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Abstract. The neural cell adhesion molecule (N- 
CAM) is present in both embryonic and perinatal 
muscle, but its distribution changes as myoblasts form 
myotubes and axons establish synapses (Covault, J., 
and J. R. Sanes, 1986, J. Cell Biol., 102:716-730). 
Levels of N-CAM decline postnatally but increase 
when adult muscle is denervated or paralyzed (Co- 
vault, J., and J. R. Sanes, 1985, Proc. Natl. Acad. Sci. 
USA., 82:4544-4548). To determine the molecular 
forms of N-CAM and N-CAM-related RNA during 
these different periods we used immunoblotting and 
nucleic acid hybridization techniques to analyze N- 
CAM and its RNA in developing, cultured, adult, and 
denervated adult muscle. 

As muscles develop, the extent of sialylation of mus- 
cle N-CAM decreases, and a 140-kD desialo form of 
N-CAM (generated by neuraminidase treatment) is re- 
placed by a 125-kD form. This change in the apparent 
molecular weight of desialo N-CAM is paralleled by a 
change in N-CAM RNA: early embryonic muscles ex- 

press a 6.7-kb RNA species which hybridizes with N- 
CAM cDNA, whereas in neonatal muscle this form is 
largely replaced by 5.2- and 2.9-kb species. Similar 
transitions in the desialo form of N-CAM, but not in 
extent of sialylation, accompany differentiation in pri- 
mary cultures of embryonic muscle and in cultures of 
the clonal muscle cell lines C2 and BC3H-1. Both in 
vivo and in vitro, a 140-kD desialo form of N-CAM 
and a 6.7-kb N-CAM RNA are apparently associated 
with myoblasts, whereas a 125-kD desialo form and 
5.2- and 2.9-kb RNAs are associated with myotubes 
and myofibers. 

After denervation of adult muscle, a - 12-15-fold 
increase in the levels of N-CAM is accompanied by a 
~30-50-fold increase in N-CAM RNA, suggesting 
that N-CAM expression is regulated at a pretransla- 
tional level. Forms of N-CAM and its RNA in dener- 
vated muscle are similar to those seen in perinatal 
myofibers. 

T 
HE neural cell adhesion molecule (N-CAM) t occurs in 
a variety of molecular forms that are selectively ex- 
pressed at various stages of development and in various 

regions of the nervous system. Highly sialylated forms, prev- 
alent in embryonic and neonatal brain, are gradually replaced 
by less sialylated forms as development proceeds (3, 7, 28). 
In adults, N-CAM exists as a family of related glycoproteins 
(~ 180, ~ 140, and ~ 120 kD in rodents) which appear to differ 
mainly in the length of their cytoplasmic and/or transmem- 
brane domains (8, 10). The relative abundance of these three 
forms varies during development and among brain regions 
(3, 29). Finally, within individual molecular weight classes, 
additional heterogeneity has been detected using monoclonal 
antibodies (3, 14, 34). Some of the variation in N-CAM form 
may arise at the RNA level, in that N-CAM RNA exists in 
multiple species, which vary in their relative and absolute 
abundances during development (9, 11). To understand how 
N-CAM regulates and is regulated by developmental interac- 

Abbreviations used in this paper." AChR, acetylcholine receptor; E, embryonic 
day; N-CAM, neural cell adhesion molecule; P, postnatal day. 

tions, it will be important to discover the factors that deter- 
mine which forms of N-CAM and its RNA are expressed by 
particular cells and at particular stages. 

Although N-CAM has been analyzed in greatest detail in 
brain, we believe that muscle provides several advantages for 
studies of the cell and molecular biology of this molecule. 
The neuromuscular junction is perhaps the most accessible 
and best characterized of all synapses, and a wealth of infor- 
mation is available about its structure and function. Further- 
more, the development of the neuromuscular junction and of 
muscle per se have been studied intensively, and several 
mechanisms by which nerve and muscle influence each oth- 
er's development have been discovered (26, 31). Finally, we 
have provided a detailed description of the distribution of N- 
CAM in developing and adult muscle (6) and have shown 
that N-CAM levels increase when muscle is denervated or 
paralyzed and thus are regulated trans-synaptically, through 
an activity-dependent mechanism (5). Here, to begin to study 
the molecular biology of N-CAM in muscle, we have asked 
(a) which forms of N-CAM and its RNA are present in 
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developing muscle; (b) whether transitions among forms ob- 
served in vivo also occur in vitro; and (c) whether the dener- 
vation-induced increase in N-CAM levels is regulated at the 
RNA level. 

Materials and Methods 

Animals 
Timed pregnant Sprague-Dawley rats were obtained from Chappel Breeders 
(St. Louis, MO). The first day of pregnancy was designated embryonic day 0 
(E0), and the day of birth, E21-E22, is also referred to as postnatal day 0 (P0). 
Diaphragms of adult male rats (150-200 g) were denervated by cutting the 
phrenic nerve intrathoracically (19). The hindlimbs of adult female Swiss mice 
(30-40 g) were denervated by cutting the sciatic nerve in the thigh. 

Cell Cultures 
For primary cultures, forelimbs of El9 rats were dissociated to prepare muscle 
cultures as described by Sanes and Lawrence (32). The clonal cell lines BC3H- 
1 (24) and C2 (35) were maintained in log phase by trypsination and replating 
in Dulbecco's modified Eagle's medium containing 10% fetal calf plus 10% 
newborn calf serum. BC3H-I cells were replated at 2 x 104 cells/ml and C2 
cells were replated at 5 x 103 cells/ml in 15-cm gelatin-coated culture dishes 
containing 25 ml medium. To induce fusion and differentiation of C2 cells, 
cultures were refed with medium containing 10% horse serum on day 4; BC3H- 
1 cells were not re-fed. 

lmmunoblot Analysis 
Detergent extracts were prepared by homogenizing tissues in 4 vol phosphate- 
buffered saline (PBS) containing 1% Nonidet P-40, 100 ug/ml leupeptin (Sigma 
Chemical Co., St. Louis, MO), 0.6 trypsin inhibitor units/ml Aprotinin (Sigma 
Chemical Co.), 1 mM phenylmethylsulfonyl chloride, and 1 mM EDTA and 
then centrifuging at 25,000 g for 15 min. The protein concentration of super- 
natants was determined using the Pierce BCA reagent (Pierce Chemical Co., 
Rockford, IL) and bovine serum albumin (BSA) as standard. Aliquots of 
supernatants were mixed with sample buffer (final concentrations: 2% SDS, 10 
mM dithiothreitol, 5% glycerol, 20 mM Tris-HCl, pH 6.8), heated to 56"C for 
5 min, and electrophoresed in 0.5-mm-thick SDS/7% polyacrylamide gels (16). 
Molecular mass markers used to calibrate the gels were: myosin, 200 kD; 
Escherichia coli RNA polymerase/3-subunit, 160 kD;/3-galactosidase, 116 kD; 
E. coli RNA polymerase ~-subunit, 90 kD; pyruvate kinase, 57 kD. Proteins 
were transferred from the gels to nitrocellulose filters (BA 80, Schleicher & 
Schuell, Keene, NH) in 96 mM glycine/12.5 mM Tris/20% MeOH for 60-90 
min at a field strength of 5 V/cm (33). N-CAM was detected by the sequential 
incubation of filters with rabbit anti-rat-N-CAM (6), peroxidase-conjugated 
second antibody (Cappel Laboratories, Cochranville, PA), and 0.01% diami- 
nobenzidine/0.005% H202/25 mm sodium citrate, pH 6. The peroxidase 
reaction product was intensified as deseribd by Newman et al. (23). Molecular 
weight markers were detected using Auro Dye (Janssen Pharmaceutica, Inc., 
Piscataway, N J). 

To remove sialic acid, Nonidet P-40 extracts were treated with neuramini- 
dase from Clostridium perferigens (1 U/ml, Sigma Type X) in 25 mM Na 
acetate, pH 5, for 30 rain at 37"C. These conditions were deemed adequate for 
complete desialylation of muscle N-CAM in that quadrupling the concentration 
of neuraminidase and doubling the time of incubation did not affect the 
molecular weight or amount of digestion products detected by immunoblotting. 
As a control, duplicate samples were incubated with neuraminidase in the 
presence of 20 mM 2-deoxy-2,3-dehydro-N-acetyl neuraminic acid (Boehringer 
Mannheim Biochemicals, Indianapolis, IN), a specific inhibitor of neuramini- 
dase activity (17). Samples were then mixed with sample buffer and analyzed 
as described above. 

Peptide Mapping 
N-CAM was affinity purified (6) from nenraminidase-treated Nonidet P-40 
extracts of BC3H-I 3-d cultures, P0 rat intercostals, or adult rat brain and 
electrophoresed on 7% polyacrylamide gels. Coomassie Blue-stained bands 
containing 1-2 ~g protein were cut out and digested with 75 ng Staphylococcus 
aureus V8 protease (Boehringer Mannheim Biochemicals) as described by 
Cleveland et al. (4). Digestion products were separated by electrophoresis on 
15% polyacrylamide gels and detected by silver staining. Concanavalin A (26 
kD) and avidin (17 kD) were used as molecular mass markers. 

Preparation and Hybridization of RNA 
After dissection, tissue samples were immediately frozen in liquid N2. Total 
RNA was extracted from pooled samples by homogenization in guanidine 
hydrochloride and then fractionated by electrophoresis, transferred to filters, 
and hybridized with nick-translated total plasmid DNA, as described previously 
08). Hybrids were detected by autoradiography and quantitated by densitom- 
etry of appropriately exposed autoradiographs, cDNA-containing plasmids used 
were pM 1.3 for N-CAM ( 11 ) and p6H for the AChR 8-subunit (15). Sizes were 
assigned to RNAs hybridizing with pMI.3 as described in reference 9. 

Enzyme-linked lmmunosorbent Assay 
Nonidet P-40 extracts were diluted in PBS, and 400-~1 aliquots were filtered 
through nitrocellulose sheets using a 96-well filtration apparatus (Schleicher & 
Schuell). The sheets were incubated sequentially with 10 mg/ml BSA in PBS, 
rabbit anti-rat-N-CAM antibodies in PBS-BSA, and peroxidase-conjugated goat 
anti-rabbit IgG (Cappel Laboratories) in PBS containing 50% normal goat 
serum. Filters were washed in PBS, 0.05% Tween-20 for 30 rain and cut into 
96 individual squares, which were then incubated separately in tubes containing 
1.2 ml of 0.04% o-phenylenediamine, 0.01% H202, 0.1 M Na citrate, pH 5 for 
40 rain. The reaction was stopped by the addition of 0.6 ml of 4 N H2SO4, and 
the optical density at 492 nm was measured. For each sample, a series of 
dilutions containing 0-10 ~g protein was filtered in triplicate. Optical densities 
were corrected by subtracting values obtained from identically prepared filters 
incubated with nonimmune rabbit serum. Affinity-purified adult rat brain N- 
CAM (6) was used to prepare a standard curve for each experiment. 

Results 

Molecular Forms of N-CAM in Developing Muscle 
Immunohistochemical studies have demonstrated that N- 
CAM is present in both embryonic and perinatal muscle but 
that its distribution changes as myoblasts fuse to form my- 
otubes, axons establish synapses, and myotubes and synapses 
mature (see Figs. 8-11, in reference 6). To learn whether 
changes in the distribution of N-CAM are accompanied by 
alterations in its molecular form, we prepared detergent ex- 
tracts from El5, El7, and P0 muscles and analyzed them by 
immunoblotting. 

On immunoblots of developing muscle, antibodies to N- 
CAM stained a band of Mr 140,000, which sometimes ap- 
peared as a doublet, and a smear extending from ~ 140 to 
~220 kD (Fig. 1A, lanes 1-3). Similar results have been 
reported for chicken (30) and mouse (27) muscle N-CAM, 
whereas human muscle N-CAM has been reported to have 
an apparent molecular mass of ~ 180 kD (20). The average 
apparent molecular weight of  the smear decreased during 
development, whereas the fraction of the immunoreactive 
material migrating at 140 kD increased. This developmental 
transition is similar to that previously observed in brain (3, 
12, 28), in which a high molecular weight smear is replaced 
by sharper, lower molecular weight bands (Fig. 1 B, lanes I 
and 2); differences are that the diffuse material is of  higher 
apparent molecular weight in brain (Mr ~ 180,000-250,000) 
than in muscle, and that adult brain contains bands of 34, 
120,000 and 180,000 as well as 140,000. Thus, in muscle as 
in brain, N-CAM changes in form as development proceeds. 

In embryonic brain, the dispersity and high molecular 
weight of N-CAM is known to be due to a high degree of 
sialylation (7, 28). To determine whether embryonic muscle 
N-CAM is also sialylated, extracts were incubated with neur- 
aminidase to remove sialic acid before being submitted to 
immunoblotting. Neuraminidase treatment resulted in the 
loss of  the high molecular weight heterodisperse material and 
the appearance of discrete bands at 140 and 125 kD (Fig. I A, 
lanes 5-7); these changes were not seen when 2-deoxy-2,3- 
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Figure 1. (A) Immunoblot analysis of native and neuraminidase-treated N-CAM in developing muscle. Nonidet P-40 extracts of E 15 (lanes 1, 
5, and 9), El7 (lanes 2, 6, and 10), or P0 (lanes 3, 7, and 11) rat muscle or of adult rat brain (lanes 4, 8, and 12) were probed with anti-N-CAM 
serum and peroxidasc-conjugated second antibody. Samples in lanes 5-8 were incubated with neuraminidase to remove sialic acid, and samples 
in lanes 9-12 were incubated with both neuraminidase and 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, a specific inhibitor of neuraminidase 
activity. Lanes 13-16 are identical to lanes 9-12 but were probed with nonimmune serum. The amount of sialic acid associated with muscle 
N-CAM decreases during development. Neuraminidase digestion produces two major desialo N-CAMs, of 140 and 125 kD; El5 muscle 
contains predominately the 140-kD form and P0 muscle, the 125-kD form. (B) Nonidet P-40 extracts of El6 (lanes 1 and 3) or adult (lanes 2 
and 4) rat brain probed with anti-N-CAM and peroxidase second antibody. Samples in lanes 3 and 4 were treated with neuraminidase. 
Embryonic brain N-CAM contains large amounts of sialic acid. Adult brain contains a 120-kD native form and a ~ 115-kD desialo form of N- 
CAM not found in embryonic brain. Muscle samples contained 30 #g protein and brain samples 8 #g protein per lane. 

dehydro-N-acetyl neuraminic acid, a specific inhibitor of 
neuraminidase (17), was included in the incubation mixture 
(Fig. IA, lanes 9-11). Thus, muscle N-CAM, is highly sialy- 
lated. 

Both the 140- and 125-kD forms of muscle N-CAM gen- 
erated by neuraminidase are electrophoretically distinguisha- 
ble from the desialo forms generated from brain N-CAM (cf., 
Fig. 1 A, lanes 7 and 8). It was therefore important to confirm 
that both muscle forms were, in fact, authentic N-CAM. To 
this end, we isolated both desialo muscle forms as well as 135- 
and I 15-kD desialo brain N-CAM by affinity chromatography 
and preparative gel electrophoresis, subjected them to limited 
proteolysis, and used gel electrophoresis and silver staining to 
compare the peptides generated. Fig. 2 shows that the 140- 
and 125-kD desialo forms from muscle were both highly 
related to desialo brain N-CAM. A second concern was that 
the smaller (125 kD) form might have been created artifac- 
tually (e.g., by proteolysis) from the larger (140 kD) form 
during the digestion with neuraminidase. However, several 
observations demonstrate that this is probably not the case. 
First, generation of the 125-kD band was blocked by a specific 
inhibitor of neuraminidase (Fig. 1 A, lanes 9-11). Second, this 
form was observed in both rat intercostal and diaphragm 
muscle extracts as well as in chicken muscle (not shown) and 
in cultured mammalian muscle (see below). Third, neuramin- 
idase treatment generated 140- and 125-kD material from N- 
CAM that had been depleted of degradative enzymes which 
might be present in the crude extracts by affinity purification 
on anti-N-CAM-agarose before neuraminidase treatment. Fi- 
nally, the formation of the 125-kD band was not prevented 
by boiling the muscle extracts to inactivate proteases before 

treating them with neuraminidase, or by including a variety 
of protease inhibitors in the incubation. Thus, muscle con- 
tains two distinct "core" (desialo) forms of N-CAM. We do 
not know whether the desialo forms differ from each other 
and from brain forms in primary sequence and/or in post- 
translational modifications. 

Comparison of desialylated N-CAM from muscles of dif- 
ferent ages (Fig. 1, lanes 5-7) revealed that the proportions of 
140- and 125-kD forms varied during development: the 140- 
kD form predominated at El5, whereas the 125-kD form 
predominated at P0. Thus, the proportions of desialo forms 
of N-CAM as well as the extent of their sialylation are devel- 
opmentaUy regulated in muscle. 

Molecular Forms of  N-CAM in Cultured Muscle 

On El5, when muscle N-CAM is highly sialylated and pre- 
dominantly of the 140-kD desialo form, myoblasts are abun- 
dant, myotubes have just begun to form, and synaptic trans- 
mission is newly established. By P0, when muscle N-CAM is 
less sialylated and predominantly of the 125-kD desialo form, 
muscles are depleted of myoblasts, myotubes are abundant, 
and synapses have matured. Thus, the observed molecular 
alterations in N-CAM might reflect changes in the cellular 
composition of the muscle, formation of myotubes from 
myoblasts, maturation of myotubes, an influence of innerva- 
tion on the developing muscle, and/or changes in the amount 
of the small but unavoidable contamination of our muscle 
extracts with nerve N-CAM. To test these ideas, we deter- 
mined the forms of N-CAM synthesized by muscle cells in 
culture. 

Cells dissociated from embryonic muscle divide and fuse 
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Figure 2. V8 protease digests of brain and muscle N-CAMs. (.4) Desialo N-CAMs before digestion, visualized by silver staining. Lane 1 contains 
total desialo adult brain N-CAM, whereas subsequent lanes contain individual desialo forms isolated by preparative gel electrophoresis: 135- 
kD brain N-CAM (lane 2); 115-kD brain N-CAM (lane 3); 140-kD muscle N-CAM (from 3-d BC3H-I cultures [see below], lane 4); and 125- 
kD muscle N-CAM (from P0 intercostals, lane 5). (B) Peptides produced by V8 protease digestion (reference 4) of individual desialo forms. 
Lane 1 contains enzyme only; lanes 2-5, as in A. 

in culture to form striated, contractile myotubes; myoblasts 
in the cultures begin to fuse 2 d after they are plated, and 
fusion is essentially complete by day 5. N-CAM is present on 
the surface of myoblasts in 2-d cultures, and on all myotubes 
and some mononucleated cells in postfusion cultures (see Fig. 
12 in reference 6). Immunoblotting showed that in both 2- 
and 7-d cultures, N-CAM was present in both ~ 140-kD and 
higher molecular mass heterodisperse forms (Fig. 3, lanes t 
and 2). Treatment with neuraminidase revealed that the pre- 
dominant desialo forms in 2- and 7-d cultures were 140 and 
125 kD, respectively (Fig. 3, lanes 3 and 4). Thus, the 140- 
kD desialylated form appears to be associated with myoblasts, 
whereas the 125-kD desialylated form appears to be associated 
with myotubes in vitro. Furthermore, these results indicate 
that the transition from a 140- to a 125-kD desialo form can 
occur in the absence ofinnervation. 

Although primary cultures offer a simpler system than fresh 
muscle for study, they still contain a heterogeneous popula- 
tion of cells. To ask whether transitions in N-CAM forms can 
occur in a single cells, we used two clonal muscle cell lines, 
C2 and BC3H-1. C2 cells fuse to form spontaneously con- 
tracting myotubes in culture and acquire patches rich in 
AChRs and acetylcholinesterase upon fusion (13). BC3H-1 
cells do not fuse but acquire many other aspects of a differ- 
entiated muscle phenotype with time in culture (24). In both 
cell lines, 3-d (nominally undifferentiated) cultures contained 
predominantly the 140-kD desialo form of N-CAM, and 7- 
day (differentiated) cultures contained predominantly the 
125-kD desialo form (Fig. 3, lanes 7, 8, 11, and 12). Thus, 
the transition from 140- to 125-kD forms accompanies differ- 
entiation of clonal cell populations and probably occurs 

within single cells. 
Whereas the developmental transition from 140- to 125- 

kD desialo form in vitro resembled that seen in vivo, the 
transition from more to less sialylation did not occur in 
culture. In fact, in both primary and clonal cell cultures, N- 
CAM was more highly sialylated in differentiated (7 d) cul- 
tures than in undifferentiated (2 or 3 d) cultures (Fig. 3, lanes 
t, 2, 5, 6, 9, and 10). This result demonstrates that both 125- 
and 140-kD forms can be heavily sialylated and that transi- 
tions in extent of sialylation and between core forms can be 
independently regulated. 

Molecular Forms o f  N-CAM-related RNA in 
Developing and Cultured Muscle 

We used a clonal cDNA probe specific for N-CAM mRNA 
(pM 1.3; 9) and techniques of blot hybridization to determine 
the species of N-CAM RNA present in developing and cul- 
tured muscle. As previously described (9, 12), pM 1.3 detected 
RNA species of 7.4, 6.7, 5.2, and 2.9 kb in extracts of adult 
brain (Fig. 4, lane 2); the two larger species were abundant 
but the two smaller species barely detectable in embryonic 
brain (Fig. 4, lane 1). Unlike Goridis et al. (11) and Gennarini 
et al. (9), we did not detect a 4.3-kb species in either developing 
or adult brain. Because we do not know the coding potential 
of any of these species, we refer to them as N-CAM-related 
RNA or N-CAM RNA, rather than as mRNA. 

Developing and cultured muscle contained RNAs of 6.7, 
5.2, and 2.9 kb that were recognized by pM 1.3 (Fig. 4, lanes 
3-6). We presume that these species are N-CAM RNAs 
because their recognition by pM 1.3 is probe specific, they 
were absent from N-CAM poor tissues such as liver, and they 
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Figure 3. lmmunoblot analysis of native and neuraminidase-treated N-CAM from muscle cultures. Nonidet P-40 extracts of primary muscle 
cultures containing myoblasts (lanes 1 and 3) or mature myotubes (lanes 2 and 4), 3-d (lanes 5 and 7) or 7-d (lanes 6 and 8) cultures of BC3H- 
1 cells, or 3-d (lanes 9 and 11) or 7-d (lanes 10 and 12) cultures of C2 cells were probed with anti-N-CAM serum and peroxidase second 
antibody. Samples in lanes 3, 4, 7, 8, 11, and 12 were treated with neuraminidase. Lane 13 contains neuraminidase treated N-CAM from P0 
diaphragm, for comparison. Differentiation of muscle in both primary cultures and in the clonal cell lines BC3H-1 and C2 is accompanied by 
a change in the apparent molecular mass of desialo N-CAM from 140 to 125 kD. Samples contained 30 ug (lanes 1-4), 50 #g (lanes 5-12), or 
25 ug (lane 13) protein. 

migrated with N-CAM-specific RNAs from brain on agarose 
gels. No RNA of 7.4 kb was detected in muscle with pM 1.3. 
The relative proportions of  the three N-CAM RNA species 
detected changed during development, both in vivo and in 
vitro. Thus, the 6.7-kb species was far more abundant than 
the 5.2- and 2.9-kb species in El5 muscle, and 3-d BC3H-1 
cells. In contrast, the 5.2- and 2.9-kb RNAs were more 
abundant than the 6.7-kb form in perinatal (E2 I-P0) muscle, 
7-d primary cultures, and 7-d BC3H-1 (Fig. 4, lanes 3-6, and 
Table I). Thus, for N-CAM-related RNA as for N-CAM, 
multiple molecular forms are present in muscle, and the 
relative proportions of  the forms change during development. 

N - C A M  a n d  I ts  R N A  in Denerva ted  A d u l t  M u s c l e  

Levels of  N-CAM, which are low in normal adult muscle, 
increase after denervation (2, 5, 27). Immunoblotting revealed 
that N-CAM in denervated muscle is similar in form to the 
N-CAM in perinatal muscle: it is predominantly a 140-kD 
form, with some heterodisperse material of  higher molecular 
mass, and is converted to a major band of  125 kD by 
neuraminidase (Fig. 5A, lanes 1-6). There is too little N- 
CAM in normally innervated adult muscle to detect reliably 
on immunoblots; however, concentration of  adult N-CAM 
using anti-N-CAM agarose reveals that it contains both 140- 
and 125-kD desialo forms (Fig. 5A, lane 8). Analysis by 
enzyme-linked immunosorbent assay demonstrated that lev- 
els of  N-CAM increase 12-15-fold (12-, 13-, 13-, and 15-fold 

in four assays) during the first 2 wk after denervation (Fig. 
5 B): detergent extracts of  innervated and 7-10-d-denervated 
rat diaphragm contained 0.036 +_ 0.04 and 0.48 _+ 0.04 ng N- 
CAM/~g protein, respectively. In comparison, we found -8 .7  
ng/ug protein in extracts of adult brain. 

To determine whether the induction of  N-CAM by dener- 
vation is regulated at a pretranslational step, we used pM 1.3 
to detect N-CAM-related RNA in innervated and denervated 
rat muscle. N-CAM RNA was barely detectable in normal 
muscle but increased markedly in abundance after denerva- 
tion (Fig. 6A). As was the case for N-CAM protein, N-CAM 
RNA in denervated muscle resembled N-CAM RNA from 
P0 muscle (i.e., the 5.2- and 2.9-kb species were more abun- 
dant than the 6.7-kb species). Densitometry of appropriately 
exposed autoradiographs showed that the abundance of  the 
6.7-kb form increased only twofold, whereas the 5.2- and 2.9- 
kb species increased ~30-50-fold by 10-14 d after denerva- 
tion. Thus, an increase in N-CAM RNA accompanies and 
presumably underlies the induction of  N-CAM after dener- 
vation. 

We have previously shown that levels of  acetylcholine 
receptor (AChR) a-subunit mRNA increase after denervation 
of mouse leg muscle; this increase is sufficient in speed and 
magnitude to account for the development of  denervation 
supersensitivity in skeletal muscle (18). To determine whether 
levels of  N-CAM RNA and AChR mRNA are similarly 
regulated after denervation, we compared the levels of  N- 
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Figure 4 . Blot hybridization of nick-translated N-CAM cDNA to
muscle RNA. RNA isolated from E17 (lane 1) or adult rat brain (lane
2), from E 15 (lane 3), or E21 (lane 4) rat intercostals, from undiffer-
entiated (lane 5) or differentiated (lane 6) cultures of BC3H-l cells,
and from rat liver (lane 7) was fractionated by gel electrophoresis,
transferred to filters, incubated with 32P-pM 1.3-DNA specific for N-
CAM, and exposed to x-ray film . All lanes contain 5 Fig total RNA.
E15 intercostals and undifferentiated muscle cultures contain pre-
dominately a 6.7-kb N-CAM RNA species, whereas PO intercostals
and differentiated cultures contain largely 5.2- and 2.9-kb species .
Adult brain contains RNAs of 7.4, 6.7, 5.2, and 2.9 kb, which
hybridize to the N-CAM cDNA probe; embryonic brain contains
only the 7.4- and 6.7-kb forms. Liver RNA(which contained readily
detectably O-actin mRNA in parallel experiments) contained no
detectable N-CAM RNA.

CAM RNA in mouse leg muscles denervated for 1, 4, or 8 d,
and on duplicate gels we determined the abundance ofAChR
6-subunit mRNA, using a cloned cDNA probe specific for
this subunit (15) . Fig. 6,B and C show that N-CAM and
AChR 6-subunit RNAs increased in parallel after denervation
and that both followed a time course similar to that previously
determined for AChR a-subunitmRNA. Whereasthe kinetics
of RNA increase depend on rates ofdegradation as well as on
rates ofsynthesis, this result is consistent with the notion that
expression of genes for N-CAM and AChR is regulated in
parallel .

Discussion
Immunohistochemical studies have shown that N-CAM in
rat skeletal muscle changes in distribution during embryogen-
esis, declines in level and becomes concentrated at synapses
postnatally, and reappears after denervation (5, 6; see also
references 20 and 27). Because both N-CAM (3, 12) and its
RNA (9, 11, 21) are known to exist in multiple forms in
brain, it seemed possible that changes in form might accom-
pany the transitions we had documented histologically . Ifthey
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Figure 5. N-CAM accumulates in denervated muscle . (A) Immuno-
blot analysis of normal and denervated adult muscle N-CAM. Lanes
1-6, Nonidet P-40 extracts of PO (lanes 1 and 4), normal adult (lanes
2 and 5) or 1-wk-denervated adult (lanes 3 and 6) rat diaphragm were
probed with anti-N-CAM serum and peroxidase second antibody.
Samples in lanes 4-6 were treated with neuraminidase . Denervation
induces the accumulation of the 125-kD desialo form of N-CAM
characteristic of postnatal muscle. Lanes 7 and 8, N-CAM was
concentrated from an extract of normal adult diaphragm by affinity
chromatography to render detectable the small amount of N-CAM
present in innervated muscle ; the sample in lane 8 was treated with
neuraminidase. Normal adult diaphragm contains both the 140- and
125-kD forms of N-CAM. Samples in lanes 1-6 each contained 50
ag protein . (B) Enzyme-linked immunosorbent assay quantitation of
N-CAM in Nonidet P-40 extracts ofnormal (0) and 10-d-denervated
(40) adult rat diaphragm. Denervation results in a 12-15-fold increase
in muscle N-CAM.

did, muscle would be an ideal system in which to study the
relationships between the molecular and cell biologies of N-
CAM. We therefore used immunoblotting to determine the
molecular forms of N-CAM and blot hybridization to deter-
mine the species ofN-CAM RNAin developing, denervated,
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Figure 6. Denervation induces the accumulation of N-CAM RNA. 
(A) RNA from normal adult (lane 1) or 10-d-denervated adult (lane 
2) rat diaphragm was fractionated by gel electrophoresis, transferred 
to filters, and hybridized with 32p-pM1.3-DNA specific for N-CAM. 
Denervation induces the accumulation of N-CAM RNAs. (B) RNA 
from normal (lanes 1 and 5), l-d-denervated (lanes 2 and 6), 4-d- 
denervated (lanes 3 and 7) or 8-d-denervated (lanes 4 and 8) adult 
mouse leg muscle, probed with N-CAM cDNA (lanes 1-4) or with a 
cDNA-specific for the 6-subunit of AChR (lanes 5-8). (C) Time 
course of the increase in N-CAM and AChR-specific RNAs after 
denervation of mouse leg muscle. Levels of N-CAM 5.2-kb (©), 2.9- 
kb (O), and AChR b-subunit (X) RNAs obtained by densitometric 
scanning of films such as those shown in B are expressed as a 
percentage of the value obtained on day 8 for each species. Values 
for AChR a-subunit (- - -) mRNA were redrawn from reference 18. 
The time courses of increase for both 5.2- and 2.9-kb N-CAM RNAs 
and for both AChR-subunit mRNAs are similar. 

and cultured muscle. Our main results are the following: (a) 
As muscles develop in vivo, the degree of  sialylation of  their 
N-CAM decreases and a 140-kD desialo form is replaced by 
a 125-kD desialo form. (b) The transition in desialo forms 
but not in degree of  sialylation occurs as embryonic and 
clonal muscle cells differentiate in vitro in the absence of  
nerves. (c) Multiple species of  muscle RNA hybridize to N- 
CAM cDNA, and the relative abundance of  these species 
changes during development, both in vivo and in vitro. (d) 
The denervation-induced increase in N-CAM protein is ac- 
companied by an increase in N-CAM RNA and is therefore 
probably regulated pretranslationally. 

Analysis of  muscle N-CAM by immunoblotting reveals that 
the extent of  its sialylation decreases during development in 

vivo, a transition analogous to the embryonic to adult (E--* 
A) conversion that occurs in brain (3, 12, 28). Analysis of  
neuraminidase-treated N-CAM reveals an additional level of  
heterogeneity: a 140-kD desialo form of N-CAM is replaced 
by a 125-kD form as development proceeds (Table I). Such 
heterogeneity has not been noted in previous studies ofdesialo 
N-CAM from chick (30) or mouse muscle (27): in chick this 
failure was presumably due to analysis of  only early embry- 
onic tissue. The transition between desialo forms occurs in 
primary cultures of muscle, indicating that it can occur in the 
absence of  nerves, and in clonal cell lines, suggesting that it 
can occur within single cells. In primary cultures, C2 cells, 
and presumably in vivo, the 140-kD form is associated with 
mononucleated myoblasts and the 125-kD form is associated 
with myotubes. Similarly, whereas BC3H-1 cells do not fuse, 
a 140-125-kD switch occurs as the cells acquire a number of  
characteristics of  the myotube phenotype. We do not know 
whether, in cell populations that do fuse, the transition in 
forms is simultaneous with and/or obligatorily linked to 
fusion. However, a change in the molecular form of N-CAM 
appears to be part of  the program of muscle development. 

A clue to the mechanism of this transition comes from 
comparing the relative abundance of  desialo forms and of  N- 
CAM-related RNAs in various situations. A 6.7-kb RNA 
species is correlated with the 140-kD glycoprotein core, 
whereas 5.2- and 2.9-kb forms are correlated with the 125-kD 
core (Table I). The coding potential of  the N-CAM RNAs is 
unknown, and the 2.9-kb species may not be large enough to 
encode N-CAM (2.9 kb = 967 codons = a 120-kD protein, 
based on the amino acid composition in reference 7). How- 
ever, it is tempting to speculate that the 6.7-kb species encodes 
the 140-kD desialo form and that the 5.2- and/or 2.9-kb 
species encode the 125-kD form. By the same line of  reason- 
ing, and consistent with other studies (9), the presence of  a 
180-kD protein and a 7.4-kb RNA in brain and their absence 
from muscle (Table I) suggest that the 7.4-kb RNA may 
encode the 180-kD form of N-CAM. If these speculations are 
correct, the developmental transition in N-CAM forms in 
muscle would resemble transitions in forms of myosin and 
other contractile proteins, which also have developmentally 
regulated embryonic and adult isoforms encoded by different 
RNAs (25). Unlike embryonic and adult myosin heavy chains, 
which are clearly products of different genes (25), different 
forms of  N-CAM appear to be the product of  a single gene 
(11, 21). The synthesis of  different N-CAM RNAs is thus 
presumably analogous to the synthesis of  multiple troponin 
T and myosin light chain RNAs from single genes by use of  
alternative transcription initiation/termination sites and al- 
ternative RNA splicing (1, 22). 

In adult muscle, N-CAM expression is regulated by inner- 
vation. The effect of  innervation is mediated in large part by 
electrical and/or contractile activity, since N-CAM accumu- 
lates not only in denervated muscles but also in muscles 
chronically paralyzed by the pharmacologic blockade of  nerve 
conduction (5). In many respects the regulation of  N-CAM 
expression in muscle is similar to that of  AChRs (discussed 
in reference 6). We previously showed that the increase in 
AChRs after denervation is preceded by an increase in AChR 
mRNA (18). In this study, we present similar results for N- 
CAM. In rat diaphragm, denervation induces a 12-15-fold 
increase in N-CAM and a 30-50-fold increase in N-CAM 
RNA. In the mouse leg, the time course of increase in N- 
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Table I. Molecular Forms o f  N - C A M  and Its  R N A  in Developing, Adult, and Cultured Muscle  and in Brain 

Source Anti-N-CAM-stained muscle cells* N-CAM (desialo forms) N-CAM RNA 

kD kb 

El5 muscle Myoblasts, myotubes 140 >> 125 6.7 >> 5.2, 2.9 
El7 muscle Myoblasts, myotubes 140, 125 6.7, 5.2, 2.9 
Perinatal (E2 I-P0) muscle Myofibers 125 >> 140 5.2, 2.9 >> 6.7 
Adult muscle Satellite cells, myofibers 140, 125 6.7, 5.2, 2.9 
Denervated adult muscle Myofibers > satellite cells 125 >> 140 5.2, 2.9 >> 6.7 

2<1 primary muscle cultures Myoblasts 140 6.7, 5.2, 2.9 
7-d primary muscle cultures Myotubes 125 >> 140 5.2, 2.9 >> 6.7 
3<1 C2 cells Myoblasts 140 ND 
7<1 C2 cells Myotubes 125 >> 140 5.2, 2.9 >> 6.7 
3-d BC3H-1 cells Myoblasts I40 6.7 
7<1 BC3H-I cells Differentiated myocytes 125 >> 140 5.2, 2.9 >> 6.7 

El7 brain - -  180, 135 7.4, 6.7 
Adult brain - -  180, 135, 115 7,4, 6.7, 5.2, 2.9 

ND, not detected. 
* Immunohistochemical data summarized from references 5 and 6. 

C A M  R N A  after denerva t ion  paralleled that  for the A C h R  a-  
and  ~-subunits. Thus,  the synthesis  a n d / o r  tu rnover  o f  N- 
C A M  and  A C h R  m R N A s  are similarly regulated by inner-  
vation. 

Our  immunoh i s tochemica l  studies show that  N - C A M  is 
appropriately posi t ioned to part icipate in a n u m b e r  o f  differ- 
ent  intercellular interact ions dur ing muscle  deve lopmen t  (6). 
Changes  in the chemical  nature  o f  N - C A M  could be impor-  
tant  in at least two o f  these interactions.  First, N - C A M  is 
present  on myoblas t  surfaces and  might  participate in the 
intercellular recognit ion that  precedes fusion. I f  the 140-kD 
form o f  N - C A M  were more  effective than  the 125-kD form 

in p romot ing  fusion, a switch by myotubes  to the 125-kD 
form could l imit  fur ther  fusion o f  myoblasts  with them.  
Second,  N - C A M  may media te  early in teract ions  between 
m o t o r  axons and  myotubes .  Accumula t ion  o f  the 125-kD 
form o f  N - C A M  by myotubes  could provide a means  for 
embryon ic  axons  to dist inguish them f rom 140-kD N - C A M  
rich myoblasts.  By employing  ant ibodies  that  recognize indi- 
vidual forms o f  N-CAM,  it should  be possible to gain a bet ter  
unders tanding  o f  the subeellular locat ions and  the funct ions  
o f  the various forms  o f  N - C A M  in muscle.  Such studies may  
also help us to unders tand  the significance o f  the variety o f  
N - C A M  forms expressed in central  nervous tissue. 
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