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INTRODUCTION 
 

Breast cancer, which originates in the epithelial tissue 

of the breast [1], is one of the most common malignant 

tumors in women, accounting for 30% of the cancers 

diagnosed in women. Continuous improvements in 

radical mastectomy and the application of various 

targeted drugs have markedly improved the survival 

rate and quality of life of patients with breast cancer, 

but tumor recurrence and metastasis are still the main 

prognostic factors [2]. Bone metastasis is the most 

common site of distant metastasis. Bone metastasis 

occurs in 65 to 75% of patients with metastatic and 

recurrent advanced breast cancer, and it is found in 27 

to 50% of patients at initial diagnosis [3]. Bone 

metastasis often occurs in the thoracolumbar vertebrae, 

sacrum, and ribs [4]. Breast cancer patients with bone 

metastasis often experience bone-related events, such as 

pain in bones, pathological fractures, vertebral 

compression or deformation, spinal cord compression, 

and hypercalcemia, which seriously affect their quality 

of life [5]. 
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ABSTRACT 
 

The molecular mechanism of bone metastasis in breast cancer is largely unknown. Herein, we aimed to identify 
the key genes and long non-coding RNAs (lncRNAs) related to the bone metastasis of breast cancer using a 
bioinformatics approach. We screened differentially expressed genes and lncRNAs between normal breast and 
breast cancer bone metastasis samples using the GSE66206 dataset from the Gene Expression Omnibus. We 
also constructed a differentially expressed lncRNA-mRNA interaction network and analyzed the node degrees 
to identify the driving genes. After finding potential pathogenic modules of breast cancer bone metastasis, we 
identified breast cancer bone metastasis-related modules and functional enrichment analysis of the genes and 
lncRNAs in the modules. Based on the above analysis, we constructed a differentially expressed lncRNA-mRNA 
network related to bone metastasis in breast cancer and identified core driver genes, including BNIP3 and the 
lncRNA RP11-317-J19.1. The role of core driver genes and lncRNAs in the network implies their biological 
functions in regulating bone development and remodeling. Thus, targeting the core driver genes and lncRNAs in 
the network may be a promising therapeutic strategy to manage bone metastasis. 
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Metastasis is the main cause of death in approximately 

30% of patients with breast cancer, with a higher 

incidence of bone metastasis. Although breast cancer is 

peculiarly prone to bone metastasis, our understanding 

of the molecular mechanism of bone metastasis in 

breast cancer is still limited. Induced tumor-suppressing 

mesenchymal stem cells protect bones from metastasis 

in breast tumors [6] and the bone microenvironment and 

soluble factors participate in breast cancer bone 

metastasis. In this complex signaling network, 

interleukin is a key regulator, affecting the differen-

tiation and function of osteocytes, as both cancer cells 

and osteocytes secrete interleukin and express the 

corresponding receptors [7]. MicroRNAs and long non-

coding RNAs (lncRNAs), as non-coding RNAs that 

regulate the expression of target genes, also participate 

in bone metastasis [8]. It has been reported that miR-

214 promotes osteolytic bone metastasis of breast 

cancer by targeting TRAF3. By detecting the expression 

profile of miRNAs produced by osteoclasts in human 

bone specimens, it was discovered that miR-214-3p is 

significantly upregulated in breast cancer patients with 

osteolytic bone metastasis. Moreover, miR-214-3p 

directly targets Traf3 mRNA to promote osteoclast 

activity and bone resorption activity [9]. In addition, the 

ROR1-HER3-lncRNA axis regulates the Hippo-YAP 

pathway to promote bone metastasis in breast cancer. 

NRG1 triggers HER3 phosphorylation, and then recruits 

the lncRNA MAYA and methylates MST1, activating 

YAP and its target genes, which eventually leads to  

the induction of osteoclast differentiation and bone 

resorption by cancer cells [10]. The lncRNA 

transcription factor homeobox B13 (HOXB13) has been 

identified as an upstream regulator of bone metastasis-

related signals in prostate cancer. HOXB13 promotes 

the bone metastasis of metastatic prostate cancer by 

regulating the production of CCL2/CCR2 cytokines and 

integrin signals in an autocrine and paracrine manner 

[11]. 

 

This study aimed to identify genes and lncRNAs that 

are related to bone metastasis in breast cancer to 

determine the molecular mechanism underlying bone 

metastases in breast cancer. The key genes and 

lncRNAs identified herein provide a theoretical 

foundation for the intrinsic molecular mechanism of 

breast cancer bone metastasis. 

 

RESULTS 
 

Screening of differentially expressed genes 
 

The differentially expressed genes and lncRNAs in 12 

breast cancer bone metastasis samples and 12 normal 

samples were identified using the R limma package for 

differential expression. We used the breast cancer bone 

metastasis expression profile in the GSE66206 dataset. 

A total of 133 differentially expressed genes and 23 

differentially expressed lncRNAs (fold change >1.2 or 

fold change <-6/5) were identified. Among them, 27 

genes and 3 lncRNAs were significantly differentially 

expressed (p < 0.05) (Table 1). 

 

Constructing an interaction network related to bone 

metastasis in breast cancer 

 

We calculated Spearman correlation coefficients for the 

co-expression of PCGs and lncRNAs, which we 

corrected using the rank-sum test. We identified 

747,870 PCG-lncRNA, PCG-PCG, and lncRNA-

lncRNA interactions, 7,451 of which were differentially 

expressed PCG-lncRNA interactions (| r | ≥ 0.3, p < 

0.05). We then visualized the network (Figure 1A) and 

analyzed the node degrees. Cytoscape analysis revealed 

that the degree of the network nodes ranged from 1 to 

905. To identify the hub nodes in the network, we set 

the threshold to 20 and extracted all possible core driver 

genes. A total of 30 different core driver genes were 

identified (Figure 1B). We also identified regulatory 

interactions between 27 differentially expressed genes 

and 3 lncRNAs (RP11-317J19.1, CTD-2410N18.4, 

IDI2-AS1) (Figure 1C). We consulted the Human 

Protein Atlas Interactive Analysis to validate the 

expression of the core driver genes, including IDI1, 

BNIP3, IFRD1, COQ10B, and ZBTB10 (Figure 2), at 

the protein and RNA levels in breast cancer. 

Immunohistochemistry and RNA expression analysis 

indicated that IDI1, BNIP3, IFRD1, and ZBTB10 were 

significantly differentially expressed in cancer and 

healthy tissues. 

 

WGCNA of co-expressed genes 

 

Gene expression profiles for 1,533 PCG and lncRNAs 

related to breast cancer bone metastasis were 

constructed using the WGCNA R package to build a co-

expression network (merge cut height = 0.25, verbose = 

3). The optimal threshold for the WGCNA was 12 

(Figure 3A). The sample clustering chart is shown in 

Figure 3B. We excavated five modules from the breast 

cancer bone metastasis gene expression profile, 

including blue (112 genes), turquoise (1,274 genes), 

brown (37 genes), yellow (20 genes), and gray (90 

genes) modules (Figure 3C). The results of the co-

expression analysis are shown in Figure 3D. 

Relationships between the various modules and traits 

related to bone metastasis in breast cancer are shown in 

Figure 3E. The genes in the yellow module are related 

to the disease characteristics of breast cancer bone 
metastases and breast cancer. In addition, the 

occurrence of bone metastases positively correlated 

with the expression of the genes in the yellow module.
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Table 1. The Gene ontology annotation of the differentially expressed genes between the breast cancer bone 
metastasis samples and normal samples (GSE66206 from GEO). 

Gene 

symbol 
Gene ID Biological Process (GO) 

CSPP1 79848 GO:0051781 positive regulation of cell division 

COQ10B 80219 GO:0006743 ubiquinone metabolic process 

FLVCR1 28982 GO:0043249 erythrocyte maturation 

IDI1 3422 GO:0050993 dimethylallyl diphosphate metabolic process 

PTP4A1 7803 GO:0030335 positive regulation of cell migration 

ODC1 4953 GO:0009445 putrescine metabolic process 

JMJD1C 221037 GO:0033169 histone H3-K9 demethylation 

BZW1 9689 GO:0045296 cadherin binding 

IRF1 3659 GO:0034124 regulation of MyD88-dependent toll-like receptor signaling pathway 

KDM6B 23135 GO:0071557 histone H3-K27 demethylation 

IFRD1 3475 GO:0048671 negative regulation of collateral sprouting 

RBM25 58517 GO:0000381 regulation of alternative mRNA splicing, via spliceosome 

NCOA4 8031 GO:0006879 cellular iron ion homeostasis 

SERPINA1 5265 GO:0048199 vesicle targeting, to, from or within Golgi 

HSPB1 3315 
GO:0038033 positive regulation of endothelial cell chemotaxis by VEGF-activated 

vascular endothelial growth factor receptor signaling pathway 

BNIP3 664 
GO:1902109 negative regulation of mitochondrial membrane permeability involved 

in apoptotic process 

LARP4 113251 GO:0034250 positive regulation of cellular amide metabolic process 

UXT 8409 GO:0047497 mitochondrion transport along microtubule 

ZBTB10 65986 GO:0046872 metal ion binding 

LAMTOR1 55004 GO:0060620 regulation of cholesterol import 

MRPL51 51258 GO:0070126 mitochondrial translational termination 

ELF2 1998 GO:0050855 regulation of B cell receptor signaling pathway 

TPD52 7163 GO:0030183 B cell differentiation 

PAQR5 54852 GO:0048477 oogenesis 

CYB5D1 124637 GO:0046872 metal ion binding 

GABRB2 2561 GO:0004890 GABA-A receptor activity 

ABHD2 11057 GO:0042562 hormone binding 

 

Functional enrichment analysis and verification 

 

The yellow module comprised 14 genes (Table 2). We 

used KOBAS to perform functional enrichment 

analysis using GO and KEGG for the genes in the 

yellow module [12]. With a significance threshold of 

p < 0.05, we identified seven significant KEGG 

functional pathways, which revealed that the core 

genes in the yellow module were enriched in the 

prolactin signaling pathway [13] (Figure 4A). GO 

enrichment analysis revealed 300 related GO 

functions (p < 0.05) involving a large number of 

pathways that might be related to cancer development, 

including the regulation of signal transduction (GO: 
0009966, p = 0.00017), cellular processes (GO: 

0009987, p = 0.00024), cellular communication 

regulation (GO: 0010646, p = 0.00030), and positive 

regulation of biological processes (GO: 0048518, p = 

0.000826) (Figure 4B). 

 

Enrichr was used to enrich the KEGG and GO 

functions of the five lncRNAs in the yellow module (p 

< 0.05). Some pathways that were enriched for the 

lncRNAs were related to amino acid transport (Figure 

4C, 4D), including alanine transport (GO: 0015808, p 

= 0.00249) and amino acid transmembrane transport 

(GO: 0003333, p = 0.00747). We identified the 

GABAergic synapse (p = 0.02205) in the lncRNA-

enriched KEGG pathway, which is closely related to 

breast cancer metastasis [14, 15]. Therefore, the 

yellow module was likely to be a pathogenic module.  
 

We identified that the lncRNA RP11-317-J19.1 and 

PTP4A1 acted on BNIP3, which plays a key role in cell 
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apoptosis and autophagy (Figure 4E, 4F) [16–19]. The 

gene-lncRNA interaction diagram revealed a subtle 

interaction between the five differentially expressed 

genes and differentially expressed lncRNAs in the 

yellow module (Figure 5A, 5B). To validate the gene-

lncRNA interactions in the yellow module, we created 

gene correlation scatter plots for IDI2-AS1 and IDI1, 

IDI2-AS1 and PTP4A, IDI2-AS1 and BNIP3, PTP4A 

and IDI1, BNIP3 and IDI1, as well as PTP4A and 

BNIP3 (Figure 5C). The results revealed that the

 

 
 

Figure 1. PCG-lncRNA interactions. (A) Network of differentially expressed PCG-lncRNA interactions. (B) Core driver gene network. (C) 

Interactions between differentially expressed genes and lncRNAs. 
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expression levels of BNIP3 and PTP4A were 

significantly positively correlated with that of IDI1 (p 

< 0.05), whereas those of BNIP3 and PTP4A were 

significantly negatively correlated with those of IDI2-

AS1 (p < 0.05). Moreover, the Kaplan-–Meier plots 

showed that seven genes and two lncRNAs in the core 

driver gene network and co-expression yellow module 

were correlated with overall survival, including IDI1, 

PTP4A1, BNIP3, IFRD1, ZBTB10, DISP1, COQ10B, 

IDI2-AS1, and SLC38A3 (Figure 6A–6I). 

 

 
 

Figure 2. Validation of significant core genes in breast cancer bone metastasis via immunohistochemistry and RNA 
expression analysis. 
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Figure 3. Construction and analysis of co-expression modules. (A) Optimal threshold selection map for breast cancer bone metastasis 

co-expression. (B) Clustering of breast cancer bone metastasis samples. (C) Phylogenetic tree of module clustering. (D) Co-expression analysis 
heat map. (E) Breast cancer bone metastasis modules and traits. 
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Table 2. The GO annotations of the genes in the yellow module. 

Gene symbol Gene ID Biological process (GO) 

IDI1 3422 GO:0050993 dimethylallyl diphosphate metabolic process 

PTP4A1 7803 GO:0030335 positive regulation of cell migration 

BNIP3 664 
GO:1902109 negative regulation of mitochondrial membrane permeability involved in 

apoptotic process 

NCKAP5 344148 GO:0007019 microtubule depolymerization 

SOCS2 8835 GO:0060396 growth hormone receptor signaling pathway 

ADAMTS3 9508 
GO:1900748 positive regulation of vascular endothelial growth factor signaling 

pathway 

ANXA11 311 GO:0032506 cytokinetic process 

DYRK1A 1859 
GO:0043518 negative regulation of DNA damage response, signal transduction by p53 

class mediator 

EPS8L2 64787 GO:1900029 positive regulation of ruffle assembly 

DISP1 84976 GO:0007225 patched ligand maturation 

WDFY3 23001 GO:0035973 aggrephagy 

SLC38A5 92745 GO:1904557 L-alanine transmembrane transport 

NOVA1 4857 GO:0120163 negative regulation of cold-induced thermogenesis 

SLC38A3 10991 GO:2000487 positive regulation of glutamine transport 

 

DISCUSSION 
 

Herein, we identified the genes and lncRNAs that are 

related to bone metastasis in breast cancer. By 

comparing the differentially expressed genes identified 

in our screening with regard to the genes related to 

breast cancer bone metastasis in the NCBI database, we 

identified genes with verified links to breast cancer 

bone metastasis, such as HSPB1 and PRL, in our 

dataset, thereby validating our approach. HSPB1 

expression is associated with a variety of human cancers 

with poor clinical prognosis. Furthermore, the HSPB1-

encoded protein promotes cancer cell proliferation and 

metastasis, while protecting cancer cells from apoptosis. 

In addition, prolactin promotes breast cancer bone 

metastasis [20–22]. The expression of the prolactin 

receptor modulates the microenvironment to induce 

osteoclast formation. 

 

Through functional analysis of the lncRNA RP11-

317-J19.1, PTP4A1, and BNIP3, we found that the 

interaction pairs formed by these genes participate in 

programmed cell death via apoptosis and autophagy 

[16–19]. The protein encoded by PTP4A1 is a cell-

signaling molecule with a regulatory role in various 

processes, such as cell proliferation and migration; 

therefore, the dysregulation of this protein may also 

be involved in metastasis [23–27]. BNIP3 encodes a 

mitochondrial protein that contains a BH3 domain and 

functions as a pro-apoptotic factor. BNIP3 silencing 

may be mediated by the lncRNA RP11-317-J19.1, 

allowing the protein encoded by PTP4A1 to function 

normally, which may induce the uncontrolled 

proliferation and migration of breast cancer cells. 

PTP4A1 is highly expressed in several cancer types, 

and the overexpression of PTP4A1, which is 

associated with aggressive tumor characteristics, may 

be regulated by the PI3K/AKT pathway [28]. PTP4A1 

expression is regulated by microRNAs that control 

cellular processes in breast cancer, whereas miR-601 

targets PTP4A1 to inhibit breast cancer growth and 

invasion [24]. The function of BNIP3 is similar to that 

of PTP4A1, which includes the inhibition of cancer 

aggression. PTP4A1 can be modulated by the 

lncRNAs HULC and RP4 in response to cellular 

injury [29, 30]. These findings suggest that RP11-

317-J19.1, PTP4A1, and BNIP3 may play crucial  

roles in restraining cancer aggressiveness; thus, they 

serve as strong predictors of breast cancer bone 

metastasis. 

 

In conclusion, we constructed a differentially 

expressed lncRNA-mRNA network related to bone 

metastases in breast cancer and identified core driver 

genes. We found that expression modules related to 

alanine transport and amino acid transmembrane 

transport were differentially regulated in the bone 

metastasis and normal samples. Our results reveal key 
genes and lncRNAs, including BNIP3 and RP11-317-

J19.1, that are related to breast cancer bone metas-

tasis. Our findings lay the foundation for under-

standing the molecular basis of breast cancer 
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Figure 4. KEGG and GO function enrichment analyses. (A) KEGG pathway enrichment in the yellow module. (B) GO pathway 

enrichment in the yellow module. (C) GO enrichment of lncRNAs in the yellow module. (D) KEGG enrichment of the functions of the lncRNAs 
in the yellow module. (E) KEGG pathway enrichment for the interactions of the differentially expressed genes in the yellow module. (F) GO 
pathway enrichment for the interactions of the differentially expressed genes in the yellow module. 
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Figure 5. Interactions of the genes in the yellow module. (A) The interactions between five differentially expressed genes and 
differentially expressed lncRNAs in the yellow module. (B) The five differentially expressed genes in the yellow module. (C) Gene correlation 
scatter plots of the yellow module. The Pearson correlation coefficients of IDI2-AS1 and IDI1, IDI2-AS1 and PTP4A, IDI2-AS1 and BNIP3, PTP4A 
and IDI1, BNIP3 and IDI1, and PTP4A and BNIP3. 
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Figure 6. Analysis of overall survival based on the expression of the seven genes and two lncRNAs in the core driver gene 
network. Survival was measured using Kaplan-Meier analysis based on the expression of IDI1 (A), PTP4A1 (B), BNIP3 (C), IFRD1 (D), ZBTB10 

(E), DISP1 (F), COQ10B (G), IDI2-AS1 (H), and SLC38A3 (I). The X-axis displays the survival time (Months), and the y-axis displays the 
percentage survival. 
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bone metastasis and will be useful for future 

therapeutic studies. 

 

MATERIALS AND METHODS 
 

Gene expression data 

 

We downloaded the gene chip expression data from the 

GSE66206 dataset and probe annotation files from 

mouse breast cancer bone metastasis data from the Gene 

Expression Omnibus (GEO) database (n = 12 normal 

samples and n = 12 breast cancer bone metastasis 

samples). The probe annotation files include all probe 

ID files and probe sequence files for the platform. 

 

Preparation of the data for probe re-annotation 

 

We downloaded the V19 version of the human protein-

coding gene reference transcript sequence and lncRNA 

reference genomic sequence data from the GENCODE 

database. The probe sequences of the Affymetrix chip 

GPL6246 platform used for analyzing the GSE66206 

dataset were downloaded from GEO. 

 

Chip probe re-annotation 

 

First, we used a library comprising the human protein-

coding gene (PCG) reference transcript sequence data 

and lncRNA reference genome sequence data in fasta 

format from GENCODE to build our database. Then, 

based on the constructed transcription and lncRNA 

libraries, we re-annotated the probe sequences of 

GSE66206 via the blast algorithm in preparation for 

the construction of mRNA and lncRNA expression 

profiles. During re-annotation, we ensured that all the 

remaining probes met the following conditions: 1) 

The probe sequence fell entirely within the transcript 

sequence of the PCG or lncRNA and matched exactly; 

2) if a probe sequence aligned with the transcripts of 

multiple PCGs or lncRNAs, it was filtered out; 3) 

each PCG or lncRNA was supported by at least two 

probe sequences. 

 

Differential expression analysis 

 

First, we assigned the appropriate gene symbol to each 

probe based on the re-annotation and calculated the 

mean expression for all probes corresponding to the 

same symbol to determine the expression of the genes 

in breast cancer bone metastasis and normal samples. 

The gene expression profiles and lncRNA expression 

profiles were determined using the R package limma to 

analyze the differentially expressed genes and 

differentially expressed lncRNAs between the breast 

cancer bone metastasis and normal samples. The 

threshold for differential expression was fold change > 

1.2 or fold change < 5/6, where p < 0.05. We compared 

the screened differentially expressed genes with the 

related genes on the National Center for Biotechnology 

Information (NCBI) database to obtain verified or 

potential genes. 

 

Construction of an interaction network related to 

bone metastasis in breast cancer 

 

The Spearman correlation coefficient was calculated 

from the gene and lncRNA expression data of the breast 

cancer bone metastasis and normal samples, and a rank-

sum test was performed to construct a differentially 

expressed lncRNA-mRNA interaction network for 

breast cancer bone metastasis (coefficient | r | ≥ 0.3, p < 

0.05 determined by rank-sum test). We visualized the 

network and analyzed the node degrees to identify the 

core driving genes. 

 

Weighted correlation network analysis of co-

expressed genes 

 

Co-expression analysis of all genes and lncRNAs 

associated with breast cancer bone metastasis was 

performed using the weighted correlation network 

analysis (WGCNA) R package. We used the WGCNA 

algorithm to mine the co-expressed gene modules, and 

then analyzed the associations between these modules 

and the sample phenotype. The identified breast cancer 

metastasis-related modules were displayed in the 

network using Cytoscape. 

 

Functional enrichment analysis of the genes and 

lncRNAs in the breast cancer metastasis-related 

modules 
 

Functions and associated pathways of the breast cancer 

bone metastasis-related and differentially expressed 

genes, as well as lncRNAs, were enriched using 

KOBAS and Enrichr, respectively, via gene ontology 

(GO) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) analyses. 

 

Abbreviations 
 

GEO: Gene Expression Omnibus; GO: Gene 

ontology; KEGG: Kyoto Encyclopedia of Genes and 

Genomes; long non-coding RNA: lncRNA; NCBI: 

National Center for Biotechnology Information; PCG: 

Protein-coding gene; WGCNA: Weighted correlation 

network analysis. 
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