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Abstract: Thirty years after its discovery, the hepatitis C virus (HCV) remains a leading cause of liver
disease worldwide. Given that many countries continue to experience high rates of transmission
despite the availability of potent antiviral therapies, an effective vaccine is seen as critical for the
elimination of HCV. The recent failure of the first vaccine efficacy trial for the prevention of chronic
HCV confirmed suspicions that this virus will be a challenging vaccine target. Here, we examine
the published data from this first efficacy trial along with the earlier clinical and pre-clinical studies
of the vaccine candidate and then discuss three key research directions expected to be important
in ongoing and future HCV vaccine development. These include the following: 1. design of novel
immunogens that generate immune responses to genetically diverse HCV genotypes and subtypes,
2. strategies to elicit broadly neutralizing antibodies against envelope glycoproteins in addition to
cytotoxic and helper T cell responses, and 3. consideration of the unique immunological status of
individuals most at risk for HCV infection, including those who inject drugs, in vaccine platform
development and early immunogenicity trials.

Keywords: hepatitis C virus (HCV); vaccine; immunity; T cells; B cells; antibodies; chronic infection;
clinical trial

1. The Ongoing Need for a Vaccine

Thirty years ago, the discovery of the small, positive-stranded RNA virus responsible
for hepatitis C provided the means to halt disease transmission by blood transfusion and
fostered optimism that a vaccine may soon follow [1]. To date, however, no vaccine is
available, and the hepatitis C virus (HCV) remains a major global public health concern [2].
An estimated 71 million people are currently infected, and nearly 400,000 individuals
die each year due to HCV-associated liver fibrosis and carcinoma [2,3]. New infections
continue to occur at a high rate, with an estimated 1.7 million occurring in 2015 [3].

More recently, approval of breakthrough oral direct-acting antiviral (DAA) therapies
capable of curing over 95% of chronic HCV infections of any genotype has kindled hope
that the global HCV pandemic might be ended through treatment [4]. This led the WHO, in
2016, to set a goal to eliminate HCV as a global public health problem by 2030, specifically
by treating 80% of those infected and reducing new infections by 90% [5]. However, the
incidence of HCV infections has continued to rise in many countries since the introduction
of DAAs. In the US, rates of reported and estimated acute infections nearly doubled
in the 5 years following the first approval of interferon-free DAA regimens in 2013 [6].
Challenges to HCV elimination by treatment include (1) failure to recognize most infections
due to lack of overt symptoms and deficient screening of those at risk [7], (2) increasing
difficulty reaching vulnerable populations after initial waves of treatment in the “easiest”
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patients already engaged in healthcare [8], (3) high costs of widespread screening and
treatment [9], (4) emergence of viral resistance [10,11], and (5) importantly, re-infections
following antiviral cure among individuals with ongoing exposure [12]. For these reasons,
a prophylactic vaccine is urgently needed to complement ongoing treatment programs in
order to meet the imperative to eliminate the global public health burden of HCV [13,14].

HCV Vaccine Feasibility and Development

HCV is recognized as a challenging vaccine target due to its vast genetic diversity
and propensity to evade immunity, but several features of its natural history suggest that
vaccination may be feasible. First, because the major health complications of HCV such
as cirrhosis or hepatocellular carcinoma arise only after years of persistent viremia [15], a
successful HCV vaccine would not necessarily be required to prevent infection. Rather, it
must induce immune memory responses capable of clearing infection prior to the onset of
adverse outcomes. Second, 20–30% of infected individuals spontaneously resolve viremia
in the first 6–12 months, and, if reinfected, these individuals rapidly clear viremia in 80% of
cases [16]. This supports the notion that induction of protective adaptive immune memory
is possible.

These observations have spurred intensive efforts to identify immune mechanisms
of natural viral clearance that might guide vaccine design. Numerous lines of evidence
point to a central role of cellular immunity in controlling HCV infection. In acute HCV
infection, after a 4–12 week incubation period of high-level viral replication, the appearance
of highly functional and broadly reactive CD4+ T helper cells [17,18] and CD8+ cytotoxic T
cells [19–21] targeting primarily nonstructural proteins of HCV (NS3-NS5) in the peripheral
blood correlates with rapid reductions in viral load in subjects that go on to resolve infec-
tion [22,23]. Depletion of either CD4+ or CD8+ cells in a chimpanzee model of reinfection
demonstrated that both populations are required for viral clearance [24,25]. Similar initial
responses may be detected early in persisting infections, but HCV-specific CD4+ T cell
populations soon decline and become nearly undetectable [17,26]. This lack of CD4+ T cell
help is thought to contribute to an impaired HCV-specific CD8+ T cell response [24] with
reduced cytokine production, cytotoxicity, and proliferative capacity seen in humans with
chronic infection [27,28].

The role of humoral immunity in controlling HCV infection has been less clear. Early
evidence of viral clearance in seronegative patients and those with agammaglobulinemia,
as well as lack of correlation of development of neutralizing antibodies with viral clearance,
suggested that antibody responses may be dispensable and of limited value for resolution
of infection [29–33]. On the other hand, passive administration of neutralizing antibodies
could prevent infection in mouse and chimpanzee models [34–36]. Moreover, active
vaccination of chimpanzees with envelope glycoproteins to induce humoral responses,
while not necessarily resulting in sterilizing immunity, was protective against chronic
infection [37,38]. More recent studies found that spontaneous clearance in humans is
associated with the early development of antibodies capable of neutralizing autologous
circulating viral strains or libraries of viral strains [39,40].

Reflecting the emerging understanding of natural immunity to HCV, vaccine develop-
ment has taken two primary and divergent approaches, attempting to either elicit T-cell
responses, usually targeting non-structural viral proteins, or induce neutralizing antibodies
against viral envelope glycoproteins. Platforms being evaluated in pre-clinical studies
include traditional technologies, such as recombinant proteins, synthetic peptides, and
virus-like particles often aimed at eliciting antibody responses, and emerging technologies,
including genetic vaccines (both DNA and mRNA) and viral vector vaccine approaches
designed to elicit T-cell responses [41]. Whole virus vaccines, either inactivated or live-
attenuated, have until recently not been pursued due to limitations of HCV cell culture
and, in the latter case, safety precautions [42].

Several major bottlenecks have hindered the progression of HCV vaccine candidates
from pre-clinical studies to human efficacy trials. First, the only immunocompetent ex-
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perimental animal model of HCV recapitulating both acute and chronic infection was
the chimpanzee, which precluded large challenge studies and is no longer available [43].
This limitation may be partially mitigated by the recent discovery of animal hepaciviruses
closely related to HCV. An immunocompetent rat hepacivirus model has been developed,
though its ability to predict protection for HCV remains unknown [44]. Second, there
exists no established immune correlate of protection against chronic HCV infection to
guide the transition from human immunogenicity to efficacy studies [45]. Finally, studies
in human populations most at risk for HCV, primarily people who inject drugs (PWID),
are logistically difficult and possible only in a small number of specialized cohorts with
sophisticated infrastructure for subject retention and care [46,47].

We will herein review the recently published results of the first efficacy trial of an HCV
vaccine [48]. This landmark trial tested a promising approach employing viral vectors to
encode nonstructural HCV proteins known to generate robust HCV-specific T-cell responses
in healthy adults. While this trial, conducted in a cohort of at-risk individuals, confirmed
immunogenicity in most vaccine recipients, the immune response elicited was seemingly
insufficient to prevent chronic HCV infection. Here, we review the design and results
of this study, speculate on potential reasons this vaccine candidate may have failed to
protect at-risk individuals, and consider important questions to be addressed by future
studies. Given the immense barriers that limit opportunities to transition from pre-clinical
to efficacy trials in this field, it will be essential to glean as much direction as possible from
this trial to inform future studies.

2. The Adenovirus/MVA HCV Vaccine Efficacy Trial

In 2019, the preliminary results from the first human efficacy trial of an HCV vaccine
were made publicly available, and full results were published in early 2021 [48]. Conducted
from 2012–2018 among at-risk PWID at three sites across the United States (ClinicalTri-
als.gov NCT01436357), this randomized, double-blinded, placebo-controlled (1:1), phase
I/II study assessed the safety and efficacy of an immunization strategy that delivered genes
encoding non-structural HCV proteins within viral vector constructs. The primary inocula-
tion used a replication-incompetent recombinant chimpanzee adenovirus 3 (ChAd3) vector
encoding NS3-NS5B from a natural genotype 1b HCV strain (ChAd3-NSmut1). The booster
dose administered 8 weeks later used a modified vaccinia Ankara (MVA) vector expressing
the same NS3-NS5B gene cassette (MVA-NSmut). The trial followed 548 volunteers for
20 months (2 months for vaccination and 18 months for follow-up) with an additional
9 months of observation for volunteers who became infected with HCV to distinguish
chronic vs. acute resolving outcomes. The primary outcome measure was development
of chronic HCV infection, defined as persistent viremia 6 months after initial detection.
Complete follow-up was achieved for 152 of 274 (55.4%) volunteers in the experimental
arm and 146 of 274 (53.2%) in the placebo arm. Ultimately, 5.1% of participants in both
the vaccinated group (n = 14) and the placebo group (n = 14) developed chronic HCV
infection, indicating that immune responses elicited by the vaccine were unable to prevent
the establishment of persistent viremia.

These disappointing results were not readily predicted from earlier studies. The use
of replication-incompetent adenoviral vectors carrying genes encoding for HCV antigens
was supported by a substantial body of pre-clinical and clinical research showing the
capacity to generate CD8+ and CD4+ T cell responses to HCV thought to be similar to
those associated with spontaneous control. The approach was shown to be promising
in a chimpanzee challenge model by Capone, Folgori, and colleagues in 2006 [49]. The
immunization strategy utilized adenovirus type 6 (Ad6) and adenovirus type 24 (Ad24)
vectored constructs expressing NS3-NS5B genes of a natural genotype 1b HCV strain with
a mutation designed to eliminate NS5B polymerase activity (NSmut), followed by serial
doses of plasmid DNA containing the same NS3-NS5b cassette [50]. In a study of vaccinated
chimpanzees, HCV-specific CD4+ and CD8+ T cells that produced IFN-γ and proliferated
after antigen stimulation were detected. Cytotoxic CD8+ T cell responses were also detected
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in four of five animals [49]. Subsequent challenge with a heterologous genotype 1a HCV
resulted in significantly reduced viremia and rapid viral clearance in four of five animals
when compared to control animals [49]. Further development efforts included screening
a large number adenoviral strains to identify candidates that readily infect human cells,
are highly immunogenic, and yet rare in humans and thus unlikely to be inhibited by
pre-existing immunity [51]. These efforts identified chimpanzee adenovirus 3 (ChAd3) as a
promising vector candidate. Human studies in healthy volunteers primed with the ChAd3
vector determined that boosting with modified vaccinia Ankara (MVA) vectored construct
resulted in superior CD8+ and CD4+ HCV-specific T cell responses than did boosting with
a second adenoviral construct (Ad6) [52,53]. In phase I trials, all recipients of the ChAd3-
NSmut1/MVA-NSmut regimen developed T cell responses against all nonstructural HCV
proteins from genotype 1b viruses. CD4+ and CD8+ T cells produced IFN-γ, TNFα, or IL-2,
with many being multi-functional. Using an MHC-class I pentamer, the majority of HCV-
specific CD8+ T cells were found to have a CD45RA-CCR7- effector memory phenotype
at the end of the study [53]. A degree of T-cell cross-reactivity was demonstrated to non-
genotype 1b peptides, though the response frequency was lower for subtype 1a peptides
than 1b, and markedly reduced for distinct genotypes 3a and 4a. Nonetheless, the data
were encouraging enough to move the vaccine to phase II efficacy trials.

The lack of efficacy against chronic HCV infection in the phase II trial, despite the
promising data from the earlier phase I trial, is perplexing. In the phase II trial, immuno-
genicity was evaluated within 14 days after the last vaccination by ELISpot, when possible.
Of the experimental group participants tested, 77.6% developed measurable IFN-γ pro-
ducing T cells targeting at least one of six HCV genotype 1b peptide pools [48]. Detailed
analyses of the strength, breadth, polyfunctionality, phenotype, and durability of these
responses in this larger cohort have not yet been published. Likewise, no information
is available regarding T cell cross-reactivity against heterologous viral genotypes. More
in-depth analysis of samples from this trial could provide important insight into why this
vaccine strategy was ineffective and how future approaches may be adjusted to optimize
opportunities for success.

Until additional detailed studies can be conducted, there are still potential insights to
be gained from the data available. In the following sections, we consider factors that may,
at least in part, help to explain the failure of this vaccine to protect against chronic HCV
despite promising immunogenicity, and explore three questions that should be addressed
in future vaccine research efforts.

1. Must an HCV vaccine better address HCV genetic diversity? The vast genetic
diversity of HCV has long been recognized as a challenge for vaccine development.
While it was hoped that a vaccine based on a single viral genotype could generate
protective cross-reactive responses against a wide variety of genotypes, successful
vaccines may require more directed efforts to represent viral antigenic diversity.

2. Does an HCV vaccine need to elicit neutralizing antibodies? While it is established
that a robust cell-mediated immune response targeting primarily non-structural HCV
proteins is strongly linked with spontaneous control, mounting evidence also sup-
ports an important role of neutralizing antibodies targeting HCV envelope proteins.
Strategies to induce broadly neutralizing antibodies against diverse viral populations
continue to advance. A successful vaccine may require the incorporation of both
structural and non-structural protein targets to elicit robust neutralizing antibodies
and T cell responses that cooperatively avert chronic HCV infection.

3. Do factors unique to populations at risk for HCV need to be considered in early
immunogenicity trials? Injection drug use is the primary risk factor for HCV acqui-
sition in high-income nations, and PWID are prime candidates for any successful
prophylactic HCV vaccine, if approved. Accordingly, active injection drug use was
among the inclusion criteria in the ChAd3/MVA-NSmut vaccine efficacy trial. Several
factors exist by which immunity and response to vaccination may be altered in PWID,
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including opiate use and repeated sub-infectious HCV exposure. These factors need
to be considered in future HCV vaccine development and trial design.

Finally, though DAA therapy has revolutionized the management of chronic HCV,
treated patients do not develop protective immunity after cure and remain vulnerable to
reinfection if re-exposed. These individuals will also be important candidates for HCV
vaccination. A better understanding of the residual immune defects following cure of
chronic HCV infection and how or if new vaccine platforms can overcome this damage to
establish protective immunity will be of critical importance for the ultimate elimination
of HCV.

3. Addressing Genotypic Cross-Reactivity of T Cells

The genetic diversity of HCV exceeds even that of HIV [54,55]. HCV isolates are
classified into seven major genotypes and over 90 subtypes. Variability at the nucleic acid
level reaches up to 30% between genotypes [56]. While the resolution of infection with one
genotype can protect against other genotypes [57], this protection is not absolute [58–60].
Indeed, T cells arising during infection target viral epitopes that tend to be genotype- and
even subtype-specific. Within a cohort of individuals infected with genotype 3 HCV, very
few genotype 1 cross-reactive epitopes were identified [61].

Whether a lack of T cell cross-reactivity contributed to the failure of the genotype
1b ChAd3/MVA-NSmut vaccine to prevent chronic HCV is at this time unknown. In
secondary analysis, the vaccine lacked signal of protective efficacy for both genotype 1
and non-genotype 1 infections, precluding any meaningful comparison of cross-genotype
protection [48]. IFN-γ ELISpot responses to genotype 1b peptide pools were detected
in approximately three-quarters of vaccinated individuals, but responses to other viral
genotypes have not been assessed [48]. Likewise, viral sequence data have not yet been
assessed to determine the relatedness of infecting and vaccine sequences at relevant CD8+

and CD4+ T cell epitopes.
Assessments of cross-reactivity of T cell responses elicited by the genotype 1b

ChAd3/MVA-NSmut vaccine are available from phase I immunogenicity trials in healthy
control subjects. Indeed, cross-reactive IFN-γ ELISpot responses were detected against
peptide pools from heterologous genotypes, but with reduced frequency. Compared to the
robust responses to genotype 1b peptides, T cell reactivity was reduced by approximately
40% against closely related subtype 1a peptides, and by 70% against more divergent
genotypes 3a and 4a [53]. Whether these responses would be sufficient to protect against
persistent infection upon heterologous virus challenge is unknown [53]. Despite remaining
uncertainties as to whether deficient cross-reactivity contributed to the failure of the
ChAd3/MVA-NSmut vaccine phase II trial, it is reasonable to expect that future vaccine
iterations should incorporate antigen designs that generate more broadly reactive responses
across genotypes.

Numerous vaccine approaches to the challenge of viral diversity are being evaluated
for HCV and other viruses including HIV. One such approach aims to specifically target
regions of the virus that are conserved across multiple viral clades or genotypes by stitching
together conserved regions and excluding highly diverse regions of the viral proteome.
This has been pioneered in the development of new HIV vaccine candidates. In the case of
the HIVCONSV vaccine, a chimeric protein was developed using conserved regions from
HIV-1 clades A, B, C, and D with the goal of developing T cell responses to epitopes that are
more likely to be shared among a multitude of strains [62]. The HIVCONSV regions appear
to be widely targeted in individuals with natural HIV infection, though, interestingly, the
responses to the conserved epitopes commonly represent subdominant T cell responses [62].
This construct has been shown to be immunogenic in uninfected mice [62], macaques [63],
and humans [64,65]. While using this approach has shown only partial protection in
macaques to date [66], the data have been promising and efforts to apply a similar approach
in novel HCV vaccines are underway [67,68]. Rather than use conserved genetic regions
from various HCV genotypes, von Delft and colleagues used circulating HCV isolates
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that had the highest homology to the consensus sequences of conserved genetic regions
in each group of viral isolates of interest (genotypes 1a/b, genotypes 1/3, and genotypes
1–6) as a starting point. The group then stitched together conserved regions and removed
the variable regions. This yielded three new vaccine vectors for targeting different sets of
HCV genotypes, including one vector meant to target all but genotype 7 viruses, dubbed
GT1-6L [67]. Initial tests of GT1-6L, encoded in a chimpanzee adenovirus ChAdOx1,
demonstrated immunogenicity in mice. ELISpot assays also showed that GT1-6L elicited T
cell response to peptides from genotype 1a, 1b, and 3a viruses at similar levels [67]. Further
study demonstrated that immunization of mice with ChAdOx1-GT1-6L induced both a
higher magnitude and wider breadth of T cell responses against genotype 1b peptide
pools when compared to ChAdOx1-GT1b-NS, a control vaccine based on the previous
first-generation vaccine [68]. GT1-6L also elicited better T cell responses in terms of both
magnitude, when splenocytes were stimulated with genotype 3a peptides, and breadth,
when stimulated with genotype 1a peptides [68]. While safety and immunogenicity results
in non-human primates and humans are not yet available, the current data suggest that
this approach to generating pan-genotypic T cell responses is promising.

A separate approach to minimize sequence dissimilarity between a candidate HCV
vaccine antigen and contemporary circulating HCV strains is the rational design of Mosaic
or Epigraph antigens. Mosaic and epigraph antigens are designed computationally by
recombination of viral genomic sequences retrieved from databases, with the requirement
that all recombination breakpoints exist in natural HCV sequences, precluding the creation
of artificial junctional epitopes [69–71]. Viral diversity is overcome in two ways. First,
less common amino acids are disfavored at each position of the antigen, reducing the
probability of vaccine- or strain-specific T cell responses, while common amino acids are
favored to maximize the most common potential T cell epitopes [69–71]. Second, these
vaccines are typically polyvalent to further expand the breadth of epitope and maximize
sequence diversity. Importantly, mosaics and epigraphs are indistinguishable from natural
viral proteins in sequence and processing for class I and class II presentation. Mosaic
design is the most advanced for HIV vaccines [72]. In macaques, HIV-1 mosaics induced
significantly higher numbers of cross-reactive CD4+ and CD8+ T cells than natural protein
vaccines [73,74]. Vaccinated animals were also more difficult to infect and did not succumb
to infection when compared to unvaccinated macaques [75]. Mosaic HIV vaccines have
demonstrated immunogenicity in humans [76,77], suggesting potential for translation to
an HCV vaccine. The feasibility of mosaic design of a pan-genotypic HCV vaccine has
been demonstrated by in silico analysis, with multivalent mosaic antigens providing the
best coverage against diverse HCV isolate sequences [54]. Immunization experiments
further demonstrated the immunogenicity of mosaic HCV vaccines in mice and found that
they induced more robust responses than immunization with antigens from natural viral
strains [78]. Further iterations on the HCV mosaic/epigraph vaccine platform involving
the incorporation of different delivery platforms, new adjuvants, and boosting strategies,
and further murine studies will be required before transitioning to non-human primates
for continued safety and immunogenicity studies.

While both the conserved-region vaccine and mosaic/epigraph vaccine approaches
offer their own advantages and have promise individually, using a combination of meth-
ods may yield the most effective result. Indeed, in the field of HIV, a new generation of
HIVCONSV vaccines, HIVCONSVX, has been introduced. These second-generation vaccines
incorporate both the use of conserved regions and computationally developed Mosaic
approaches in a multivalent vaccine, and they have been shown to be highly immuno-
genic [79], with some components being currently evaluated in phase I clinical trials
(NCT03844386). Because circulating HCV may demonstrate wider variability than HIV,
similarly multi-pronged approaches to developing a T cell-focused HCV vaccine may also
prove necessary.
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4. Harnessing Neutralizing Antibody Responses in New Vaccines

While multiple lines of evidence support a central role of CD8+ and CD4+ T cells
in the control of HCV infection, the role of antibodies in resolving infection and, by ex-
tension, their potential protective value in vaccine-elicited responses, has been less clear.
Documented cases of HCV clearance in seronegative PWID and in patients with agamma-
globulinemia [29–31] indicated that antibodies may be dispensable. To address whether
humoral responses may yet contribute to viral clearance in some patients, multiple studies
have attempted to identify correlations between infection outcome and the development of
antibodies, particularly neutralizing antibodies that target the HCV envelope glycoprotein
heterodimer responsible for viral attachment and entry, E1/E2. Early studies that measured
neutralization of lentiviral pseudoparticles expressing HCV E1E2 glycoproteins (HCVpp)
from prototypical HCV strains such as H77 found high titer serum neutralizing antibod-
ies during the chronic phase of infection and absent or rare antibodies in early infection
that did not associate with viral clearance [32,33]. In contrast, several studies that used
HCVpp bearing autologous E1E2 sequences found viral clearance to be associated with
rapid induction of neutralizing antibodies against the transmitted or early circulating viral
strain [39,80–82]. A study using a library of HCVpp with representative E1E2 sequences
linked spontaneous viral clearance with the early development of broadly neutralizing
antibodies [40]. Moreover, E2-specific memory B cells have been found to expand and
peak more rapidly in resolvers than those who progress to chronic infection. This rapid
expansion is associated with more robust early activity of circulating IL-21 producing T
follicular helper (Tfh) cell populations [83]. Thus, an increasing preponderance of evidence
suggests that the rapid development of specific and broadly neutralizing antibodies in
acute infection may contribute to viral clearance.

Although this understanding of the role of antibodies in HCV infection outcome
has taken some time to come into view, neutralizing antibodies have been a focus of
HCV vaccine development efforts from the outset given their importance in vaccination
strategies against other viral infections [38]. An early construct consisting of purified
recombinant HCV genotype 1a (strain HCV-1) E1E2 protein administered to chimpanzees
with an oil/water emulsion adjuvant elicited E1E2 antibodies that in some cases appeared
to confer sterilizing immunity upon challenge with homologous virus HCV-1 virus [37]
and protected against chronic infection upon challenge with a heterologous genotype 1a
H77 strain [38]. The overall rate of chronic infection in 31 E1E2 vaccinated chimpanzees
challenged with genotype 1a viruses was 16%, compared to 63% in 24 unimmunized
controls [38,84]. Serum from E1E2-vaccinated chimpanzees exhibited cross-neutralization
of HCVpp or cell-cultured HCV (HCVcc) expressing envelope proteins of other genotype
1a viruses as well as genotypes 4, 5, and 6, but had little activity against genotypes 2
or 3 [85]. Given the promising pre-clinical data, the recombinant HCV-1 E1E2 construct
adjuvanted with MF59 proceeded to phase I trials in healthy volunteers [86]. The vaccine
was well-tolerated and reliably elicited high titers of E1E2-binding antibodies and robust
proliferative CD4+ T helper responses [86]. Serum from most vaccinees could interfere with
E2 binding to the CD81 receptor and neutralize HCVpp or HCVcc expressing autologous
HCV-1 E1E2 [86,87] but rarely had broad cross-genotype neutralization activity [87,88].

Follow-up studies found the most dominant responses elicited by E1E2 vaccination tar-
geted the N-terminus of E1 and the hypervariable region 1 (HVR1) at the N-terminus of E2
and were mostly non-neutralizing [87]. Neutralizing antibodies were raised against HVR1
as well as conserved sites associated with the potential for broad cross-reactivity such as the
antigenic region 3 (AR3) located on the “neutralization face” of E2 that overlaps the CD81
binding site [87]. AR3-specific broadly neutralizing antibodies have been associated with
HCV clearance and commonly utilize a particular immunoglobulin heavy-chain-variable
gene VH1-69 [89–91]. These AR3-specific VH1-69-encoded broadly neutralizing antibodies
often have quite limited somatic hypermutation, suggesting that a germ-line targeting
vaccine approach to elicit this desirable response may be feasible [92]. E1E2 immunized
rhesus macaques also generated AR3-neutralizing antibodies that had limited somatic
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hypermutation. These utilized a heavy chain variable gene VH1-36 that is homologous to
human VH1-69, potentially providing a pre-clinical model for germline-targeting vaccine
strategies [87,92].

Together, studies of the recombinant HCV-1 E1E2 vaccines provide a solid basis for the
pursuit of an antibody vaccine, while highlighting the need for optimization to better elicit
robust neutralizing responses against conserved regions of the envelope glycoprotein. As
such, significant effort has been made to engineer a rational antibody vaccine for HCV, as
recently reviewed in detail by several groups [93–95]. These efforts follow insights gained
from crystal structures of antibody-bound constructs of truncated E2, improved modeling
of the E1E2 heterodimer, and expanded mapping of neutralizing and non-neutralizing
antibody binding sites on E1E2. One proposed approach has been to delete highly variable
regions such as HVR1, which are purported to act as immunodominant decoy antigens,
readily evading strain-specific antibodies by mutational escape while simultaneously in-
terfering with responses to more conserved regions [96–100]. Deletion of HVR1 from
adjuvanted E1E2 vaccine reduced the development of homologous strain-specific neutraliz-
ing antibodies while also failing to enhance heterologous responses in mice [101]. However,
deletion of HVR1 along with other variable regions including HVR2 and VR3 from core E2
structures led to a stabilized E2 structure with preserved “neutralizing face” [102,103] that,
when delivered in oligomeric form, induced robust pan-genotypic neutralizing response in
guinea pigs and fewer non-neutralizing antibodies [104]. Analogous E2 constructs lacking
HVR1 and VR3 with a modified VR2 and incorporated into nanoparticles also elicited
robust pan-genotypic responses in rodents [105]. Beyond shielding by the immunodom-
inant HVR1 region, conserved epitopes have been shown to be shielded from immune
recognition by glycosylation across E1 and E2 [106–108]. Removal of select glycosylation
sites from E1E2 immunogens has been shown to improve the production of neutralizing
antibodies and to enhance cell-mediated responses [109,110]. Manipulation of E2 glycosy-
lation by expression in non-mammalian cells may also accentuate immunity to conserved
neutralizing epitopes [111]. Finally, beyond uncovering conserved sites, mosaic E1E2
immunogens may also present an approach to the diversity of HCV envelope antigens.
While current efforts in the development and testing of mosaic HIV vaccines focus on
cell-mediated immunity, they also elicit neutralizing antibodies that target the variable
envelope protein of HIV [69,73,77]. Immunization with a mosaic HCV E2 immunogen
has shown enhanced immunogenicity in mice, though neutralizing antibodies were not
specifically studied [78].

New Vaccine Delivery Platforms and a Unified Approach to Target T Cell and B Cell Responses

A vaccine regimen that elicits both broadly neutralizing antibodies and potent broad
CD8+ and CD4+ T cell responses may have the best odds of preventing chronic HCV
infection. While this seems an obvious vaccine objective, design of such a vaccine requires
consideration of both antigen selection and delivery platform. E1E2 or E2 alone is the
required immunogen for generation of neutralizing B cell responses, but non-structural
proteins may be better immunogens for T cell responses, as they are more commonly
targeted by T cells in natural infection and more conserved (e.g., NS3 and NS5B) than
envelope glycoproteins [112]. In terms of vaccine platforms, recombinant protein antigens
are well-suited for induction of B cell responses with follicular CD4 T cell help, while
intracellular expression and processing of vaccine proteins such as with viral-vectored or
DNA vaccine platforms is optimal for MHC I loading to induce CD8+ T cell responses. Thus,
one approach would be a regimen combining two different vaccines, one with an envelope
protein immunogen in a platform for B cells, and a second with a non-structural protein
immunogen delivered in a platform for optimal CD8+ T cell responses. Alternatively,
advances in vaccine adjuvant, immunopotentiator, and vaccine particle development offer
the potential to trigger multiple immune pathways with a single vaccine platform, such
as recombinant protein antigens that with certain adjuvants not only trigger robust B cell
and CD4+ T cell responses but also induce cross-presentation to CD8+ T cells. Numerous



Viruses 2021, 13, 1351 9 of 22

such platforms are being actively evaluated in pre-clinical and limited clinical studies
of new HCV vaccines, and recent reviews have examined this in more comprehensive
detail [113,114].

The recent success of mRNA vaccines encapsulated in lipid nanoparticles (LNPs) for
SARS-CoV-2 [115,116] raises another intriguing option for an HCV vaccine that might
induce protective antibody and T cell responses. The BNT162b2 and mRNA-1273 SARS-
CoV-2 vaccines both encode a full-length, pre-fusion stabilized SARS-CoV-2 spike protein
and are aimed at eliciting neutralizing antibodies that prevent interactions between the
viral spike protein and the cellular receptor ACE2 [117,118]. Both vaccines elicit high
neutralizing anti-spike antibody titers as well as polyfunctional antigen-specific CD4+

T cells with a significant skew towards Th1 responses and away from Th2 responses in
humans and non-human primates [117,119–121]. In non-human primates, the vaccines
have also been shown to elicit populations of antigen-specific Tfh populations that may
provide essential help to B cells in the germinal centers of lymph nodes [117,120]. Despite
the many similarities, only BNT162b2 has been observed to elicit robust antigen-specific
CD8+ cytotoxic T cell populations, whereas similar populations are limited to undetectable
after mRNA-1273 administration [117,119–121]. The potential for these mRNA-based
vaccine platforms to elicit both robust antibody and T cell responses may be incredibly
promising for a novel HCV vaccine candidate, but while the selection of the best antigens
will be crucial as previously discussed, the lack of CD8+ T cell responses to mRNA-1273
highlights that other components, including the composition of the LNP, may also be
essential for eliciting the desired immune responses with such an approach.

5. Understanding Vaccine Immunogenicity in Populations Most at Risk for HCV

The ChAd3/MVA-NSmut HCV vaccine elicited robust polyfunctional HCV-specific T
cell responses in early phase I immunogenicity trials, making its lack of protection from
chronic infection in the phase I/II efficacy trial puzzling. As discussed in the preceding
sections, a successful HCV vaccine will likely need to better address viral diversity and po-
tentially incorporate humoral responses to envelope glycoproteins. Another consideration
is that the quality of T cell responses in phase II vaccinees may not have matched the robust
responses found in earlier immunogenicity trials. Indeed, the cursory data on immune
responses provided with the phase II study suggests that this is the case. Whereas 100% of
phase I participants had IFN-γ ELISpot responses to ≥4 of 6 HCV peptide pools spanning
HCV proteins NS3-NS5 [53], only 78% of phase II participants had a measurable response
to any peptide pool [48]. Similarly, the combined magnitude of peak HCV-specific IFN-γ
responses after the 2nd dose of vaccine was substantially lower in the phase II trial (median
428 spot-forming cells per million PBMC in phase II trial versus 2355 in the phase I study).

Reasons for the discrepant immunogenicity results are not yet known, but study
population differences may have contributed, particularly with regard to injection drug
use [48]. The phase II clinical trial specifically enrolled participants with a known recent
history of injection drug use, while earlier phase I immunogenicity studies had excluded
individuals with suspected or known injection drug use [53]. The phase II trial established
the feasibility of working with PWID in a vaccine clinical trial, an important accomplish-
ment for future HCV vaccine efficacy studies. However, it is possible that injection drug use
may have adversely affected immune responses to the HCV vaccine, through mechanisms
such as immunosuppressive effects of opioids or damping effects of repeated subinfectious
exposure to HCV prior to vaccination, as discussed below. Fully appreciating and account-
ing for the immune effects of injection drug use will be important for future vaccine trials,
particularly those in which PWID are a key high-risk group who could significantly benefit
from prophylactic vaccines.

5.1. Opioid Usage and Effects on Immunity and Vaccines

An ongoing opioid epidemic has fueled the surge in acute HCV cases in the United
States over the last two decades [122]. While the strong association between opioid use
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and HCV infection is mediated principally by viral transmission via shared injection para-
phernalia, there has been some concern that opioids may also adversely affect immunity
and thus increase susceptibility to HCV and potentially impair HCV vaccine responses.
Opioid use has been linked to heightened risk of other infectious diseases. including HIV,
TB, and pneumonia, and to a higher risk of mortality in sepsis patients [123,124]. Subop-
timal seroconversion rates to HBV vaccine have been noted among individuals injecting
heroin compared to healthy adult populations [125]. Supporting these clinical observations,
numerous rodent and non-human primate animal model studies, as well as ex vivo human
studies, have documented acute and chronic opioid exposure as being associated with
impaired bulk T and B cell mitogen responses, depressed bulk CD4/CD8 ratios, and altered
T helper differentiation away from Th1 responses in bulk populations [126–133]. Innate
immune effects include impaired NK cell toxicity and depressed phagocytic activity of
monocytes and macrophages [134]. The effects of opioids on immunity may be mediated
in part via neuroendocrine or neuroimmune axes, but direct effects on immune cells are
also suggested given that defects can be recapitulated with opioid treatment of isolated
cells in vitro. This is further supported by the detection of opioid receptor expression by
numerous immune cell subsets, particularly following cell activation [135].

A recent study examined the effects of opioid exposure on antiviral gene expression in
human PBMCs by single-cell RNA-seq. Following LPS stimulation, PBMCs from individu-
als with chronic opioid use, and PMBCs from healthy individuals treated with morphine
in vitro demonstrated reduced interferon-stimulated gene and antiviral gene expression
compared to untreated healthy control PBMCs. This effect was observed in all identified
cell subsets including monocytes, CD4+ T cells, CD8+ T cells, B cells, and NK cells [136].
Interestingly, morphine treatment of hepatocytes has also been associated with reduced
IFN-α production and enhanced HCV replication in vitro [137]. This inhibition of innate
defenses may indicate that, regardless of additional inhibition of any adaptive immune
functions, opioid users could be more susceptible to HCV infection and a vaccine response
may need to be particularly robust to effectively prevent chronic infection.

Despite the long history of experimental and epidemiologic evidence supporting an
immunosuppressive effect of opioids, results have been inconsistent. Some studies have
failed to identify in vitro or in vivo effects of opioids on immune cell function. While
discrepancies may be in part related to the dosing regimen or type of opioid studied, a
more complex relationship between opioids and immunity is likely at play, with recent
studies noting an immune-activating effect of chronic opioid exposure [138,139]. Addition-
ally, numerous vaccine immunogenicity studies failed to identify an effect of opioid use
on seroconversion [140–142]. Further study of the ChAd3/MVA-NSmut vaccine cohort
presents a unique opportunity to explore the effects of injection drug use on a vaccine
targeting a T cell response, if samples obtained during the phase I/II clinical trial can be
compared via detailed functional and phenotypic studies to samples obtained during early
immunogenicity trials in healthy controls [53].

5.2. Effects of Sub-Infectious Exposure to HCV on Adaptive Immunity

While PWID are at a high risk of acquiring HCV due to exposure to infectious doses
of HCV via needle sharing, evidence suggests that this group also frequently encounters
minute viral doses that do not lead to sustained viremia and seroconversion. Indeed, a
high percentage of HCV RNA-negative seronegative PWID with detectable populations
of HCV-specific T cell populations targeting non-structural proteins have been observed
in multiple studies [31,143–145]. Sub-infectious HCV exposure associated with HCV-
specific T cell responses and a lack of antibody response has also been documented in
other groups, including healthcare workers [146–149], family members of chronically
infected patients [150–152], and sexual partners of patients with acute infection [153]. An
important caveat is that many of these studies cannot definitively rule out the possibility of
previous resolution of acute infection leading to HCV-specific T cell responses with a loss of
detectable antibodies over time [154]. However, prospective studies that followed cohorts
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of healthcare workers after HCV exposure through accidental needlesticks demonstrated
that subsequent development of HCV-specific T cell response without detectable antibodies
does occur [147,148].

Low-dose sub-infectious exposures and the development of T cell responses have been
hypothesized to offer some level of immune protection against future infectious exposures
to the virus. While this has been difficult to definitively prove with cross-sectional and
prospective studies in humans, a study using the chimpanzee model of HCV infection
directly assessed this hypothesis [155]. In this study, chimpanzees were given multiple
infusions of plasma and an infusion of PBMCs from patients who had trace amounts of HCV
that were below the limit of detection of clinical assays. Two animals that did not develop
detectable viremia developed HCV-specific T cells responses and, when subsequently
challenged with infectious doses of HCV, developed significantly higher and sustained
viremia with weaker HCV-specific CD4+ and CD8+ T cell responses when compared to a
chimpanzee that was infected after previously resolving acute HCV infection [155]. Control
chimpanzees that received a mock treatment prior to challenge showed a more robust T cell
response after a viral challenge compared to those that were pre-exposed to low viral doses.
The authors examined bulk CD4+ Treg cells in the blood and found that the frequency
was significantly higher in chimpanzees that were pre-exposed to HCV, and bulk Treg
populations expanded more in this group after viral challenge in comparison to control
animals. Depletion of these Tregs in vitro resulted in a more significant increase in HCV-
specific T cells responses in IFN-γ ELISpot assays compared with the depletion of Tregs
from control animals, suggesting that the expansion of bulk Treg population contributed to
a hampered immune response to HCV challenge after low-dose pre-exposure [155].

The phase I trial of the ChAd3/MVA-NSmut vaccine listed recent injection drug
use as an exclusion criterion. HCV-specific T cell responses were not detected in any
participants at the onset of the study, suggesting that participants had not been exposed
to even low doses of HCV [53]. Vaccinated participants were shown to have bulk Treg
frequencies similar to unvaccinated healthy volunteers [53]. In contrast, the phase I/II trial
required the involvement of participants at high risk of HCV exposure, namely PWID [48].
Although HCV-specific T cell responses were assessed prior to enrollment and only 3.3%
of evaluated participants in the placebo group were indicated to have HCV-specific T
cell responses after receiving the placebo treatment, HCV-specific T cell responses in
seronegative PWID have often been observed to be somewhat weak, and responses may be
under the limit of detection with the methods utilized [31,144,145,148]. Detailed analysis
of samples taken before and after vaccination, particularly as it pertains to the frequency of
bulk or antigen-specific Treg cells, will be important to determine if potential prior sub-
infectious exposure could have had any effect on vaccine immunogenicity. Additionally,
the potential influence of sub-infectious exposure further suggests that, with a vaccine
that will be chiefly important in populations of PWID, involving this population early
in phase I safety and immunogenicity trials will be needed to ensure any new vaccine
candidate is in fact immunogenic in the target population prior to larger and more complex
trials. If immunogenicity in this population is found to be muted, whether due to opioid
use or previous sub-infectious exposures, the addition and use of novel adjuvants or
vaccine platforms to enhance immunogenicity in PWID may be required. For example,
the inclusion of MHC class II-associated invariant chain in a viral vectored HCV vaccine
broadly enhanced CD4+ and CD8+ T cell responses over the original vaccine in recently
conducted human clinical trials [156].

5.3. Impact of Chronic Infection and DAA Therapy on Potential Vaccine Success

Unlike spontaneous resolution of acute HCV infection, cure of chronic HCV infection
with DAA therapy does not appear to lead to protective immunity. Reinfection has been
described in numerous human cohort studies following successful treatment with DAA
or interferon-α/ribavirin therapies [12,157,158], and among individuals with opioid ad-
diction, the risk of reinfection is tied to continued use of injection drugs. Consequently,
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opioid-agonist therapy before or after DAA treatment significantly reduces the risk of
reinfection [12,159]. Unfortunately, those who are cured with DAA therapy and subse-
quently reinitiate injection drug use, if reinfected, can reestablish themselves as reservoirs
of HCV and, with continued high-risk behavior, unintentionally infect new people. Curing
PWID of HCV and subsequently mitigating the risk of reinfection, through a combination
of reducing high-risk behavior and the development of protective immunity, will be an
essential component of eliminating HCV.

The lack of protective immune memory against reinfection following DAA cure
suggests that immune defects that occur during chronic infection are not fully reversed
after the virus is cleared. Major features of the adaptive immune response during chronic
infection include loss of HCV-specific CD4+ T cell help [17,18,26,160–162] and failure
of the HCV-specific CD8+ T cell response due to exhaustion [163–165] or emergence of
viral escape mutations that prevent the recognition of CD8+ T cell epitopes [166–169].
Studies done since the introduction of DAA therapies have begun to shed light on how
immunity continues to change after recovery from viral infection and, importantly, how
this new immune state is markedly different from that which is observed after spontaneous
resolution of infection. It has been observed that HCV-specific CD8+ T cell populations
expand following DAA-mediated viral clearance [170,171], though in a chimpanzee study,
this expansion occurred preferentially in CD8+ T cells that were previously dominant
and had targeted escaped epitopes [172]. In human studies, expanded HCV-specific
CD8+ T cell populations observed post-DAA cure have a better capacity to proliferate
and produce antiviral cytokines than prior to treatment, though these cells are neither
as proliferative nor as functional as those observed in acute resolving infection [171,173].
These cells are a memory-like T cell subset expressing CD127, PD-1, and the transcription
factor TCF1 and are distinct from more conventional memory cells that are observed after
spontaneous viral clearance. If re-exposed to antigen, the “exhausted memory-like” subset
may differentiate into a terminally exhausted subset that are CD127-PD-1highTCF1-, a subset
of cells that were present during initial chronic infection and lost after DAA-mediated viral
clearance [173]. Recent detailed transcriptional profiling of these HCV-specific CD8+ T
cell subsets before and after DAA-mediated HCV cure has reinforced the distinct nature
of these cells when compared to the memory populations that develop after spontaneous
resolution of acute infection [174]. The reduced functionality of HCV-specific CD8+ T cells
is possibly linked with dysfunctional metabolism that is observed in chronic infection and
maintained after DAA therapy [175–177]. Additionally, TOX, a transcription factor linked
to transcriptional and epigenetic reprogramming of CD8+ T cells and the development
of T cell exhaustion has been found to be highly expressed in HCV-specific CD8+ T cells
during chronic infection and after DAA-mediated viral clearance but not after spontaneous
resolution of infection [178]. Comparatively less is known about the HCV-specific CD4+

T cells both during and after chronic HCV infection due to the very low frequency of
these cells in peripheral blood after the initial establishment of chronicity. Despite this
challenge, several recent studies have demonstrated that the HCV-specific CD4+ T cell
population increases in frequency at least transiently in the peripheral blood during and
after DAA treatment [179,180]. However, in a study comparing samples from treated
patients and vaccinated subjects from human trials, this increase in frequency was not
observed [181]. These conflicting results may be explained by differing sampling timelines.
Regardless, the frequency of HCV-specific CD4+ T cells after DAA treatment is not likely
to be comparable to frequencies observed in spontaneous clearance [181]. During and after
DAA treatment, HCV-specific CD4+ T cells exhibit a decrease in expression of some, but not
all, inhibitory receptors, including PD-1, as well as a decrease in the expression of numerous
activation markers. Additionally, these cells seem to shift toward a memory phenotype
with increased CD127 and TCF1 expression and, strikingly, a shift from a Th1 phenotype
to a predominantly follicular helper T cell (Tfh) phenotype [179,180]. The ramifications of
these phenotypic shifts are not yet fully understood. Collectively, it is clear that chronic
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HCV infection leaves a lasting imprint on the HCV-specific adaptive immune response
even after viral eradication.

In addition to HCV-specific immune exhaustion that occurs as acute infection proceeds
to chronicity, some individuals cured of longstanding infection have residual advanced
liver fibrosis or cirrhosis that may itself impair innate and adaptive immunity [182,183]
and potentially hinder HCV vaccine responses. For instance, relative to HCV-infected
individuals with minimal liver disease (F0-1), those with cirrhosis (F4) have a significant
shift of generalized CD8+ T cell phenotype and function towards a hyperfunctional cy-
totoxic state, and this state persists after DAA cure [184]. Persistent high levels of serum
proinflammatory cytokines were also noted after DAA cure in individuals with advanced
liver disease [184]. Of concern for secondary HCV prevention through vaccination, cir-
rhosis has also been associated with impaired IFN-γ ELISpot T cell response to influenza
vaccination [185].

While HCV-naïve individuals are the focus population for current HCV vaccine
development efforts, evaluating candidate vaccines and novel adjuvant formulations in
individuals cured of HCV by DAA therapy with or without advanced cirrhosis will be an
important topic of research. If an HCV vaccine is found to be less immunogenic in this
group, coupling the vaccine with new therapies to “reverse” the exhausted phenotype
of adaptive immunity may also be a consideration. As an example, recent in vitro data
suggest that histone methyltransferase inhibitors or p53 inhibitors may have the ability
to restore CD8+ T cell functionality and proliferative capacity [176]. With a number of
histone methyltransferase inhibitors already in clinical trials for cancer therapy [186], the
possibility of repurposing one or more of them for treatment coupled to DAA therapy
and/or vaccination to potentially increase the functional capacity of previously exhausted
CD8+ T cells is intriguing.

6. Conclusions

Despite the development of potent DAA therapies, a prophylactic vaccine is urgently
needed to eliminate the public health burden of HCV. The recent failure of the ChAd3/MVA-
NSmut regimen in the first large-scale clinical trial of an HCV vaccine was unquestionably
a considerable disappointment. Nevertheless, data from this trial, along with recent
advances in our understanding of HCV immunity and continued advancement in vaccine
immunogen design and delivery systems, offer direction for developing and testing the
next generation of HCV vaccines.
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