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Facial expressions distort visual cues for identification in
two-dimensional images. Face processing systems in the
brain must decouple image-based information from
multiple sources to operate in the social world. Deep
convolutional neural networks (DCNN) trained for face
identification retain identity-irrelevant, image-based
information (e.g., viewpoint). We asked whether a
DCNN trained for identity also retains expression
information that generalizes over viewpoint change.
DCNN representations were generated for a controlled
dataset containing images of 70 actors posing 7 facial
expressions (happy, sad, angry, surprised, fearful,
disgusted, neutral), from 5 viewpoints (frontal, 90° and
45° left and right profiles). Two-dimensional
visualizations of the DCNN representations revealed
hierarchical groupings by identity, followed by
viewpoint, and then by facial expression. Linear
discriminant analysis of full-dimensional representations
predicted expressions accurately, mean 76.8% correct
for happiness, followed by surprise, disgust, anger,
neutral, sad, and fearful at 42.0%; chance ≈14.3%.
Expression classification was stable across viewpoints.
Representational similarity heatmaps indicated that
image similarities within identities varied more by
viewpoint than by expression. We conclude that an
identity-trained, deep network retains
shape-deformable information about expression and
viewpoint, along with identity, in a unified
form—consistent with a recent hypothesis for ventral
visual stream processing.

Introduction

Historically, the neural processing of facial expression
and identity were considered wholly separate. This
conclusion was based on early neuropsychological
case studies of patients who could recognize faces,

but not facial expressions (e.g., Kurucz & Feldmar,
1979), and conversely, on patients who could recognize
facial expressions, but not identify faces (e.g., Bruyer
et al., 1983). This double dissociation led researchers
to conclude that facial expression and face identity are
perceived and represented independently. Accordingly,
in Bruce and Young’s 1986 model (Bruce & Young,
1986), view-dependent descriptions of faces feed into
specialized processes for the analysis of facial speech,
expression, and identification.

With the benefit of additional evidence from
functional neuroimaging, Haxby, Hoffman, and
Gobbini (2000) proposed a distributed model of face
processing. In this model, invariant aspects of a face
(e.g., identity) are processed in the fusiform face area
(FFA) in the ventral visual stream, whereas changeable
aspects of a face (e.g., expression, gaze, viewpoint/pose)
are processed in the posterior superior temporal sulcus,
in the dorsal visual stream. This separated processing of
facial identity from expression is functionally consistent
with earlier work (Bruce & Young, 1986).

Since then, the assumption that facial expression and
identity processing are carried out independently has
been reassessed. Calder and Young (2001), for example,
showed that expression and identity can be modeled
in a unified visual representation, with only partial
dissociation. Their model was based on a principal
component analysis (PCA) of face images that varied in
identity and expression. PCA, applied to these images,
generated PCs that coded identity, expression, or both.
In the 1990s, image-based PCA was considered a highly
effective computational model for face recognition and
was used widely in commercial face recognition systems.
However, image-based PCA operates in a viewpoint-
and illumination-dependent way. It is, therefore, limited
as a model of human face perception.

More recently, Duchaine and Yovel (2015) proposed
modifications of the Haxby model (Haxby et al., 2000)
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to suggest that the ventral stream processes shape and
form information (including identity and some aspects
of expression), whereas the dorsal stream processes
dynamic information from faces. This revision is based
on findings suggesting that the ventral stream’s FFA
may contribute to the perception of changeable, as well
as invariant, aspects of a face—for example, changes
in the “shape” of a face that might be due to facial
expressions.

Evidence for the influence of shape information in
the FFA comes from studies measuring neural activity
in response to facial expression (Fox et al., 2009; Ganel
et al., 2005). Their findings indicate that FFA responses
differentiate for distinct facial expressions. Further,
neural activity in the FFA increases along with the
intensity of facial expressions (Surguladze et al., 2003).
This may be caused by changes to the shape of a face as
increase expressions become more intense. According
to Duchaine and Yovel’s (2015) proposal, expression
changes cause shape changes that are processed in the
FFA.

The reevaluation of the two-stream hypothesis raised
the possibility that the ventral stream contributes
more to the perception of facial expression than
previously thought. Moreover, experimental results
have suggested that the neural representations
of identity and expression might be linked in
ventral stream processing—potentially mediated
by the viewpoint of the face. Expression and
viewpoint perception are considered dorsal stream
processes because both expression and viewpoint
change the shape of a face, though in different
ways. Expression deforms the face itself, whereas
viewpoint changes the shape of the two-dimensional
projection onto the retina, which is experienced by a
viewer.

Although Calder and Young (2001) showed that
image-based PCA can encompass expression and
identity information in a unified representation, this
representation cannot support recognition over changes
in viewpoint. By contrast, current DCNN-based
computational models of face recognition support
face recognition across changes in viewpoint. The
face representations generated from these networks
might be used to address the question of whether
identity and expression information can co-exist in a
unified and generalizable representation of the face.
DCNNs operate using cascaded convolutional layers,
with millions of non-linear computations. These layers
first expand the representation, and then condense it
into a compact face descriptor. The representation
that emerges from a DCNN trained for face identity
retains both invariant (identity, gender) and changeable
(viewpoint, illumination) aspects of faces (Hill et al.,
2019; O’Toole et al., 2018; Parde et al., 2017).

Given that the deep convolutional neural network
(DCNN) codes retain aspects of image information,

examining whether expression information is likewise
retained in these codes is pertinent. To date, the
representation of expression in facial identification
DCNNs has not been explored. Moreover, DCNNs
have an added benefit of identifying faces accurately
over image variation (e.g., viewpoint). This advantage
allows us to probe expression representations over
changes in viewpoint in the context of an identity-
trained network. We expect that a DCNN will retain
information about facial expression for two reasons.
First, research has shown that, in addition to identity
information, DCNN face representations also retain
data about subject characteristics, including sex
(Hill et al., 2019) and social traits (Song et al., 2017,
Parde et al., 2019), as well as image characteristics,
such as illumination and viewpoint (Parde et al.,
2017). Second, in a visual sense, facial expressions
are not specific to individuals. This makes expression
a source of face variation that the identity-trained
network has to manage, analogous to viewpoint or
illumination.

To explore the representation of expression and
viewpoint in a neural network trained for identity, we
analyzed the network’s output. The output was defined
as the unit responses at the penultimate layer of the
network. We will refer to this output as the “face-image
representation.” This representation is analogous to
an ensemble of neural unit responses for identity. We
analyze these top-layer unit responses in three steps.

First, we visualized the expression and view
information present in a face space (Valentine, 1991). If
face images that vary on particular dimensions (e.g.,
expression) are represented more similarly (i.e., closer
together in the space defined by the full-dimensional
descriptor vectors), it will be reflected by their proximity
in a two-dimensional face space. Second, because face
space visualization only provides information about the
most salient elements of the space, next we considered a
method for visualizing the full-dimensional face space.
We used a representation similarity map to evaluate the
influence of particular expression and viewpoint classes
on the face-image representation (Kriegeskorte et al.,
2008). If expression information is found reliably in the
identity representation, it is worth exploring whether,
and how, this expression representation is mediated by
the viewpoint of a face in an image.

Third, we used linear classifiers, applied to the face-
image representations in the high-dimensional space, to
predict seven facial expressions from viewpoint-variable
face images. This method provides the strongest and
most quantitatively grounded estimate of how well
expression is represented in the network-generated
face-image descriptor. Above-chance expression
classification would indicate that DCNN-generated
face-image representations retain accurate information
about expression. Generalization of expression
classification over viewpoint would indicate that the
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Figure 1. An example of image variation for one identity in the KDEF dataset. Image IDs, from left to right: F02ANFL, F02DIHL, F02HAS,
F02SUHR, F02SAFR.

network retains this information in viewpoint-variable
images.

As we shall see, a DCNN trained for face
identification retains expression information. The
quality of expression information varies across
expressions in a manner comparable to human
expression classification results (Matsumoto & Hwang,
2019). Expression information also generalizes over
viewpoint.

General methods

Dataset

Our stimuli consisted of 4,060 images of 58 actors
from the Karolinska Directed Emotional Faces
(KDEF) (Lundqvist et al., 1998) database. Each actor
posed seven unique expressions (happiness, fear, anger,
sadness, surprise, disgust, and neutral), which were
photographed over five viewpoints (frontal, 90° left and
right, 45° left and right). This resulted in 35 images
per identity. All viewpoint and expression conditions
were captured in two sessions for a total of 70 images
per identity. Figure 1 shows an example of the views
and expressions. All available images of the following
identities from KDEF were used for analyses: F02 to
F09, F12, F14 to F19, F21 to F29, F32 to F35, M01 to
M20, M23, M26 to M33, and M35.

DCNN specifications

All simulations were conducted on a ResNet101-
based DCNN (Ranjan et al., 2017). The network was
trained on the Universe dataset, which is a mixture
of three datasets (UMDFaces Bansal et al. 2017;
UMDVideos Bansal et al., 2017; and MS1M Guo et
al., 2016). The dataset includes in-the-wild images and
video frames that vary widely in imaging condition
(pose, illumination, etc.). In total, 5,714,444 images
were used in training. A Crystal Loss (L2 Softmax)

normalization function was used in the network
(Ranjan et al., 2018).

DCNN face representation

The KDEF images were processed by the DCNN to
produce a 512-dimensional “top-layer” feature vector
for each image. All analyses were conducted on these
top-level representations.

Visualizing expression and
viewpoint in the face space

The goal of this visualization was to get a first look at
the structure of a face space that contains information
about identity, expression, and viewpoint. To that end,
we visualized the face space to highlight how these face
attributes are organized in the space.

Procedure

Unit-normalized face-image representations of all
images in the dataset were visualized using t-Distributed
Stochastic Neighbor Embedding (t-SNE; Maaten &
Hinton, 2008). This dimensionality reduction technique
projects the 512-dimensional feature vectors into a
lower-dimensional space, while preserving the relative
distances between points in the full dimensionality. The
output of the t-SNE was then plotted to visualize the
face space created by the face-image representations.
We used a Barnes-Hut implementation of t-SNE with
perplexity set to 30, following the advice of Hill et al.
(2019).

Results

Figure 2 shows a t-SNE visualization of the
DCNN face-image representations, color-coded by
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Figure 2. A visualization of the two-dimensional t-Distributed
Stochastic Neighbor Embedding (t-SNE) projections of image
representations for the KDEF dataset (color-coded by identity)
shows that identities are well-separated by the network. Note:
because there were more identities than colors, some colors
were used for two identities.

identity.1 The DCNN clusters face images by identity
(color-constant groups) accurately, despite viewpoint
and expression variability. Within each identity cluster,
Figure 2 also shows two groups of images, which we
consider next.

To examine the organization of expression and
viewpoint within an identity cluster, we zoomed-in
on individual identities. Two typical example identity
clusters are depicted in Figure 3A and B. For each of
these identity clusters, the space cleanly divides face
images into two viewpoint groups: near-frontal images,

which include frontal and 45° profile images, and 90°
profile images. This bifurcation can be seen in Figure 2
as the cleaving of images within an identity cluster into
two subclusters. The figure shows consistent bifurcation
across all identities in the dataset.

Combined, the resulting structure of clusters in the
two-dimensional projection reveals three things. First,
the face images in the space clearly cluster by identity.
Second, within individual identity clusters, near-frontal
images are separated from profile images. Third, within
the viewpoint bifurcation groups, images loosely cluster
by facial expression (Figure 3).

These two-dimensional projections offer a first look
at the structure of the face space created by the DCNN.
Next, we turn our attention to a visualization analysis
of full-dimensional representation to examine the
organization of expression and viewpoint variation in
the similarity space.

Organized representational
similarity map

We examined single identities using representational
similarity heatmaps, organized by expression and
viewpoint (Kriegeskorte et al., 2008). If the two-
dimensional visualizations (Figure 3) accurately reflect
the image representations in the full-dimensional
space, we would expect the following. The most similar
images of an identity would be those taken from
near-frontal viewpoints. Differences between discrete
expressions would be smaller, relative to differences
between viewpoint classes. The heatmaps would also
indicate whether this principle of representational
similarity (i.e., viewpoint differences more dissimilar
than expression differences) operates consistently across
expressions.

Figure 3. Two example identities in the t-SNE projection. Each panel (A and B) shows one identity. A hand-drawn blue line shows that
the near-frontal images can be separated from profile images of the identity in the face space. Circles illustrate an example of
expression clustering within viewpoint groups.
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Figure 4. Representational similarity maps comparing representations of 70 images of 4 randomly selected, individual identities.
Heatmaps were organized first by expression, then by viewpoint within each expression. The pattern of similarity indicates that, for all
identities, and all expressions, representations of images in near-frontal viewpoint groups are represented more similarly than
full-profile viewpoint images.

Procedure

We computed the similarity of all possible pairs
of full-dimensional representations of images for all
identities in the KDEF dataset. Similarity was defined
as the cosine between representation vectors. Because
the DCNN produces a normalized unit-length output,
cosine was an appropriate distance measure. Each
heatmap is made from the DCNN’s representations of
70 images of a single identity (7 expressions taken from
5 viewpoints in 2 sessions). The heatmaps are organized
first by expression, then by viewpoint condition within
each expression.

Results

Figure 4 shows the similarity heatmap for images
of four example identities. The heatmaps confirm
the organization seen in the t-SNE face space.
First, representations of individual identities remain
consistent across variations in expression. The example
identities are typical of all identities in the KDEF
dataset.

Second, viewpoint variation dominates both
within and across expression classes, as evidenced
by the “ring” of dissimilarity in the comparison of
extreme profiles to near profiles in every expression
class.

Predicting facial expressions from
identity representations

The primacy of viewpoint in organizing images in
the DCNN space makes it difficult to interpret the

structure of expression within individual identities, and
across the entire KDEF dataset. Therefore, we used a
pattern classification approach to determine the quality
of expression information retained in the face-image
representation.

Procedure

Expression predictions were made by applying linear
discriminant analysis (LDA) on the 512-dimensional
face-image representations. Specifically, linear classifiers
were trained to identify seven expressions across all
five viewpoints, using the face-image representation.
Separate linear discriminant analysis classifiers were
trained for each of the five viewpoints, holding out the
other viewpoints. The linear discriminant analyses were
tested on all expressions and remaining viewpoints.
In each case, classification was cross-validated by
identity, whereby a classifier was trained on images of
all-but-one identity, and was tested on the held-out
identity. This process was repeated for each viewpoint
classifier, holding out one identity at a time, until all
identities were tested. Expression classification was
evaluated as percent correct (chance performance ≈
14.3%).

Results

All expressions in the dataset were classified at levels
well above chance (Figure 5). These computational
results mimic the most consistently found features of
human expression recognition. Specifically, happiness
has been found to be the most recognizable expression
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Figure 5. Expression classification results for the KDEF dataset using deep features shown by viewpoint and expression. All expressions
are classified above chance. Note that chance performance, indicated by the dashed line on the figure, is approximately 14.3%.

and fear is often found to be the least recognizable
expression Mancini et al., 2018; Matsumoto & Hwang,
2019; Wells et al., 2016. The mean standard error of
predictions across expressions was 0.031.

Although human facial expression perception has
been studied extensively over the last few decades,
surprisingly little is known about the robustness of
expression perception over changes in viewpoint. Here,
we examined the ability of the DCNN to generalize
expression perception over viewpoint change. Figure 5
shows that expression classification accuracy was
roughly equivalent across viewpoint variation. The
mean standard error of predictions across viewpoints
was 0.048, indicating that there is no real difference
between classification performance with any particular
viewpoint class. Note again that all classification
conditions were above chance.

Discussion

This study offers a proof-of-principle that expression,
similar to other identity-irrelevant face information
(illumination, viewpoint), can be coded in a single
representation of a face image computed by neural-like
operations in a deep network (Hill et al., 2019; Parde
et al., 2017). The presence of this shape-deformable,
non-identity information in a deep network trained for
identification replicates, and expands on, two findings
from previous studies. First, it shows that a high-level
visual system, based on nonlinear combinations of
low-level visual features, can co-represent different
types of information in a single set of neural-like units
(Parde et al., 2020). Second, it does so in a way that
reinforces a hierarchical relationship between low-level

visual information (viewpoint) and the categorical
representation (identity) (Hong et al., 2016, 2019).

The DCNN’s representation of identity is highly
and consistently accurate. As with identity, the
representation of expression in the DCNN is likewise
robust to image-dependent viewpoint change (Parde
et al., 2017). This combined representation of identity
and expression emerges in artificial neurons. The
question at the core of this work is whether the DCNN
representation is relevant for understanding ventral
visual stream processing. There are two arguments for
why the DCNN might be relevant. First, as noted by
Duchaine and Yovel (2015), there is evidence in the
neuroscience literature for the co-existence of identity
and expression information in the FFA in the ventral
visual stream.More generally, the proposal of Duchaine
and Yovel is based on the idea that the FFA supports
aspects of dynamic face processing, because of its
general role in processing face shape information. This
shape information is relevant for accurate classification
and prediction of both facial expression and viewpoint.
The DCNN is able to encode identity, while maintaining
and effectively managing information about facial
expression and viewpoint. This is an advantage over
image-based PCA, which is able to encode both identity
and expression, but cannot operate over changes in
viewpoint. Therefore, the unique representation that
emerges from the DCNN allows us to simultaneously
examine categorical face information (identity), as well
as shape information (e.g., expression, viewpoint) in
one set of neural-like units. This is not to say that the
results presented here offer a direct analogy of visual
processing in the ventral stream, but rather to suggest
that because this category-trained system is able to
simultaneously encode category-irrelevant information
in its representation—as evidence has suggested for
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ventral stream processing (Hong et al., 2016; Lindsay,
2020)—it is a hypothesis-grounded model of high-level
visual processing in face areas of the ventral stream.

The second argument is that the pattern of facial
expression classification in the DCNN mirrors human
results. For both humans and the network, happiness
is classified most accurately, and fear is classified the
least accurately (Mancini et al., 2018; Matsumoto &
Hwang, 2019; Wells et al., 2016), with other expressions
in between. Expression classification accuracy for
this DCNN is significantly lower in comparison to
human accuracy (Hess et al., 2007; Matsumoto &
Hwang, 2019). However, the pattern of expression
classification matches that produced by a single,
identity-driven representation of a face image. This
accord between DCNNs and humans is surprising,
because facial expressions are biologically important
sources of information, and the network operates
outside of this context using only visual information.
The artificial ventral visual stream modeled by the
DCNN retains accurate expression information across
viewpoint changes, suggesting that perhaps some
aspect of expression perception can be attributed to
visual features of the input alone. Indeed, face images
provide visual features useful for the perception of
both identity and expression, and the availability of
this information can be used by the ventral visual
stream (and appropriate models) even beyond the
identification and expression classification tasks. This
does not imply that facial identity and expression
perception rely solely on ventral stream processing.
The DCNN merely demonstrates that a ventral-like
identification system, operating alone, can support
facial expression perception across realistic changes in
viewing conditions, and can do so in a way that mirrors
the pattern found in human expression perception.

Despite the importance of understanding “in-the-
wild” expression perception, remarkably little is actually
known about expression classification performance over
changes in viewpoint. Studies examining this in humans
have been sparse and have yielded contradictory results
(Hess et al., 2007; Matsumoto & Hwang, 2019). In the
DCNN, classification accuracy of facial identity and
expression is remarkably stable across viewpoint—
despite extreme viewpoint variation substantially
altering an image of a face (e.g., visible surface area,
availability of facial features, and expression cues).
That does not mean, however, that information about
viewpoint is lost in the representation. As noted
elsewhere, DCNNs trained for identity retain several
types of identity-irrelevant information in their final
representations, including viewpoint (Hill et al., 2019;
Parde et al., 2017, 2019).

In this study, we show that expression and
viewpoint are preserved in a DCNN-generated
representation of a face image. As demonstrated
in the t-SNE visualizations, they are commingled

and hierarchically organized in the representational
space created by the DCNN. The representational
similarity within images of single identities suggests
that the underlying ‘hierarchy’ is based on the
degree of alteration of the two-dimensional image
by each type of image variation. Extreme viewpoint
changes alter the DCNN representation more than
expression changes. Notwithstanding, identity
classification is not substantially affected by these
two-dimensional deformations, because identity
remains the most salient grouping principle in the
representation (Hill et al., 2019; Parde et al., 2017).
As such, there are no computational consequences for
preserving viewpoint and expression information in the
representation.

Why might this hierarchy of identity-irrelevant,
shape-related information occur in an identity
representation? In a system trained for identification,
the additional image-based information gleaned from
expression and viewpoint might offer shape cues
that are relevant for identification, albeit in different
ways. For expression, identity-specific facial features
can be accentuated or exaggerated by nonrigid facial
deformations needed to produce an expression (e.g., a
distinctive smile) (O’Toole et al., 2002; Yovel & O’Toole,
2016). For viewpoint, the two-dimensional shapes
projected onto the retina change with viewpoints.
This extra information has the potential to reveal
new cues to face identity (e.g., a nose becoming more
identifiable in profile). Viewpoint does not alter the
intrinsic shape of the face, but rather reveals intrinsic
face shape information as a result of specific image
conditions. The network may be able to leverage the
shape information available in an image to achieve
a more robust identity representation. The network
manages shape information from all of its sources,
perhaps because it is a basic component of the visual
stimulus that provides a richer context from which to
extract useful identity cues.

A system designed for identity classification clearly
does not compare with the complexity of processing
in the ventral visual stream. The goal of this study
was to examine whether an artificial visual system
can accommodate several types of face information,
including identity and expression. This could occur
via the computational processing in the system, the
richness of form information available in face images,
or both. It remains an open question whether it is
possible, by neuroscience-based techniques, to uncover
what the ventral stream is optimized to do, if indeed it is
optimized at all. This is why computational techniques
can help to illustrate possible outcomes of various types
of optimization schemes, and to note accord, or lack
thereof, with human perception. The DCNN shows
a hierarchy of face image information, and therefore
generates a hypothesis about ventral visual stream
representations of face information.
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A remaining challenge for understanding facial
expression perception, both computationally and
psychologically, is that current facial expression datasets
lack well-labeled, naturalistic (i.e., not acted) facial
expressions. These datasets will likely be available in the
near future, and will include richer visual information
in face images that will contribute to our understanding
of the relationship between human and machine face
processing.

In the context of a global brain system for facial
expression processing, the conclusions of this study in
no way preclude representations of facial expression
and viewpoint outside of the ventral visual stream. It
is well-established that the dorsal visual stream and
subcortical brain areas are involved in facial expression
processing. Subcortical areas (e.g., the amygdala)
process basic emotions and directed facial expressions
that signal fear, disgust, and other emotional
expressions associated with well-being (Gorno-Tempini
et al., 2001; Karow et al., 2001). Concomitantly, the
dorsal visual stream processes the visual motion signals
associated with facial expression and viewpoint. There
is important contextual information in emotional
faces, and we do not discount the contributions these
different brain areas make to the perception of facial
expression. Instead, we propose that it is possible
for a “ventral-like” identity system to form a single,
hierarchical representation that encodes identity,
expression, and viewpoint information.

What these findings imply for ventral stream
processing is the idea that low-level features are
maintained in a high-level categorical representation,
possibly because low-level information provides context
for understanding the categorical representation.
They suggest that some aspect of the what depends
on the how and where of the visual stimulus as a
whole. Whether this is specific to faces is unclear, but
it supports the consideration of shape information
(including expression and viewpoint) when investigating
face perception in the ventral visual stream.

Keywords: faces, expression, viewpoint, neural
network, ventral stream
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