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Abstract

Statistical methods to map quantitative trait loci (QTL) often neglect the X chromosome and may focus exclusively on autosomal loci. But
the X chromosome often requires special treatment: sex and cross-direction covariates may need to be included to avoid spurious
evidence of linkage, and the X chromosome may require a separate significance threshold. In multiple-QTL analyses, including the
consideration of epistatic interactions, the X chromosome also requires special care and consideration. We extend a penalized likelihood
method for multiple-QTL model selection, to appropriately handle the X chromosome. We examine its performance in simulation and by
application to a large eQTL data set. The method has been implemented in the package R/qtl.
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Introduction
The X chromosome is often neglected in methods to map quanti-
tative trait loci (QTL), yet it often requires special treatment. For
example, in an intercross between two inbred strains, A and B,
the offspring have genotypes AA, AB, or BB on the autosomes, but
on the X chromosome males are hemizygous A or B, while
females have genotypes either AA or AB, if their paternal grand-
mother was from strain A, or genotypes AB or BB, if their paternal
grandmother was from strain B. These differences introduce
three difficulties: the treatment of the male hemizygous
genotypes, the potential for spurious evidence for X chromosome
linkage due to a sex or cross-direction difference in the
phenotype, and the need for separate thresholds for statistical
significance for the X chromosome and the autosomes, due to a
difference in degrees of freedom in the linkage tests. Similar con-
siderations apply in genome-wide association studies (Zheng
et al. 2007; Clayton 2008; Hickey and Bahlo 2011).

Broman et al. (2006) described the necessary modifications to
single-QTL analysis by interval mapping (Lander and Botstein
1989). They identified additional covariates that need to be con-
sidered in the null model with no QTL, to avoid spurious linkage.
They identified appropriate linkage tests for various configura-
tions of an intercross or backcross, ensuring that the null model
is nested within the alternative, single-QTL model. And they de-
scribed an approach to obtain separate permutation-based signif-
icance thresholds for the autosomes and X chromosome.

Many of the difficulties with the X chromosome are further
exacerbated in the consideration of multiple-QTL models.
Multiple-QTL models have a number of advantages for QTL

mapping, including the potential for increased power to detect
QTL, the ability to separate linked QTL, and the possibility of
identifying epistatic interactions among QTL. But, for example, in
the consideration of epistatic interactions, the degrees of freedom
for the test for epistasis can vary dramatically depending on
whether both loci are on autosomes, both are on the X chromo-
some, or one is on the autosome and one is on the X chromosome
(Broman and Sen 2009).

We describe an approach for multiple-QTL model selection,
including the investigation of epistatic interactions, that deals
appropriately with the X chromosome. We build upon the penal-
ized likelihood approach of Broman and Speed (2002) and
Manichaikul et al. (2009). We use permutation tests (Churchill
and Doerge 1994) with two-dimensional, two-QTL genome scans,
to derive separate thresholds for the main effects for QTL on the
autosomes and X chromosome, and for pairwise epistatic interac-
tions, depending on whether both, one, or neither QTL is on the X
chromosome.

We use computer simulations to assess the performance of
our approach. We further illustrate the approach through appli-
cation to a large expression quantitative trait locus (eQTL) study.
The method has been implemented in the widely-used package
R/qtl (Broman et al. 2003).

Methods
We consider the case of a backcross or an intercross derived from
two inbred lines and of a continuously varying quantitative trait
with normally distributed residual variation. We focus on Haley-
Knott regression (Haley and Knott 1992), which handles missing
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genotype information by considering a regression of the pheno-
type on QTL genotype probabilities, calculated conditional on the
available marker genotypes (see Broman and Sen 2009). Thus, we
consider models of the form y ¼ Xbþ � where the covariate ma-
trix X includes an intercept and, in a backcross, includes one col-
umn for each autosomal QTL, while in an intercross, it includes
two columns for each autosomal QTL. For X chromosome QTL,
we allow for QTL � sex interactions, for example, allowing that
male hemizygotes may have different average phenotypes than
female homozygotes. In an intercross with both sexes and both
cross directions, we would include sex and cross-direction covari-
ates (see Broman et al. 2006), plus two columns of 0/1 indicators
for the female genotypes and one such column for the male gen-
otypes. For models with epistatic interactions, we impose a hier-
archy on the models, with the inclusion of a pairwise interaction
requiring the inclusion of both corresponding main effects.

Broman and Speed (2002) introduced the use of a penalized
LOD score criterion for multiple-QTL model selection in this con-
text. They focused on additive QTL models and placed a linear
penalty on the number of QTL. Their criterion was:

pLODðcÞ ¼ LODðcÞ � Tmjcjm;

where c denotes an additive QTL model, jcjm is the number of QTL
in the model, and LODðcÞ is the log10 likelihood ratio for the
model c versus the null model of no QTL. The penalty Tm was
chosen as the 1� a quantile of the genome-wide maximum LOD
score in a permutation test (see Churchill and Doerge 1994), and
they sought the model with maximum pLOD.

This approach could be modified to allow different penalties
for QTL on the X chromosome than those on autosomes, using
significance thresholds as in Broman et al. (2006), with TmA and
TmX being the 1� aA and 1� aX quantiles, respectively, of the
maximum LOD scores across the autosomes and the X chromo-
some, from a permutation test. Broman et al. (2006) took
ai ¼ 1� ð1� aiÞLi=L, where LX is the length of the X chromosome,
LA is the total lengths of the autosomes, and L ¼ LA þ LX.

Manichaikul et al. (2009) extended the penalized LOD score ap-
proach to consider models with pairwise interactions among
QTL. They imposed a hierarchy on the models, with the inclusion
of a pairwise interaction requiring the inclusion of both corre-
sponding main effects. We will also impose this hierarchy. They
used the same main-effect penalty as in Broman and Speed
(2002), but added a penalty on interaction terms. They considered
heavy and light penalties on interactions. The heavy-interaction
penalty was taken as the 1� a quantile of the LOD score for the
interaction term in a two-dimensional, two-QTL scan of the ge-
nome, under the null hypothesis of no QTL. The light interaction
penalty was derived as the 1� a quantile for the LOD score com-
paring a two-locus interactive model to a single-QTL model, but
then subtracting off the main effect penalty.

The light-interaction penalty has the advantage of giving
greater power to detect interactive QTL, but with an increased
rate of false interactions. Exclusive use of the light penalty gave a
high rate of false positive QTL, and so they used a compromise:
considering a QTL model as a graph with nodes being QTL and
edges being pairwise interactions, they allowed no more than one
light interaction penalty for each connected component and
placed heavy penalties on all other interactions.

In adapting the approach of Manichaikul et al. (2009) to handle
the X chromosome, we propose a similar penalized LOD score,
but with separate thresholds for interactions in three regions

A:A, A:X, X:X. Broman et al. (2006) identified sex and cross-
direction covariates that should be included under the null hy-
pothesis; we include these covariates under all models. The ad
hoc system of heavy and light penalties on interaction terms, sug-
gested by Manichaikul et al. (2009), becomes unmanageable when
separate interaction penalties are considered for the three
regions, and so we allow light penalties only for interactions for
which both QTL are on autosomes; any QTL involving the X chro-
mosome must be a heavy penalty.

The main effect penalties are as described above. The interac-
tion penalties are based on significance levels aAA, aAX, aXX, based
on the areas of the corresponding regions. For region i, we use
ai ¼ 1� ð1� aÞSi=S, where SAA ¼ L2

A=2; SAX ¼ LALX; SXX ¼ L2
X=2, and

S ¼ SAA þ SAX þ SXX.
In the following, we denote the method of Manichaikul et al.

(2009), treating the autosomes and X chromosome the same, as
XeqA (for X chromosome and autosomes treated equally), and
the proposed approach, treating the X chromosome separately,
as XneA.

The proposed approach requires a permutation test with a
two-dimensional, two-QTL genome scan, keeping track of the
maximum LOD score in the three regions, A:A, A:X, and X:X. And
as the quantiles for the A:X and X:X regions are much farther out
in the tail, we will need to perform many more permutations for
the A:X and X:X regions in order to get accurate estimates of the
penalties. In Broman et al. (2006), they suggested using a factor
LA=LX additional permutations for the X chromosome as for auto-
somes. Following that approach, we would require ðLA=LXÞ2 as
many permutations for the X:X region as for the A:A region.

To search the space of QTL models, we use forward selection
up to a model with 10 QTL, followed by backward elimination to
the null model. At each step of forward selection, we scan the ge-
nome for an additional additive QTL, and then for each QTL in
the current model, we scan the genome for a QTL that interacts
with that QTL. We step to the model that gives the largest penal-
ized LOD score, even if it results in a decrease relative to the cur-
rent model. In the end, we select the model with maximum
penalized LOD score, among all models considered in the search.

Data and software availability
Software implementing the proposed methods have been incor-
porated into the R/qtl package, which is available at its website
(https://rqtl.org), at GitHub (https://github.com/kbroman/qtl),
and at the Comprehensive R Archive Network (CRAN, https://
cran.r-project.org). The data from Tian et al. (2016), considered in
the Application section below, are available at the Mouse
Phenome Database, at https://phenome.jax.org/projects/Attie1.
The detailed code we used for the simulations and in the applica-
tion are available at https://github.com/kbroman/Paper_qtlX.

Simulations
To investigation the performance of our proposed approach, we
conducted a computer simulation. We compare the Type I error
rate and power, including the relative rates of Type I errors on
autosomes versus the X chromosome.

We consider a backcross with 250 individuals, split evenly be-
tween males and females, using a genome modeled after the
mouse, with markers at a 10 cM spacing. We considered a variety
of small QTL models: a single QTL, two additive QTL, or three ad-
ditive QTL all on autosomes; a single QTL or two additive QTL on
the X chromosome; two interacting QTL on autosomes; and two
interacting QTL with one on an autosome and one on the
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X chromosome. In all cases, the percent phenotypic variance
explained by each QTL was approximately 8%. We used Haley-
Knott regression (Haley and Knott 1992) and stepwise model se-
lection. Analyses were performed with R/qtl version 1.42-8
(Broman et al. 2003) and R version 3.5.3 (R Core Team 2020).

First, we use simulation to derive the various penalties for the
XeqA and XneA methods. For the XneA methods, we performed
1056 simulation replicates for the A:A region, 8544 replicates for
the A:X region, and 276,192 replicates for the X:X region. The esti-
mated penalties are shown in Table 1. These penalties are used
to perform stepwise model selection. The results, based on 1000
simulations, are displayed in Figure 1. Figure 1A shows the Type I
error rate for main effect QTL. Treatment of the X chromosome
separately from the autosomes (XneA) results in a smaller Type I
error rate than when all chromosomes are treated equally
(XeqA). The XeqA method has high Type I error rate particularly
when the simulated model has two main QTL on X chromosome.

Figure 1B shows the log2 ratio of Type I error rates, for the
autosomes versus the X chromosome. The proposed XneA
method serves to balance Type I error rates on the autosomes
and the X chromosome, while the XeqA method shows increased
Type I error on the X chromosome.

Figure 1C shows the Type I error rate for interactions. The
XneA method is conservative, with below-target rates of Type I
errors. The XeqA method has high false Type I error rates for
interactions, particularly in the case of two QTL on the X chromo-
some.

Figure 1D shows the power to detect QTL. For autosomal QTL,
the two approaches have similar power. The XneA method has
lower power to detect X chromosome QTL. This is the trade-off to
control the Type I error rate on the X chromosome.

Application
To illustrate our method regarding the X chromosome in
multiple-QTL model selection, we consider the eQTL data of Tian
et al. (2016). The data concern a mouse intercross between the
diabetes-resistant strain C57BL/6J (abbreviated B6) and the
diabetes-susceptible strain BTBR Tþtf /J (abbreviated BTBR). There
were approximately 500 F2 offspring, all genetically obese
through introgression of the leptin mutation (Lepob=ob). Genome-
wide gene expression data were available on six tissues, assayed
with custom two-color Agilent microarrays; here, we focus on
liver expression, for which there was data on 483 F2 mice. Mice
were genotyped with the Affymetrix 5K GeneChip, giving 2057 in-
formative markers.

The F1 parents were derived from a cross between a female
BTBR and a male B6. Thus, the female F2 offspring all have an X
chromosome from BTBR and so are either homozygous BTBR or
heterozygous. The males have a Y chromosome from B6 and are
hemizygous B6 or BTBR on the X.

We first used computer simulation to estimate penalties for
the XeqA and XneA methods. For all mice in the study, we simu-
lated standard normal phenotypes, independent of genotype,
and performed two-dimensional, two-QTL genome scans with
sex as an additive covariate to estimate the various penalties. We
performed 1056 simulation replicates for the A:A region, 9504
replicates for the A:X region, and 335,328 replicates for the X:X re-
gion. The numbers of replicates were chosen based on the areas
of the corresponding regions, with LA=LX � 19. Penalties using a ¼
0:05 are displayed in Table 1. The main effect penalty on the X
chromosome is lower than that on the autosomes, because there
is reduced recombination. (Each F2 mouse has a single recombi-
nant X chromosome.) The interaction penalty for two QTL on the
X chromosome is lower than the heavy interaction penalty for
two QTL on autosomes, but the penalty for interactions between
autosomal and X chromosome QTL is highest.

We considered the 37,827 gene expression microarray probes
with known genomic location (including 1433 on the X chromo-
some, 21 on the Y chromosome, and 9 mitochondrial probes).
The gene expression values were transformed to normal quan-
tiles. We performed single-QTL genome scans and identified
10,814 microarray probes (29%) with at least one significant QTL
at a ¼ 0:05, allowing separate significance thresholds on the auto-
somes and X chromosome. For the multiple-QTL analyses, we
will focus on these 10,814 microarray probes.

Table 2 shows the distribution of the estimated number of
QTL by the two methods, as well as the estimated number of
pairwise interactions. As we focused on microarray probes with
at least one significant QTL in a single-QTL genome scan allowing
separate autosome and X chromosome thresholds, it is no sur-
prise that all of these microarray probes showed at least one QTL
by the XneA method.

There were 56 microarray probes that showed no QTL by the
XeqA method. All of these showed a single QTL on the X chromo-
some by the XneA method. This can be explained by the fact that
the main effect penalty for the X chromosome is considerably
smaller than that for the autosomes (Table 1).

In general, these expression traits show a large number of
QTL. While about half show a single QTL, about a quarter show 2
QTL and another quarter show 3 or more QTL. The number of
interactions, however, is quite small. Less than 4% of expression
traits show an interaction, and about 0.1% have two or more
interactions.

The two methods gave identical results for the vast majority of
the microarray probes: 10,290 (95.2%) gave the same QTL model by
the two methods, and just 524 (4.8%) gave different models. For 257
microarray probes (2.4%), the XneA results were nested within the
XeqA results, while for 98 microarray probes (0.9%), the XeqA
results were nested within the XneA results. Another 169 (1.6%)
had more complex differences, with some gains and losses on both
sides. In 139 of the 524 cases where the two methods gave different
results, part of the difference included the X chromosome: 86 mi-
croarray probes gained an X chromosome QTL by the XneA
method, while 53 lost an X chromosome QTL.

As one example of the kinds of differences observed, consider
microarray probe 10003837305, which is on chromosome 1 at
152Mb (63.2 cM), though not in a known gene. The results by the
two methods are in Table 3, with the results by the XeqA method
on the left, and those for the XneA method on the right. By the
XeqA method, there are two QTL on chromosome 7, one of which
interacts with a locus on the X chromosome. With the XneA
method, the QTL on chromosome 7 with the 7:X interaction is omit-
ted, and instead there is an interaction between the other

Table 1 Estimated penalties for the simulations and the
application, for the XeqA and XneA methods

Simulations Application
Penalty XeqA XneA XeqA XneA

TmA 2.98 2.88 3.85 3.90
TmX — 3.61 — 3.51
TH

iAA 4.83 4.34 6.69 6.59
TL

iAA 2.28 1.83 3.73 3.62
TiAX — 5.74 — 7.21
TiXX — 5.15 — 4.88

Q. Tran and K. W. Broman | 3



chromosome 7 QTL and the locus on chromosome 10. The position
of the chromosome 10 QTL shifts a bit, but the positions of most
other QTL do not change much. Note that the QTL on chromosome
1 is very close to the genomic location for this microarray probe.

Figure 2 shows LOD profiles for the two models for this micro-
array probe, with results for the XneA method in green. Each
curve shows the log10 likelihood when varying the position of the
given QTL, keeping all other QTL fixed at their estimated posi-
tions, versus the model where the given QTL is omitted (along
with any interactions it is involved in). These curves show the

strength of evidence for the QTL as well as an indication of their

mapping precision. Again, in switching from the XeqA method to

the XneA method, one of the chromosome 7 QTL is lost, as is the

7:X interaction, but a 7:10 interaction is gained, and the position

of the chromosome 10 QTL shifts.

Discussion
We have introduced an approach for multiple-QTL model selec-

tion that takes account of the X chromosome. It builds on the
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Figure 1 Simulation results: Type I error and power of these methods across simulated models. Black is the method treating the X chromosome and
autosomes the same (XeqA); green is the method treating the X chromosome and autosomes differently (XneA). The estimates and 95% confidence
intervals are based on 1,000 simulations. (A) Type I error for main effects. (B) log2 ratio of the Type I error of main effects for autosomes versus the X
chromosome. (C) Type I error for interactions. (D) Power to detect QTL.
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penalized LOD score method of Manichaikul et al. (2009), but with
a separate main-effect penalty for the autosomes and the X chro-
mosome, and separate interaction penalties for the three kinds of
pairwise interactions: between two autosomal QTL, between two
X chromosome QTL, and between a QTL on an autosome and one
on the X chromosome.

Our approach balances false positive rates between the auto-
somes and the X chromosome. In our computer simulations,

which concerned a backcross with both sexes, the main effect
penalty is higher for the X chromosome than for autosomes, and
so the new approach gives a loss of power to detect QTL on the X
chromosome. The application to the eQTL dataset of Tian et al.
(2016) concerned an intercross with both sexes but just one cross
direction, and so the main effect penalty was lower for the X
chromosome than for autosomes, and so the new approach gave
some additional QTL on the X chromosome.

In the eQTL application, for the vast majority of expression
traits, the separate treatment of the X chromosome gave identi-
cal results. This is as expected: the penalties (Table 1) have rela-
tively small changes, and these changes will only affect the
results when loci or interactions have LOD scores in the small
range between these penalty values.

Table 2 Distribution of the estimated number of QTL and
pairwise interactions for the liver expression data from Tian et al.
(2016), for the 10,814 gene expression microarray probes with at
least one QTL by the XneA method

(A)

No. QTL XeqA XneA

0 56 0
1 5,212 5,432
2 2,566 2,518
3 1,444 1,397
4 732 712
5 390 373
6 205 194
7 114 116
8 46 45
9 26 25
10 23 2

(B)

No. interactions XeqA XneA

0 10,408 10,419
1 392 380
2 12 13
3 2 2
— — —
— — —
— — —
— — —
— — —
— — —
— — —

Table 3 Comparison of the selected QTL models by the XeqA (A)
and XneA (B) methods, on probe 10003837305

(A)

Name Chr Pos LOD

Q1 1@60.0 1 60.0 5.4
Q2 7@2.5 7 2.5 10.7
Q3 7@20.1 7 20.1 5.8
Q4 9@31.6 9 31.6 7.1
Q5 10@3.0 10 3.0 4.0
Q6 13@14.4 13 14.4 5.4
Q7 17@19.6 17 19.6 7.1
Q8 X@57.4 X 57.4 42.1
Q2:Q8 7@2.5: X@57.4 7:X 6.4

(B)

Q1 1@59.3 1 59.3 5.0
Q2 7@18.6 7 18.6 15.1
Q3 9@31.6 9 31.6 5.6
Q4 10@24.0 10 24.0 8.7
Q5 13@14.4 13 14.4 4.4
Q6 17@13.1 17 13.1 5.7
Q7 X@56.4 X 56.4 34.5
Q2:Q4 7@18.6:10@24.0 7:10 7.0
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Figure 2 LOD profile of output models from XeqA (black) and XneA (green) methods on probe 10003837305. Note that there are two black curves on
chromosome 7, because the XeqA method identified two QTL on that chromosome.
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In the eQTL application, many expression traits showed
multiple QTL, including up to 10 QTL. (Our model search did not
consider models with more than 10 QTL.) However, there were
few expression traits for which we identified epistatic interac-
tions. The high degrees of freedom of the test for epistatic inter-
actions in an intercross, as well as large search space, result in
large penalties on interactions and so low power to detect inter-
actions.

Software implementing our approach has been incorporated
into R/qtl (Broman et al. 2003), an add-on package to the general
statistical software R (R Core Team 2020).
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