of key immune signaling pathways, including all 240 

patients with available TA samples (VAP n=7, No-VAP n=10). Onset of VAP in these patients 241 

ranged from 10-39 days post intubation, with a median of 25 days, and treatment with 242 

immunosuppressants did not differ significantly between VAP and no-VAP patients (p=0.304, 243 

Fisher’s exact test). We calculated pathway Z-scores for each sample by averaging Z-scores for 244 

the top 20 leading edge genes of each pathway (Methods). Early attenuation of immune signaling 245 

in the VAP group was conspicuous, and this pattern eventually resolved later in disease course 246 

by the time secondary bacterial infection became established (Figures 5E-H). We confirmed that 247 

the observed differences between VAP and no-VAP patients were not driven by differences in 248 

treatment with immunosuppressants by comparing pathway Z-scores in patients that received 249 

immunosuppressants and those that did not at the early time-point regardless of VAP group 250 

(Figure S8).  251 

 252 

Lung microbiome disruption precedes VAP in COVID-19 patients 253 

We hypothesized that the innate immune suppression in patients who developed VAP 254 

would correlate with viral load. Using TA metatranscriptomics to assess the lower respiratory 255 

microbiome, we evaluated longitudinal changes in SARS-CoV-2 abundance. Although no 256 

difference was observed at the “early” timepoint (Figure S3), the trajectory of SARS-CoV-2 viral 257 

load differed significantly in patients who developed VAP (p=0.0058), although in both groups 258 

decreased over time (Figure 6A). This result suggested that COVID-19 patients who develop 259 

VAP may exhibit impaired ability to clear virus compared to those who do not, and that the lung 260 

microbiome composition may be similarly impacted.  261 
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Indeed, COVID-19 patients who developed VAP exhibited a significant reduction in 262 

bacterial diversity of their airway microbiome up to three weeks before clinical signs of infection 263 

(Shannon Diversity Index, p=0.012; Figure 6B). COVID-19 patients who developed VAP also had 264 

lower airway microbiome compositions more closely resembling each other than those from 265 

patients who did not develop VAP, across all timepoints since intubation (Bray Curtis index, 266 

p=0.0033; Figure 6C), suggesting community collapse precedes the development of VAP. All 267 

patients received antibiotics prior to collection of the first sample, suggesting that antibiotic use 268 

was not driving these differences (Table S1). 269 

 270 

Discussion  271 

Secondary bacterial pneumonia contributes to significant morbidity and mortality in 272 

patients with primary viral lower respiratory tract infections1,3, but mechanisms governing 273 

individual susceptibility to VAP have remained unclear. Few human cohort studies have evaluated 274 

the immunologic underpinnings of VAP, and none have been reported in the context of COVID-275 

19, which is characterized by a dysregulated host response distinct from other viral 276 

pneumonias14,18,19. To address this gap and probe mechanisms of VAP susceptibility in patients 277 

with COVID-19, we carried out a systems biological assessment of host and microbial dynamics 278 

of the lower respiratory tract. 279 

Two days before VAP onset, a transcriptional signature consistent with bacterial infection 280 

was observed. This finding suggests that host response changes can occur before clinical 281 

recognition of pneumonia, highlighting the potential utility of the host transcriptome as a tool for 282 

VAP surveillance. While intriguing, this observation did not provide an explanation for differential 283 

susceptibility of some COVID-19 patients to post-viral pneumonia.    284 

The discovery of an early suppressed antibacterial immune response in patients who later 285 

developed VAP did however, offer a potential explanation. More than two weeks before VAP 286 

onset, we observed a striking suppression of pathways related to both innate and adaptive 287 
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immunity, including neutrophil degranulation, TLR signaling, complement activation, antigen 288 

presentation, and T cell receptor and B receptor signaling, as well as cytokine signaling (e.g. IL-289 

1, IL-4, IL-12, IL-13 and IL-17). Comparison against uninfected, intubated controls confirmed the 290 

previously described paradoxical impairment in immune signaling found in patients with severe 291 

COVID-1918, and suggested that VAP susceptibility may be the result of disproportionate 292 

suppression of innate and adaptive pathways critical for antibacterial defense, resulting in 293 

enhanced susceptibility to opportunistic secondary infections.  294 

Animal models of influenza have provided insight into potential mechanisms of post-viral 295 

pneumonia, although none have provided insight regarding why some individuals are more 296 

susceptible than others. In mice inoculated with influenza, for instance, virus-induced type I IFN 297 

suppresses neutrophil chemokines and impairs Th17 immunity, compromising effective clearance 298 

of bacterial infections9,10. Interestingly, we also observed increased type I interferon signaling in 299 

COVID-19 patients who weeks later developed VAP, and a strikingly similar impairment in Th17 300 

signaling and other immune pathways. Desensitization to toll-like receptor (TLR) ligands after 301 

influenza infection has also been documented20, which is congruent with the downregulation of 302 

TLR signaling at the time of intubation observed in our bulk RNA-seq analyses.  303 

Impaired bacterial clearance by alveolar macrophages was found to be driven by virus-304 

related IFNg production by T cells21 in a murine post-influenza model. In contrast, we found that 305 

T cells from patients who later developed VAP expressed lower levels of IFNg at the time of 306 

intubation. This difference may relate to species-specific variations in immune signaling or intrinsic 307 

differences in the host response to influenza virus versus SARS-CoV-214,18.    308 

We asked whether certain cell types were responsible for driving the early suppression of 309 

immune signaling observed in COVID-19 patients who went on to develop VAP. No significant 310 

differences in proportions of the most abundant cell types - monocytes/macrophages, neutrophils 311 

or T cells – was observed between patients with or without VAP at the time of intubation. This 312 
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finding suggests that an impairment of immune cell recruitment was not causing these differences, 313 

but rather significant gene expression differences within each of these immune cell populations.  314 

In both the mono/mac and neutrophil populations, we observed broad downregulation of 315 

the innate immune response, and initiation of the adaptive immune response, concordant with 316 

global observations in bulk RNA-seq analyses. Further analysis revealed a downregulation of 317 

monocyte to macrophage differentiation and neutrophil chemotaxis. Further, we noted a 318 

downregulation of key pathways and transcription factors involved in antimicrobial immune 319 

responses including iNOS in mono/macs, as well as NFKB and TREM1 in mono/macs and 320 

neutrophils. Both bulk and scRNA-seq suggested an impairment in T cell recruitment, signaling, 321 

and effector functions. Overall, our data suggest that while no difference in cell type populations 322 

existed between groups, changes in the gene expression of mono/macs, neutrophils and T cells 323 

contributes to immune suppression in COVID-19 patients who later develop VAP.  324 

SARS-CoV-2 viral load correlates with interferon stimulated gene expression14,18 and thus 325 

we initially hypothesized that differences in viral load between groups might relate to individual 326 

VAP susceptibility. However, we found no difference between groups at the “early” timepoint. 327 

Moreover, no differences existed in terms of immunosuppressive medication administration or 328 

clinically diagnosed immunodeficiency, suggesting that other, still unidentified mechanisms 329 

present at the time of intubation must underlie the marked suppression of immune gene 330 

expression in COVID-19 patients who went on to develop VAP.  331 

While no difference in viral load was observed at the time of intubation, the COVID-19 332 

patients who developed VAP exhibited impaired viral clearance over the time-course of intubation. 333 

This observation was corroborated by a prolonged antiviral type I interferon response at the “late” 334 

timepoint (median of two days before VAP onset) in patients who developed VAP versus those 335 

who did not, pointing to the persistence of suboptimal antiviral immunity in these patients. Early 336 

induction of functional SARS-CoV-2 specific T cells is associated with faster viral clearance in 337 
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COVID-19 patients22 and likewise, we observed impairments in T cell activation and signaling in 338 

the VAP group, which further suggests a decreased ability to control the virus in these patients. 339 

Respiratory viruses can reshape the human airway microbiome by modulating host 340 

inflammatory responses23,24. In mouse models of influenza, the airway microbiome exhibits 341 

expansion of several bacterial families during the course of viral infection as innate immunity is 342 

suppressed23. These changes increase the risk of secondary bacterial infection23 and have been 343 

observed in patients with chronic obstructive pulmonary disease, where suppression of the innate 344 

immune response in rhinovirus infected patients may be followed by bacterial superinfection25,26. 345 

Similarly, the innate immune suppression observed in COVID-19 patients who developed 346 

VAP was associated with airway microbiome collapse and the outgrowth of lung pathogens in 347 

advance of clinical VAP diagnosis. This finding suggests that individual immune responses to 348 

SARS-CoV-2 infection may drive a restructuring of the microbial community and increase 349 

susceptibility to VAP (Figure 7). The resulting outgrowth of a VAP-associated bacterial pathogen 350 

may elicit an antibacterial response, but the broader immunosuppressive state preceding this 351 

response may be insufficient to control the development of clinical pneumonia. Those with a 352 

lesser degree of immunosuppression may be able to respond faster and therefore control 353 

opportunistic bacterial pathogens more effectively.   354 

These findings may also have important implications for management of patients with 355 

COVID-19 related acute respiratory failure, many of whom are now being treated with 356 

corticosteroids plus/minus IL-6 receptor blocking agents. These agents may lead to further 357 

suppression of the key pathways required for host response to secondary bacterial infection. 358 

Thus, our results emphasize the need for ongoing vigilance for VAP in patients treated with potent 359 

immunosuppressive agents, as well as the need to develop novel diagnostic and/or prognostic 360 

approaches to identifying patients at highest risk. For instance, availability of molecular 361 

biomarkers to assess a patient’s risk of VAP at the time of intubation could reduce inappropriate 362 

use of prophylactic antibiotics or immunomodulatory treatments, or signal a need for enhanced 363 



   
 

   
 

16 

surveillance strategies. Signatures of immune dysfunction have been used as biomarkers to 364 

predict nosocomial infection in critically ill patients,27 although not in the context of viral infection.  365 

Sample size is a limitation of this study; however, the reproducibility of our observations 366 

across both bulk and scRNA-seq analyses and the significant number of differentially expressed 367 

genes among the comparator groups support the validity of our conclusions. Because this study 368 

was limited to critically ill, intubated patients, we were unable to assess early stages of COVID-369 

19, which may provide additional insight regarding determinants of secondary bacterial infection. 370 

Additionally, we were unable to assess whether epithelial cells contributed to VAP risk due to 371 

enrichment for immune cells prior to scRNA-seq. With larger cohorts, the early detection of 372 

specific immune pathway suppression and microbiome collapse could be leveraged to develop 373 

clinically useful models for identifying COVID-19 patients with increased susceptibility to 374 

secondary bacterial pneumonia. 375 

 376 

Materials and Methods 377 

 378 

Study design, cohorts, enrollment and ethics approval 379 

We conducted a prospective case-control study of adults requiring mechanical ventilation 380 

for COVID-19 with or without secondary bacterial pneumonia. We also evaluated control patients 381 

requiring mechanical ventilation for other reasons who had no evidence of pulmonary infection 382 

(Figure 1). Patients were enrolled in either of two prospective cohort studies of critically ill patients 383 

at the University of California, San Francisco (UCSF) and Zuckerberg San Francisco General 384 

Hospital between 07/2013 and 07/2020. Both cohort studies were approved by the UCSF 385 

Institutional Review Board (IRB) under protocols 10-02701 (control patients, pre-COVID-19 386 

pandemic) and 20-30497 (COVID-19 patients, COVID-19 Multiphenotyping for Effective Therapy 387 

(COMET) study), respectively. Of the COVID-19 patients, 19 were co-enrolled in the National 388 
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Institute of Allergy and Infectious Diseases-funded Immunophenotyping Assessment in a COVID-389 

19 Cohort (IMPACC) Network study. 390 

For both the COVID-19 and control cohorts, if a patient met inclusion criteria, then a study 391 

coordinator or physician obtained written informed consent for enrollment from the patient or their 392 

surrogate.  Patients or their surrogates were provided with detailed written and verbal information 393 

about the goals of the study, the data and specimens that would be collected, and the potential 394 

risks to the subject.  Patients and their surrogates were also informed that there would be no 395 

benefit to them from being enrolled in the study and that they may withdraw informed consent at 396 

any time during the course of the study.  All questions were answered, and informed consent 397 

documented by obtaining the signature of the patient or their surrogate on the consent document 398 

(or during the COVID-19 pandemic, the IRB-approved electronic equivalent, to enable touchless 399 

consent).   400 

 Many critically ill patients are unconscious at the time of intensive care unit (ICU) 401 

admission due to their underlying illness and/or are endotracheally intubated for airway 402 

management or acute respiratory failure.  The patients who are not unconscious are often in pain 403 

and may have acute delirium due to critical illness and/or medications.  For these reasons, many 404 

subjects are unable to provide informed consent at the time of enrollment.  Because this study 405 

could not practically be done otherwise and was deemed to be minimal risk by the UCSF IRB, if 406 

a patient was unable and a surrogate was not available to provide consent, patients were enrolled 407 

with waiver of initial consent, including the collection of biological samples.  408 

 Specifically, for subjects who were unable to provide informed consent at the time of 409 

enrollment, our study team was permitted to collect biological samples as well as clinical data 410 

from the medical record obtained prior to consent.  Surrogate consent was vigorously pursued for 411 

all patients; moreover, each patient was regularly examined to determine if and when s/he was 412 

able to consent for him/herself, and the nursing and ICU staff were contacted daily for information 413 
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about surrogates’ availability.  For patients whose surrogates provided informed consent, follow-414 

up consent was subsequently obtained from the patient if they survived their acute illness and 415 

regained the ability to consent.  For subjects who died prior to the consent being obtained, a full 416 

waiver of consent was approved by the UCSF IRB for both cohort studies.  Lack of a surrogate to 417 

provide consent is common in critically ill patients.  To address this, the UCSF IRB also approved 418 

a full waiver of consent for subjects in the COVID-19 cohort who remained unable to provide 419 

informed consent and had no contactable surrogate identified within 28 days.  Before utilizing this 420 

waiver, we made and documented at least three separate attempts to identify and contact the 421 

patient or surrogate over a month-long period.  While most patients enrolled were consented by 422 

typical processes, three died prior to consent being obtained, and five were included with a full 423 

waiver of consent due to lack of ability to consent and lack of contactable surrogate.  No personally 424 

identifiable information has been included as part of this manuscript for any enrolled patients.   425 

 426 

Ventilator-associated pneumonia adjudication 427 

A total of 84 adults who required intubation for severe COVID-19 (Cohort 1) and who had 428 

available TA samples were considered for inclusion in the study (Figure 1). Patients who met the 429 

Centers for Disease Control (CDC) definition for VAP13 with a positive bacterial sputum culture 430 

were adjudicated as having VAP for the purpose of the study (N=16); patients who did not meet 431 

these criteria, and for whom there was no sustained clinical suspicion for bacterial pneumonia 432 

during the admission, were categorized as No-VAP (N=17). VAP and No-VAP patients for whom 433 

samples at the time-points of interest were available were included in the primary analyses (VAP: 434 

N=10; No-VAP: N=13). Patients who met CDC-VAP criteria but had negative TA cultures were 435 

included in a secondary supplementary analysis only (N=5). All other patients were excluded, 436 

including patients with clinically-suspected bacterial pneumonia who did not meet CDC VAP 437 

criteria. Eight intubated patients from a recent study18 (Cohort 2) were included as controls and 438 
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were selected because they had previously been adjudicated as having no evidence of lower 439 

respiratory tract infection. This group included four patients with the acute respiratory distress 440 

syndrome (ARDS) due to non-infectious etiologies, and four patients without ARDS who were 441 

intubated for other reasons (subdural hematoma (N=1), retroperitoneal hemorrhage (N=1), or 442 

neurosurgical procedures (N=2)). 443 

 444 

Tracheal aspirate sampling 445 

Following enrollment, tracheal aspirate (TA) was collected (periodically following 446 

intubation for Study 1, or once within 3 days of intubation for Study 2), without addition of saline 447 

wash, and either a) mixed 1:1 with DNA/RNA shield (Zymo Research) for bulk RNA-seq or b) 448 

immediately processed in a biosafety level 3 laboratory (BSL3) for scRNA-seq analysis. 449 

 450 

Bulk RNA sequencing and host transcriptome analysis 451 

 452 

RNA sequencing 453 

To evaluate host and microbial gene expression, metatranscriptomic next generation RNA 454 

sequencing (RNA-seq) was performed on TA specimens. Following RNA extraction (Zymo 455 

Pathogen Magbead Kit) and DNase treatment, human cytosolic and mitochondrial ribosomal RNA 456 

was depleted using FastSelect (Qiagen). To control for background contamination, we included 457 

negative controls (water and HeLa cell RNA) as well as positive controls (spike-in RNA standards 458 

from the External RNA Controls Consortium (ERCC))28. RNA was then fragmented and 459 

underwent library preparation using the NEBNext Ultra II RNA-seq Kit (New England BioLabs). 460 

Libraries underwent 146 nucleotide paired-end Illumina sequencing on an Illumina Novaseq 6000. 461 

462 
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Host differential expression 463 

Following demultiplexing, sequencing reads were pseudo-aligned with kallisto29 to an 464 

index consisting of all transcripts associated with human protein coding genes (ENSEMBL v. 465 

99), cytosolic and mitochondrial ribosomal RNA sequences and the sequences of ERCC RNA 466 

standards. Gene-level counts were generated from the transcript-level abundance estimates 467 

using the R package tximport30, with the scaledTPM method. Samples retained in the dataset 468 

had a total of at least 1,000,000 estimated counts associated with transcripts of protein coding 469 

genes. 470 

Genes were retained for differential expression analysis if they had counts in at least 30% 471 

of samples. Differential expression analysis was performed using the R package DESeq231. We 472 

modeled the expression of individual genes using the design formula ~VAPgroup, where VAP 473 

groups were “VAP-early”, “No VAP-early”, “VAP-late” and “No VAP-late” and used the results() 474 

function to extract a specific contrast. Separate comparisons to the control group were performed 475 

using the design formula ~COVID-19-status to compare positive and negative patients.  476 

Significant genes were identified using a Benjamini-Hochberg false discovery rate (FDR) 477 

< 0.1. We generated heatmaps of the top 50 differentially expressed genes by FDR. For 478 

visualization, gene expression was normalized using the regularized log transformation, centered, 479 

and scaled prior to clustering. Heatmaps were generated using the pheatmap package. Columns 480 

were clustered using Euclidean distance and rows were clustered using Pearson correlation. 481 

Differential expression analysis results are provided in (Supplementary data file 1).  482 

 483 

Pathway analysis 484 

Gene set enrichment analyses (GSEA) were performed using the fgseaMultilevel function 485 

in the R package fgsea32 and REACTOME pathways33 with a minimum size of 10 genes and a 486 

maximum size of 1,500 genes. All genes were included in the comparison, pre-ranked by the test 487 

statistic. Significant pathways were defined as those with a Benjamini-Hochberg adjusted p-value 488 
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< 0.05. Ingenuity Pathway Analysis (IPA) Canonical Pathway and Upstream Regulator Analysis34 489 

was employed on genes with p<0.1 and ranked by the test statistic to identify cytokine regulators. 490 

Significant IPA results were defined as those with a Z-score absolute value greater than 2 and an 491 

overlap P value < 0.05. The gene sets in figures were selected to reduce redundancy and highlight 492 

diverse biological functions. Full GSEA and IPA results are provided in (Supplementary data 493 

files 2 and 3). 494 

Longitudinal pathway analysis was performed using all available TA samples spanning 495 

post-intubation to VAP onset for all patients included in the bulk RNA-seq analysis. Analysis was 496 

restricted to samples with at least 1,000,000 human protein coding transcripts. Pathways of 497 

interest were selected from the significant GSEA results of the comparison of VAP vs. No-VAP 498 

patients in the “early” time-point. The top 20 leading edge genes were selected from each pathway 499 

for analysis. To calculate a Z-score for each gene, expression was normalized using the variance 500 

stabilizing transformation (VST), centered, and scaled. A pathway Z-score was calculated by 501 

averaging the 20 gene Z-scores. Multiple Z-scores per patient at a given time interval were 502 

averaged so that each patient corresponds to one datapoint at each interval. Statistical 503 

significance of pathway expression over time between VAP and No-VAP groups was calculated 504 

using a two-way analysis of variance (ANOVA) in GraphPad PRISM. 505 

 506 

Single cell RNA sequencing and transcriptome analysis 507 

After collection, fresh TA was transported to a BSL-3 laboratory at ambient temperature 508 

to improve neutrophil survival. 3mL of TA was dissociated in 40mL of PBS with 50ug/mL 509 

collagenase type 4 (Worthington) and 0.56 ku/mL of Dnase I (Worthington) for 10 minutes at room 510 

temperature, followed by passage through a 70µM filter. Cells were pelleted at 350g 4C for 10 511 

minutes, resuspended in PBS with 2mM EDTA and 0.5% BSA, and manually counted on a 512 

hemocytometer. Cells were stained with MojoSort Human CD45 and purified by the 513 

manufacturer’s protocol (Biolegend). After CD45 positive selection, cells were manually counted 514 
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with trypan blue on a hemocytometer. Using a V(D)J v1.1 kit according to the manufacturer’s 515 

protocol, samples were loaded on a 10X Genomics Chip A without multiplexing, aiming to capture 516 

10,000 cells (10X Genomics). Libraries underwent paired end 150 base pair sequencing on an 517 

Illumina  NovaSeq6000.  518 

Raw sequencing reads were aligned to GRCh38 using the STAR aligner35. Cell barcodes 519 

were then determined based upon UMI count distribution. Read count matrices were generated 520 

through the 10X genomics cellranger pipeline v3.0. Data was processed and analyzed using the 521 

Scanpy v1.636. Cells that had <200 genes and had greater than 30,000 counts were filtered. 522 

Mitochondrial genes were removed and multi-sample integration was performed using Harmony 523 

v0.1.437. Differential expression was performed using MAST v1.16.038. Due to the significantly 524 

greater number of differentially expressed genes in scRNA-seq analyses, we used a more 525 

restrictive cutoff of FDR < 0.05 for significant genes. Differential expression analysis results are 526 

detailed in (Supplementary data file 4). 527 

 528 

Pathway analysis 529 

Ingenuity Pathway Analysis (IPA) Canonical Pathway and Upstream Regulator Analysis34 530 

was employed on genes with p<0.05 and ranked by log2foldchange to identify canonical pathways 531 

and cytokine regulators. We utilized a more restrictive p value cutoff for scRNA-seq to ensure a 532 

similar number of genes were input into IPA. Significant IPA results were defined as those with a 533 

Z-score absolute value greater than 2 and an overlap P value < 0.05. The gene sets in figures 534 

were selected to reduce redundancy and highlight diverse biological functions. Full GSEA and 535 

IPA results are provided in (Supplementary data files 5 and 6). 536 

 537 

Lung microbiome analysis 538 

RNA from tracheal aspirates was sequenced as described above. Taxonomic alignments 539 

were obtained from raw sequencing reads using the IDseq pipeline39,40, which performs quality 540 
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filtration and removal of human reads followed by reference-based taxonomic alignment at both 541 

the nucleotide and amino acid level against sequences in the National Center for Biotechnology 542 

Information (NCBI) nucleotide (NT) and non-redundant (NR) databases, followed by assembly of 543 

reads matching each taxon detected. Taxonomic alignments underwent background correction 544 

for environmental contaminants (see below), viruses were excluded, and data was then 545 

aggregated to the genus level before calculating diversity metrics. Alpha diversity (Shannon’s 546 

Diversity Index) and beta diversity (Bray-Curtis dissimilarity) were calculated and the latter plotted 547 

using non-metric multidimensional scaling (NDMS). Comparison of alpha and beta diversity over 548 

time between VAP and No-VAP groups was calculated using a two-way analysis of variance 549 

(ANOVA) in GraphPad PRISM.  550 

 551 

Identification and mitigation of environmental contaminants 552 

To minimize inaccurate taxonomic assignments due to environmental and reagent derived 553 

contaminants, non-templated “water only” and HeLa cell RNA controls were processed with each 554 

group of samples that underwent nucleic acid extraction. These were included, as well as positive 555 

control clinical samples, with each sequencing run. Negative control samples enabled estimation 556 

of the number of background reads expected for each taxon. A previously developed negative 557 

binomial model14 was employed to identify taxa with NT sequencing alignments present at an 558 

abundance significantly greater compared to negative water controls. This was done by modeling 559 

the number of background reads as a negative binomial distribution, with mean and dispersion 560 

fitted on the negative controls. For each batch (sequencing run) and taxon, we estimated the 561 

mean parameter of the negative binomial by averaging the read counts across all negative 562 

controls, slightly regularizing this estimate by including the global average (across all batches) as 563 

an additional sample. We estimated a single dispersion parameter across all taxa and batches, 564 

using the functions glm.nb() and theta.md() from the R package MASS41. Taxa that achieved a p-565 

value <0.01 were carried forward.  566 
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Figure 1: Study flowchart.  
Two patient cohorts were studied. Cohort 1 consisted of COVID-19 patients from the COVID 
Multiphenotyping for Effective Therapies (COMET) / Immunophenotyping Assessment in a 
COVID-19 Cohort (IMPACC) studies (described in Methods). Cohort 2 consisted of critically ill 
intubated control patients from a prior prospective cohort study led by our research group 18. The 
“early” samples were the first available tracheal aspirate specimens after intubation. For COVID-
19 patients who developed VAP, the “late” samples were obtained a median of two days before 
VAP onset. Timing of sample collection with respect to VAP versus No-VAP groups was matched 
at “early” and “late” time points. Controls included eight critically ill, mechanically ventilated 
patients without LRTI. All COVID-19 patients included in the primary bulk analysis were also 
included in the longitudinal host expression and microbiome analyses. Abbreviations: 
VAP=ventilator-associated pneumonia; TA=tracheal aspirate; QC=quality control; sc or scRNA-
seq= single cell RNA sequencing; PNA=pneumonia; CDC=United States Centers for Disease 
Control and Prevention.  
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Figure 2: COVID-19 VAP is associated with a lower respiratory tract transcriptional 
signature of bacterial infection 2 days before VAP onset. 
A) Heatmap of the top 50 differentially expressed genes by adjusted P-value between COVID-19 
patients who developed VAP (yellow) versus those who did not (red) at the “late” time-point, 2 
days before the onset of VAP, from bulk RNA-seq. B) Gene set enrichment analysis (GSEA) at 
the “late” time-point based on differential gene expression analyses. GSEA results were 
considered significant with an adjusted P-value <0.05. C) Ingenuity Pathway Analysis (IPA) of 
upstream cytokines at the “late” time-point based on differential gene expression analyses. IPA 
results were considered significant with a Z-score absolute value >2 and overlap P-value <0.05. 
*Denotes cytokines with an overlap P-value < 0.1. All pathways and cytokines are shown in 
Supplementary data files 2 and 3.  
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Figure 3: COVID-19 patients who develop VAP have attenuated immune signaling in the 
lower respiratory tract two weeks before onset of secondary bacterial pneumonia. 
A) Heatmap of the top 50 differentially expressed genes by adjusted P-value between COVID-19 
patients who developed VAP (blue) versus those who did not (green) at the “early” time-point from 
bulk RNA-seq. B) Gene set enrichment analysis at the “early” time-point based on differential 
gene expression analyses. GSEA results were considered significant with an adjusted P-value 
<0.05. C) Expression of GSEA pathways at the “early” time-point with respect to a baseline of 
uninfected, intubated controls. Pathways were selected from the GSEA results if they had an 
adjusted P-value <0.05 in at least one of the comparisons (VAP vs controls or No-VAP vs 
controls). Pathways with an adjusted P-value <0.05 when compared to controls are indicated by 
circles with a black outline. D) Ingenuity Pathway Analysis (IPA) of upstream cytokines at the 
“early” time-point based on differential gene expression analyses. IPA results were considered 
significant with a Z-score absolute value >2 and overlap P-value <0.05. *Denotes cytokines with 
an overlap P-value <0.1. All pathways and cytokines are shown in Supplementary data files 2 and 
3. 
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Figure 4: scRNA-seq demonstrates that COVID-19 VAP is associated with early impaired 
anti-bacterial immune signaling in lower respiratory tract monocytes, macrophages and 
neutrophils. 
A) UMAP of single cell RNA-seq data from patients that do or do not develop VAP at the “early” 
time-point, annotated by cell type. B) Cell type proportions in single cell RNA-seq from VAP and 
No-VAP patients at the “early” time-point. Bars represent the median with IQR. Statistical 
significance was determined by Mann-Whitney tests. None of the cell types were significantly 
different with a p-value <0.05. The p-values for each cell type are as follows: B cells: 0.073; 
Neutrophils: 0.28; T/NK cells: 0.21; Secretory: 0.46; Ciliated: 0.94, and Mono/Mac: 0.81. C) 
Volcano plot displaying the differentially expressed genes between VAP and No-VAP patients in 
monocytes and macrophages. D) Ingenuity Pathway Analysis (IPA) of key canonical pathways 
and upstream cytokines based on differential gene expression analysis in monocytes and 
macrophages of patients who develop VAP versus those who do not, with adjusted p-values < 
0.05. Only significant pathways (IPA Z-score of >2 or <-2 and overlap p-value <0.05) are shown. 
E) Volcano plot displaying the differentially expressed genes between VAP and No-VAP patients 
in neutrophils. F) IPA of canonical pathways and upstream cytokines based on differential gene 
expression analysis in neutrophils of patients who develop VAP versus those who do not, with 
adjusted p-values < 0.05. Only significant pathways (IPA Z-score of >2 or <-2 and overlap p-value 
<0.05) are shown. All pathways and cytokines are shown in Supplementary data files 5 and 6. 
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Figure 5: Temporal dynamics of the host response to VAP 
A) Heatmap of the top 50 differentially expressed genes by adjusted P-value between COVID-19 
patients who developed VAP at the “early” time-point (blue) versus the “late” time-point (yellow) 
from bulk RNA-seq. B) Gene set enrichment analysis (GSEA) based on differential gene 
expression of VAP patients at the “early” vs “late” time-point from bulk RNA-seq. GSEA results 
were considered significant with an adjusted P-value <0.05. C) Ingenuity Pathway Analysis (IPA) 
of upstream cytokines based on differential gene expression analyses of VAP patients at the 
“early” vs “late” time-point from bulk RNA-seq. IPA results were considered significant with a Z-
score absolute value >2 and overlap P-value <0.05. (D-E) Ingenuity Pathway Analysis (IPA) of 
key canonical pathways based on differential gene expression analysis in monocytes and 
macrophages (D) or neutrophils (E) from scRNA-seq of patients who develop VAP versus those 
who do not, with adjusted p-values < 0.05. Only significant pathways (IPA Z-score of >2 or <-2 
and overlap p-value <0.05) are shown. All pathways and cytokines are shown in Supplementary 
data files 2, 3, 5, and 6. (F-I) Longitudinal analysis of selected pathway expression in VAP (blue) 
versus No-VAP (green) patients from bulk RNA-seq samples taken from time of intubation to 
onset of VAP for all patients. Pathway Z-scores were calculated by averaging Z-scores for the top 
20 leading edge genes of each pathway, determined by the results of GSEA comparing VAP 
versus No-VAP patients at the “early” time-point. Multiple Z-scores per patient at a given time 
interval were averaged so that each patient corresponds to one datapoint at each interval. 
Samples from day 21+ after intubation are not shown due to a lack of these later time-points in 
the No-VAP group. VAP onset in these patients ranged from 10-39 days post intubation. Selected 
pathways are innate immune system (F), neutrophil degranulation (G), cytokine signaling (H), and 
adaptive immune system (I). Box plots represent the median and range. Statistical significance 
was determined by two-way ANOVA, and interaction p-values are shown.   
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Figure 6: Lung microbiome community collapse precedes VAP in COVID-19 patients.  
(A) SARS-CoV-2 viral load (reads per million sequenced, rpM) over time by days since intubation 
in patients who develop VAP vs those who do not. For plotting purposes, log(rpM+1) was used to 
avoid negative values. Lung microbiome (B) bacterial diversity (Shannon’s Index) and (C) 
b-diversity (Bray Curtis Index, NMDS scaling) in COVID-19 patients with relation to VAP 
development over time by days since intubation. Box plots represent the median and range (A-
C). Statistical significance was determined by two-way ANOVA. P-values <0.05 were considered 
significant.  
 
 

 
Figure 7: Mechanistic hypothesis of secondary bacterial pneumonia susceptibility in 
patients with COVID-19.   
Individual immune responses to SARS-CoV-2 infection drive a restructuring of the microbial 
community and increase susceptibility to VAP. Those predisposed to VAP have increased type I 
interferon responses and dysregulated antibacterial immune signaling characterized by impaired 
macrophage, neutrophil and T cell activity, decreased TLR signaling and impaired activation of 
key cytokines important for pathogen defense including IL-1, IL-6, IL-8, TNF, and IL-17. This state 
of suppressed immunity disrupts the lower respiratory tract microbiome, predisposing to 
outgrowth of bacterial pathogens and VAP. 


