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Abstract
Food–drug interactions are reported to have some impacts on the pharmacokinet-
ics and pharmacodynamics of various oral drugs. To better understand the effects 
of naringenin, one natural product in many fruits, on the pharmacokinetics of rivar-
oxaban, drug–drug interactions (DDIs) between naringenin and rivaroxaban in vitro 
were investigated in Sprague–Dawley (SD) rat liver microsomes. For the DDIs in vivo, 
12 male SD rats were randomly divided into the experimental group and the control 
group with six rats in each group. Rats in the experimental group were pre-treated 
with naringenin (10 mg/kg/day) for 2 weeks before the administration of rivaroxaban 
(10 mg/kg) by oral gavage, while the rats in the control group were given rivaroxa-
ban (10 mg/kg) only once. The plasma concentration of rivaroxaban in rats was then 
measured by UPLC-MS/MS. In vitro data indicated that naringenin could decrease the 
metabolic clearance rate of rivaroxaban with the IC50 value of 38.89 μM, and exhib-
ited a mixed inhibition to rivaroxaban (Ki =54.91 μM, aKi =73.33 μM, a = 0.74). In vivo 
data in rats revealed that as compared with that of the control group, the AUC(0–t) 
value of rats in the experimental group was increased from 2406.28 ± 519.69 μg/h/L 
to 4005.04 ± 1172.76 μg/h/L, the Cmax value was increased from 310.23 ± 85.76 μg/L 
to 508.71 ± 152.48 μg/L, and the Vz/F and CLz/F were decreased from 23.03 ± 4.81 L/
kg to 16.2 ± 8.42 L/kg, 4.26 ± 0.91 L/h/kg to 2.57 ± 0.73 L/h/kg, respectively. These 
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1  |  INTRODUC TION

Anticoagulants play an important role in many illnesses, and 
Vitamin K antagonists (VKAs), such as warfarin, have become the 
most frequently prescribed anticoagulant drugs for the prevention 
of thromboembolic events. However, VKAs still have many disad-
vantages which include multiple drug–drug interactions, high inter-
individual variation, susceptibility to genetic polymorphism, narrow 
therapeutic window with unpredictable pharmacokinetics and 
pharmacodynamics.1–4 Recently, direct oral anticoagulant (DOAC) 
has already overcome these limitations by targeting the single 
clotting factor (such as factor Xa or thrombin). Factor X is at the 
crossing point of the intrinsic and extrinsic coagulation pathway, 
which makes it plays a central role in the hemostasis and leads to 
the propagation and amplification of coagulation. At present, var-
ious anticoagulants have been extensively developed for the prin-
ciple of acting on the free and clot bound factor X and thus made a 
success in anticoagulation.5,6

Rivaroxaban is an oral, reversible, and highly selective inhib-
itor for factor X. The structural formula of rivaroxaban is shown 
in Figure  1. It has been approved for the application in clinical 
settings in many countries for the prevention of venous throm-
boembolism (VTE) in adult patients after elective hip or knee 
replacement surgery, as well as for the treatment of deep vein 
thrombosis (DVT), pulmonary embolism (PE), and thromboembolic 
disorders.7–10 Because of the predictable pharmacokinetics and 
pharmacodynamics characters, rivaroxaban has become more and 
more popular in clinics. It has been reported that rivaroxaban can 
be metabolized by two main routes: oxidative degradation of the 
morpholinone moiety (via CYP450-CYP3A4 and CYP2J2) and hy-
drolysis of the central amide bond and of the lactam amide bond 

in the morpholinone ring (CYP-independent).11 Consequently, 
some inducers or inhibitors of CYP450 are reported to have the 
properties of affecting the pharmacokinetics of rivaroxaban.12–14 
The elimination of rivaroxaban is mainly through the kidney, 
and two proteins, the hepatobiliary routes-transport proteins 
P-glycoprotein (P-gp) and the breast cancer resistance protein 
(BCRP), are the main molecules responsible for the active renal se-
cretion of rivaroxaban. Thus, inhibition of P-gp and BCRP can lead 
to the significantly decreased renal clearance rate and increased 
exposure of rivaroxaban.10,15 Recent study has revealed that the 
combination of ciclosporin (a P-gp inhibitor) with fluconazole (a 
CYP3A4 inhibitor) could observably increase the AUC and Cmax 
values of rivaroxaban through increasing the systemic exposure 
time and decrease in its renal clearance rate.16

Flavonoids are natural plant polyphenol compounds, which 
have many beneficial biochemical and pharmacological properties. 
Flavonoids can also be recognized as effective medicines for the 
prevention and treatment of many kinds of diseases. Naringenin, a 
representative of flavonoid, can be widely found in fruits, vegeta-
bles, and herbs. It possesses a great deal of biochemical and phar-
macological activities such as antioxidant and anti-inflammatory, 
and it can also protect the liver,17 induce cell apoptosis, and exhibit 
the anti-proliferation effect for cancer cells.18 These characteristics 
have granted its broad application in the clinic.

Food–drug interactions have already become one of the most 
essential factors that have impacts on the pharmacokinetics 
and pharmacodynamics of various oral drugs.19 It has been re-
ported that naringenin can influence the pharmacokinetics and 
metabolism of other drugs when co-administrated with those 
drugs metabolized by CYP3A4 (such as tofacitinib, ibrutinib, and 
felodipine).20–22 Considering that rivaroxaban can be influenced by 

Research Funding Project of Zhejiang, 
Grant/Award Number: LGD19H090001, 
LGD20H060001 and LGF21H310002; 
the 135 National Science and Technology 
Major New Drug Creation Project, Grant/
Award Number: 2017ZX09304026; the 
Capital Health Research and Development 
of Special, Grant/Award Number: 
Shoufa2016-1-4051

data indicated that naringenin had an inhibitory effect on the pharmacokinetics of 
rivaroxaban in rats, suggesting that the DDIs between naringenin and rivaroxaban 
might occur when they were co-administered in the clinic.
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inducers or inhibitors of CYP3A4,12,23,24 the purpose of the cur-
rent study is to evaluate whether some drug–drug interactions are 
existed between naringenin and rivaroxaban in rats both in vitro 
and in vivo.

2  |  MATERIAL S AND METHODS

The study was conducted in accordance with the BCPT policy for 
experimental and clinical studies.25

2.1  |  Chemicals and reagents

Diazepam (purity >98%) and rivaroxaban (purity >99%) were ob-
tained from J&K Scientific. Naringenin was purchased from the 
Beijing Sunflower. Reduced nicotinamide adenine dinucleotide phos-
phate (NADPH) was obtained from Roche Pharmaceuticals (Base). 
Chromatographic grade acetonitrile and methanol were purchased 
from Thermo Fisher Scientific. Purified water was collected through 
Milli-Q water purification system (Millipore). All other chemicals 
were of analytical grade or better.

2.2  |  Animals and treatment

Twelve male Sprague–Dawley rats weighing 230–250 g were pro-
vided by the experimental animal center of Wenzhou Medical 
University. Rats were housed under normal conditions with 
60% ± 5% humidity and a 12 h dark–light cycle at 25℃. Tap water 
and laboratory chow were provided ad libitum. Rats were handled 
daily for 1 week before initiating the experiment to minimize the 
nonspecific stress. All experimental produces were approved by the 
Animal Care and Use Committee of Wenzhou Medical University 
(approval No. wydw2019-650), and were in accordance with corre-
sponding guidelines of committee.

2.3  |  Instruments and operation conditions

UPLC-MS/MS system was used for the plasma sample separation 
and analysis. In detail, the chromatographic separation was per-
formed with ACQUITY UPLC HSS T3 column (2.1 × 100 mm, 1.8 μm) 
at 40℃. The mobile phase consisted of acetonitrile and water con-
taining 0.1% formic acid with a flow rate of 0.40 ml/min. It applied 
a method of gradient elute, where the acetonitrile started with 
30% (0–0.5 min), rapidly increased from 30% to 95% (0.5–1.0 min), 
maintained at 95% (1.0–2.0 min), and then decreased to 30% (2.0–
2.6 min). The running time for one separation was 3 min.

The positive multiple reaction monitoring (MRM) mode was 
used for the mass scanning on XEVO TQD triple quadrupole mass 
spectrometer (Waters Corp.), which was equipped with electrospray 

ionization (ESI). Detailed scanning parameters can be found in our 
recently reported method.26

2.4  |  In vitro pharmacokinetics

Incubation system was 190 μl and contained 100 mM of potassium 
phosphate buffer (pH 7.4), 1 mg/ml rat liver microsomes (RLMs, pro-
duced in the laboratory of Clinical Pharmacy of the Sixth Affiliated 
Hospital of Wenzhou Medical University20,27–29), and different con-
centrations of naringenin and rivaroxaban. The reaction was initiated 
after the 5 min pre-incubation at 37℃ in a shaking water bath and 
then launched by adding 10 μl NADPH with the final concentration of 
1 mM. Thirty minutes later, the reaction was stopped by adding 200 μl 
acetonitrile and 20 μl diazepam (served as internal standard, IS). After 
the centrifugation at 16,060 g for 5 min, 150 μl of supernatant was 
taken out and put into the sample bottle. Then 2 μl of the sample was 
collected for the injection and detection by UPLC-MS/MS.

Detailed usages of naringenin and rivaroxaban were as follow-
ing: nine concentrations of rivaroxaban (1, 2.5, 5, 10, 25, 50, 100, 
200 μM) were used for the determination of its Km value; 10 μM of 
rivaroxaban and a series of different concentrations of naringenin (1, 
2.5, 5, 10, 25, 50, 100 μM) were used for the calculation of its IC50 
value; and the inhibition type was determined by Lineweaver-Burk 
Plot with a series concentrations of rivaroxaban (5, 10, 20, 40 μM) 
and a series concentrations of naringenin (0, 10, 20, 40, 80 μM).

2.5  |  In vivo pharmacokinetics

Twelve SD rats were randomly divided into the experimental group 
(n  =  6) and the control group (n  =  6). Naringenin was dissolved in 
CMC-Na solution and used for the pretreatment of rats in the experi-
mental group with 10 mg/kg/day by oral gavage for 2 weeks. For the 
control group, rats only received equal amounts of 0.5% CMC-Na solu-
tion in the pre-treating time. Dimethyl sulfoxide (DMSO) was used for 
the dissolution of rivaroxaban and polyethylene glycol 200 was used 
for the following dilution to get a final concentration of 5% DMSO 
within it. Rats in each group were administered at a dose of 10 mg/
kg rivaroxaban with oral gavage, and 300 μl blood samples were then 
collected from tail veins at 0.083, 0.25, 0.5, 1, 2, 3, 4, 6, 8, 12, and 24 h. 
Blood samples were centrifuged at 1520 g for 10 min, and the super-
natant was then collected and stored immediately at −80℃ before use.

2.6  |  Plasma sample preparation

Collected rat plasma (100 μl) was mixed with 20 μl of 0.5 μg/ml IS 
and 200 μl acetonitrile, followed by vortexing for 30  s before the 
centrifugation at 16,060 g for 5 min. The supernatant was then used 
for sample injection and separation on XEVO TQD triple quadrupole 
mass spectrometer.
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2.7  |  Data analysis

GraphPad Prism 7.0 software (GraphPad Software Inc.) was used 
to calculate the enzyme kinetic parameters of substrates, includ-
ing IC50, Ki, and αKi. Linear Lineweaver-Burk plots were used to 

obtain enzyme inhibition modes. DAS (Drug And Statistics) soft-
ware (Version 3.2.8) was used for the calculation of pharmacokinetic 
characters which include the maximal plasma concentration (Cmax), 
the time to peal plasma concentration (Tmax), the apparent volume 
of distribution (Vz/F), the area under the plasma concentration-time 

F I G U R E  2 Typical MRM 
chromatograms of rivaroxaban and 
diazepam. Blank rat plasma (A), rat plasma 
spiked with Lower Limit of quantitation 
(LLOQ) rivaroxaban (B), rat plasma 
0.5 h after the oral administration of 
rivaroxaban (C), IS, internal standard
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curve (AUC), the elimination half-life (t1/2), the plasma clearance 
(CLz/F), and the mean residence time (MRT). The independent sam-
ple Student's t-test was used for the statistical comparisons within 
groups with SPSS software (Version 25.0; SPSS Inc.), and p < .05 was 
regarded as statistically significant.

3  |  RESULTS

3.1  |  In vitro pharmacokinetics of naringenin and 
rivaroxaban

In this study, we successfully developed a measurement method for 
rivaroxaban with UPLC-MS/MS technique. Figure 2 illustrates the 
typical UPLC-MS/MS chromatogram of blank plasma spiked with 
rivaroxaban and IS (diazepam). RLMs, endogenous substances, or 
metabolites in plasma exhibited no interference with the determi-
nation, indicating that the assay showed good specificity and well 

anti-interference performance. As shown in Figure 3, the Vmax and 
Km values of rivaroxaban were 4.35  pmol/min/mg and 18.40  μM, 
respectively. After adding various concentrations of naringenin, the 
metabolism of rivaroxaban was inhibited to some extent and in a 
dose-dependent manner with the IC50 value of 38.89 μM.

3.2  |  Inhibitory kinetics of naringenin on the 
rivaroxaban in RLMs

After the incubation of RLMs with different concentrations of rivar-
oxaban and naringenin, we characterized the main inhibition effects 
of naringenin on rivaroxaban. As shown in Figure 4, all the inhibi-
tion effects of naringenin were in dose-dependent manners in all 
concentration gradients. The Lineweaver-Burk Plot result indicated 
that naringenin exhibited a mixed inhibition effect on rivaroxaban 
with Ki and αKi (α  =  0.74) values were 54.91  μM and 73.77  μM, 
respectively.

F I G U R E  3 Michaelis–Menten curve of 
rivaroxaban metabolism in RLMs (A) and 
IC50 curve of naringenin inhibition on the 
rivaroxaban metabolism (B). (values are 
means ± standard deviations, n = 3)

F I G U R E  4 Inhibitory kinetics of 
naringenin on the rivaroxaban in RLMs. 
Michaelis–Menten curve of naringenin 
inhibition on rivaroxaban metabolism 
in the rat (A). Lineweaver-Burk plots of 
naringenin inhibition on rivaroxaban 
in RLMs (B). Slope of Primary Plot (C). 
Intercept of Primary Plot (D). Data are 
shown as the mean ± standard deviation 
of triplicate experiment. (values are 
means ± standard deviations, n = 3)



6 of 8  |     SHI et al.

3.3  |  Effect of naringenin on the in vivo 
pharmacokinetics of rivaroxaban

To better understand the in vivo inhibition effect of naringenin on 
rivaroxaban, six SD rats were pre-treated with continuous adminis-
tration of naringenin in 10 mg/kg/day for 2 weeks, and then gained 
10 mg/kg rivaroxaban by oral gavage. Compared with the control 
rats, experimental rats exhibited elevated plasma concentration-
time curves and significantly decreased Vz/F and CLz/F values 
(Figure 5 and Table 1). The values of AUC(0–t), AUC(0–∞), and Cmax of 
rivaroxaban in the experimental group decreased significantly by 
about 0.6-fold. On the contrary, the Vz/F and CLz/F values decreased 
significantly and there was no obvious change on the other param-
eters. These data inferred that naringenin could inhibit the metabo-
lism of rivaroxaban in rat in vivo.

4  |  DISCUSSION

Rivaroxaban has been widely used in clinical practice recently, and 
co-administration of rivaroxaban with other drugs has become more 
and more popular than ever. To better evaluate its pharmacokinetic 
characters, several LC-MS/MS methods have been developed for the 
determination of rivaroxaban in human blood samples.30–32 Recently, 
one liquid chromatography-tandem mass spectrometry method for 
the simultaneous detection of 3 oral anticoagulants, including rivar-
oxaban, has been reported with the run-time of 5 min and LOD of 
0.025 ng/ml.33 As compared, the running time for one separation in 
this study was validated with the retention time of rivaroxaban and 
diazepam (IS) was only 1.45 and 1.75 min, respectively, which is more 
time-saving than any previously proposed methods.

It has been reported that plenty of drugs, especially metabolized 
by CYP3A4 or P-gp, have impacts on the pharmacokinetics of rivar-
oxaban because rivaroxaban is also the substrate of CYP3A4 or P-
gp. For instance, when 10 mg of rivaroxaban was administered in 
combination with 200 mg ketoconazole once daily, the AUC value 
and Cmax value of rivaroxaban increased by 82% and 53%, respec-
tively. Whereas the body clearance rate was significantly reduced 
by 45%.34 Another example is that the systemic exposure of single-
dose rivaroxaban increased significantly with AUC and Cmax values 
increased by 150% and 60%, respectively, when co-administrated 
rivaroxaban with ritonavir. On the other hand, some inducers of 
CYP3A4 and P-gp could decrease the systemic exposure of rivar-
oxaban and reduce its anticoagulant effect. Co-administration of 
rivaroxaban with rifampicin, one combined strong inducer for both 
CYP3A4 and P-gp, could decrease the value of AUC and Cmax of ri-
varoxaban by 50% and 22%, respectively.35

As a combined inhibitor for CYP3A4 and P-gp, naringenin ex-
hibits some interactions with many drugs when co-administered. It 
was reported that naringenin could inhibit the metabolism of tofac-
itinib by suppressing the CYP3A4 activity. Compared with the con-
trol group, pre-treatment of rats with naringenin for 2 weeks could 
increase the AUC, MRT, and Tmax values of tofacitinib by 1.76-fold, 
1.60-fold, and 4.00-fold, respectively, but decreased its CLz/F by 
1.69-fold.20 Similarly, metabolisms of both ibrutinib and felodipine 
were inhibited, and their systemic exposures were also increased 
when co-administrated them with naringenin. It was supposed that 
naringenin might affect these two drugs by inhibiting the CYP3A4-
mediated metabolism.21,22 On the other hand, naringenin owns many 
biochemical benefits for human health. It shows strong antioxidation 
effects by enhancing the antioxidant defenses and scavenging the 
reactive oxygen species. It also has a great ability to modulate signal-
ing pathways related to fatty acids metabolism, thus favors the oxi-
dation of the fatty acids, and exhibits effects on anti-inflammatory, 
anticancer, and anti-proliferation.36 In addition, naringin has great 
potential for the treatment of cardiovascular disease because many 
in vitro studies and in vivo animal models have demonstrated that 
naringenin played an active role in the inhibition of atherosclerot-
ic.37–40 Moreover, naringenin could protect the recovery of isch-
emia/reperfusion (I/R) injury by inhibiting atherosclerotic and could 

F I G U R E  5 Mean plasma concentration–time curves of 
rivaroxaban in rats in Control group and Experimental group (values 
are means ± standard deviations, n = 6)

TA B L E  1 The main pharmacokinetic parameters of rivaroxaban 
in Control group and Experimental group (n = 6, mean ± SD)

Parameters Control group
Experimental 
group

AUC(0–t) 
(ng·ml−1·h−1)

2406.28 ± 519.69 4005.04 ± 1172.76*

AUC (0–∞) 
(ng·ml−1·h−1)

2438.52 ± 529.29 4142.16 ± 1150.79*

MRT(0–t) (h) 5.97 ± 0.34 6.53 ± 1.41

MRT (0–∞) (h) 5.28 ± 0.44 7.43 ± 2.32

t1/2z (h) 3.77 ± 0.36 4.44 ± 1.95

Tmax (h) 3.4 ± 0.548 2.8 ± 0.45

Vz/F (L·kg
−1) 23.03 ± 4.81 16.2 ± 8.42*

CLz/F (L·h
−1·kg−1) 4.26 ± 0.91 2.57 ± 0.73*

Cmax (ng·ml
−1) 310.23 ± 85.76 508.71 ± 152.48*

Data are expressed as mean ± SD.
*Significantly different from control, p < .05.
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improve the cardiac function and structure in the diabetic mice 
model.41 Based on above biochemical and pharmacological charac-
teristics of naringenin, it is possible to have a co-administration of 
naringenin with rivaroxaban in clinic, especially for the treatment of 
cardiovascular disease. Therefore, investigating the DDIs between 
naringenin and rivaroxaban might have significant theoretical and 
clinical application value.

In this study, we investigated the DDIs between naringenin and 
rivaroxaban both in vitro and in vivo. In vitro pharmacokinetics data 
illustrated that the inhibition of naringenin on rivaroxaban was iden-
tified as a mixed inhibition with an IC50 value of 38.87 μM. After the 
pretreatment of rat with naringenin for 14 days, the experimental 
group showed that the AUC value and Cmax value of rivaroxaban in-
creased by 1.7 times and 1.6 times, but the values of both Vz/F and 
CLz/F were significantly decreased, as compared with those of the 
control group (Table 1). The in vitro and in vivo data were consistent 
and indicated that naringenin has a relatively strong inhibition effect 
on the metabolism of rivaroxaban. Rivaroxaban has been reported to 
be a combined substrate for both CYP3A4 and P-gp, and naringenin 
is known as an inhibitor of CYP3A4 and P-gp. We speculated that 
naringenin might affect the metabolism of rivaroxaban by inhibiting 
the function of CYP3A4 or P-gp, which is similar to the activities of 
tofacitinib, ibrutinib, and felodipine. Recently, we have reported the 
interactions between rivaroxaban and ticagrelor, which are another 
kind of widely used drugs metabolized by CYP3A4 and as well as 
a substrate and inhibitor of CYP3A4 and P-gp.26 Similar to narin-
genin, ticagrelor could increase the AUC and Cmax values of rivarox-
aban by more than twice and decrease its metabolic clearance rate 
in rats. Taken together, we speculated that DDIs might occur with 
increased incidence rate of adverse reactions when rivaroxaban is 
co-administered with drugs metabolized by CYP3A4 in the clinic.

Our experiment also has a few limitations. As this study was 
based on animals, it cannot mimic the true state of the DDIs in the 
human body completely. More work needs to be carried out in the 
future to investigate the putative interactions between naringenin 
and rivaroxaban in the human body.

In conclusion, with UPLC-MS/MS detection method for rivarox-
aban in RLMs and blood plasma, we determined the impact of nar-
ingenin on the pharmacokinetic and pharmacodynamic parameters 
of rivaroxaban both in vitro and in vivo. Our data indicated that nar-
ingenin has a suppressive impact on the rivaroxaban metabolism by 
increasing the systemic exposure time of rivaroxaban and reducing 
its body clearance rate in rats. These data suggest that the full con-
sideration of drug–drug interactions might be taken when prescrib-
ing the co-administration of naringenin and rivaroxaban in the clinic.
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