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Understanding cell fate selection remains a central challenge in developmen-
tal biology. We present a class of simple yet biologically motivated
mathematical models for cell differentiation that generically generate oscil-
lations and hence suggest alternatives to the standard framework based
on Waddington’s epigenetic landscape. The models allow us to suggest
two generic dynamical scenarios that describe the differentiation process.
In the first scenario, gradual variation of a single control parameter is
responsible for both entering and exiting the oscillatory regime. In the
second scenario, two control parameters vary: one responsible for entering,
and the other for exiting the oscillatory regime. We analyse the standard
repressilator and four variants of it and show the dynamical behaviours
associated with each scenario. We present a thorough analysis of the associ-
ated bifurcations and argue that gene regulatory networks with these
repressilator-like characteristics are promising candidates to describe cell
fate selection through an oscillatory process.

1. Introduction

In 1940, Waddington proposed representing the complex regulatory dynamics
driving the process of cellular differentiation as an ‘epigenetic landscape’ [1]
through which a single cell can be thought of as travelling. The differentiating
cell encounters successive ‘decision points” in the landscape morphology that
correspond to differentiation events. These decision points emerge from dyna-
mical changes in the underlying cellular gene regulatory network (GRN), and
are mathematically described by variations in parameters that influence the
GRN dynamics. For example, in zebrafish, it is known that Wnt signalling
plays a fundamental role in specification and commitment of melanocytes
[2-4], and the level of Wnt expression may therefore be considered as a par-
ameter, driving the cellular GRN through one or more of the decision points
hypothesized by Waddington.

Despite the philosophical attractiveness of the epigenetic landscape meta-
phor, the details have remained unclear and no completely self-consistent
mathematical description has emerged. For example, there are debates regard-
ing the types of bifurcations characterizing differentiation: saddle-node
bifurcations [5,6] have been proposed as being more consistent with the
expected topologies of the core GRN responsible for differentiation than pitch-
fork bifurcations. Experimental support for these mathematical bifurcation
phenomena, e.g. in embryonic stem cells (ESCs), is also lacking. For example,
when progesterone is washed away from mature Xenopus oocytes, they do
not dedifferentiate but remain mature [7], a finding that is more consistent
with the saddle-node bifurcation than with Waddington’s landscape.

Of course, the detailed biological understanding of cell differentiation
dynamics has grown significantly recently and it is appreciated that qualitatively
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different mechanisms may be at work in different contexts. For
instance, detailed study of the differentiation of ESCs into two
cell types that form either embryonic or extraembryonic tissues
indicates that this does not occur in a simple deterministic
manner [8]. Instead, cells appear to pass transiently through
intermediate states, each seemingly primed to differentiate
into one of the possible cell fates [9,10]. Hence ESCs might
maintain a collection of meta-stable states, and a better frame-
work to understand and interpret experimental data is
required [10].

Most fundamentally, the GRN topologies generating such
dynamic stem cell states are poorly understood. In the pre-
sent work, we focus on the question of how broader
multipotency (i.e. more than two fates) might generically be
generated, in a way that allows differentiation to be biased
towards locally favourable outcomes [11]. We note this is a
topic of much current interest in systems biology, particularly
noting the exploration of connections between GRN topology
and oscillatory dynamics [12,13], generic links with differen-
tiation dynamics [14-16], and e.g. reshaping the epigenetic
landscape by rewiring the GRN using cross-repression
among transcription factors (TFs) with self-regulation [15].

In this paper, we analyse and compare five minimally
constructed GRNs that admit cyclical dynamics and allow
evolution towards fate commitment controlled by an external
stimulus. Our GRNs are variants of the standard repressila-
tor, a simple but fundamental circuit made up of three
genes repressing each other. Theoretical modelling of this cir-
cuit and its subsequent engineering in E. coli have shown its
capability to reproduce oscillatory behaviours under broad
parameter ranges [17].

We are here interested in adopting this model and the
variants proposed to mimick entry into the dynamical oscil-
latory state characterizing multipotency, and the exit from
it, towards a fully differentiated cell state.

Therefore, besides exhibiting oscillations, the system must
be equipped with a mechanism to exit the oscillatory regime
and proceed towards differentiation. Hence the system must
exhibit a sequence of at least two bifurcations, accounting for
entering and exiting the oscillatory phase.

We identify two generic scenarios for entering and exiting
the oscillatory regime, and we test both in our proposed GRN
models. In the first scenario (51), we hypothesize that a single
parameter (i.e. one intervening signalling pathway) drives the
system both into and out of the oscillatory regime. An
example is Wnt signalling, required for the induction of
neural crest but also for specification of both melanocyte
and sensory neuron fates through activation of key TFs
(Mitf and Neurogenin, respectively) [3,4,7,18-22], which we
envisage as having this twofold role. First, increasing Wnt
signalling promotes neural crest cells to enter an oscillatory
multipotent phase in which fate specification TFs are cycli-
cally expressed; second, at higher signalling levels, it
promotes the cell’s exit from the oscillatory phase allowing
specification of single cell fates through increased Mitf or
Neurogenin expression which drive melanocyte or sensory
neuron differentiation, respectively.

In the second scenario (52), we hypothesize again that a
first bifurcation to oscillatory behaviour is driven by an exter-
nal signalling pathway, but its influence is then blocked above
a critical value. Exit from the oscillatory regime results from
other signalling pathways, associated with other parameters.
This would arise for a multipotent progenitor that in response

to a specific signal starts oscillating, as in S1, driving
expression of multiple fate specification TFs, each characteristic
of a different ‘sub-state’. Close to each transcriptional sub-state,
the stem cell would express distinct cell signalling receptors;
then sulfficient activation of these receptors by environmental
ligands could provide a mechanism that would move the
cell out of the oscillatory phase, thus driving differentiation.

The paper is structured as follows. In §2, we consider the
simplest GRN exhibiting oscillatory behaviour, the so-called
repressilator [17]. We find that the system exhibits a par-
ameter regime where trajectories tend towards an attracting
limit cycle featuring a slowdown when passing near three
sub-states; this appears as a rather weak effect but is numeri-
cally detectable. However, exit from the oscillatory regime
leads to a single equilibrium, making this GRN unable to
select between alternative differentiated states.

This result motivates §§3 and 4 where we extend the stan-
dard repressilator to include a second repressive circuit
opposing the first; we therefore term this GRN the ‘cross-
repressilator’. Within this new GRN we consider whether the
two TFs act on each gene as either an ‘OR gate’ or an “AND
gate’, leading to two variants of this circuit. We find that
for the ‘OR gate’, the circuit first transitions to oscillatory
dynamics, as the standard repressilator, but then followed
by a further transition to a stably differentiated cell state, in
which only one of the genes is stably expressed. The ‘AND
gate’ is even more interesting, since it allows simultaneous
expression of two out of the three genes. In both cases, our
results appear to hold for a large class of modelling choices for
these gene interactions.

In §5, we extend the “AND gate’ cross-repressilator circuit
to four and five genes. We show that co-expression of up to
three genes is possible depending on the topology of the
GRN. These dynamics are compatible with both S1 and S2,
as they provide an exit mechanism dependent on a single
or multiple bifurcation parameters into a number of alterna-
tive equilibria. Furthermore, we note that in all the models,
when a cell is in the oscillatory phase, scoring for gene
expression of fate-specific TFs would result (in a snapshot
view) in the cell being considered ‘fate specified’, despite
the fact that it actually retains full multipotency.

A discussion of the biological implications of our models
is presented in §6.

2. The standard repressilator

We first consider the repressilator circuit [17], whose GRN is
shown in figure 1. Here each gene represents a master regu-
lator TF of the differentiation process for a specific fate.

Assuming fast (un)binding dynamics of the TFs to DNA,
and fast mRNA dynamics, we can reduce the system by adia-
batic elimination (see electronic supplementary material) [23],
and describe its dynamics with ordinary differential
equations (ODEs):

dx; g1
T by + . alx’; dixi,
dx; iy
—=b+—=——d
dt 1+ apxl? 02 1)
dX3 83
d — =by+—="— —d3x3.
an dr 3 + 1 n asx}lls 3X3
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Figure 1. A schematic of the repressilator circuit.

Here, x; (i=1, 2, 3) describe the concentrations of the proteins
Xi, b; are background expression rates, g; are maximal gene
expression rates (which combine transcription, translation
and mRNA degradation rates), «; are ratios of binding to
unbinding rates (association constants) of TFs to DNA, h;
are Hill coefficients describing possible cooperative effects
(like multimerization of the TFs [23]), and d; are TF degra-
dation rates.

Analysis (e.g. [17]) shows that the repressilator supports
oscillatory behaviour over wide regions of parameter space.
Figure 2a shows numerical solutions exhibiting the emer-
gence of a family of stable periodic orbits through a Hopf
bifurcation as the parameter g; increases, time series of sus-
tained oscillations, and the limit cycle in phase space.
Oscillatory behaviour exists when h>h*~2.20498, for the
parameter values used in figure 2.

For h=3, the oscillations exist between the two Hopf
bifurcations at g,~0.00764 and g, ~ 15.7919 suggesting that
the system is an example of S1—variations in a single par-
ameter are sufficient to enter and also to exit the oscillatory
regime. Our hypothesis for S1 is that external signalling
might increase g; = g1(t) over time, letting the system sequen-
tially explore non-oscillatory, oscillatory, and a new non-
oscillatory regime. However, exit from the oscillatory
regime at g;(t) = g, implies convergence onto the single avail-
able equilibrium, making the GRN unable to capture the idea
of multiple equilibria necessary to describe stem cell
differentiation.

Furthermore, the period of the limit cycles remains
bounded as g; varies. The shape of the limit cycle (figure 2c)
shows that the amplitudes of the oscillations for different
protein concentrations may differ significantly, and generally
appear to spike as the orbit approaches the coordinate axes;
two proteins are expressed at relatively low levels while the
third is higher. Our simulations show that even when the
spiking of gene X; is more pronounced, with a huge increase
in oscillation amplitude, only a logarithmic or algebraic
dependency of the oscillation period appears (see electronic
supplementary material), demonstrating the absence of any
substantial slow-down around the gene maximal expression
sub-states, and failing thereby to effectively describe any of
the scenarios S1 or S2. Furthermore, no mechanism is provided
in this model for the stem cell to differentiate into more than
one cell type, as no alternative equilibria exist. Thus the stan-
dard repressilator does not capture the qualitative changes in
behaviour associated with differentiation.

3. The cross-repressilator with an ‘OR gate’

We now introduce a variant of the standard repressilator (cross-
repressilator), where the inhibitory cycle is accompanied
by a second inhibitory cycle arranged in the opposite

direction, as depicted in figure 3. We assume that regulation
of each gene follows an ‘OR gate’, i.e. each gene is active
when both inhibitors are absent (see electronic supplementary
material).

Making the same assumptions as the standard repressila-
tor, the dynamics of this GRN can be written as

dxl 81
—— =b + —dyx1,
dt T (It ad) (1)
dXZ iy
—=by+ — dyx 3.1
dt 2 1+ azxgm)(l + Bzx’f“) > (3.1)
dX3 93
and — =b3 + — d3x3,
dt 7T (el (14 )

where the repression of each gene is described by the multi-
plication of two decreasing Hill functions to capture the
assumed ‘OR gate’ (see electronic supplementary material).
Like system (2.1), the last term in each equation represents
protein degradation. For simplicity, and since it does not
cause qualitative changes in the system dynamics, we
remove basal expression here and from now throughout
this paper. Also, in the numerical simulations we set par-
ameter values equal for each gene, ie. gi=g, ai=0a, fi=p,
di=d and h;j=h for i, j=1, 2, 3; we return to this in §3.2.

Numerical simulations of ODEs (3.1) are shown in figure
4. Figure 4a shows the bifurcation diagram for system (3.1)
with respect to the common parameter g, all other par-
ameters fixed. The (dashed) solid curves indicate (un)stable
equilibria (black) or (maxima and minima of) periodic
orbits (olive green). For g0.4, system (3.1) has a single
stable equilibrium which is (due to the equalities in par-
ameter values) symmetric: x; =x, =x3. The cyclic symmetry
apparent in equation (3.1) implies that the Jacobian matrix
evaluated at this symmetric equilibrium has a pair of eigen-
values with equal real parts (see electronic supplementary
material). When this complex conjugate pair crosses the ima-
ginary axis, a supercritical Hopf bifurcation occurs
generating a family of stable periodic orbits. As g increases
further, the stable periodic orbits disappear at a global bifur-
cation involving three new equilibria created at saddle-node
bifurcations.

Moreover, there are two distinct global bifurcation mech-
anisms that remove the periodic orbits. For a=9 (shown in
figure 4), we find that the periodic orbits disappear at a
SNIC (saddle-node on an invariant cycle) bifurcation where
three saddle-node bifurcations, related by the cyclic sym-
metry, occur on the periodic orbit simultaneously.
The SNIC bifurcation is well-known in simple dynamical sys-
tems, such as the nonlinear pendulum with forcing and
damping [24] and in oscillators under external periodic per-
turbations [25,26]. For g > gsnic & 1.51449, system (3.1) has
no periodic orbit but three equilibria related by the cyclic
symmetry. For each of the equilibria, one of the x; is signifi-
cantly larger than the other two. Initial conditions (ICs)
determine which of these equilibria attract the trajectory.

Figure 4b shows that, in contrast with the standard repres-
silator, the period of the periodic orbits diverges as g
approaches ggnic. Typical trajectories spend longer and
longer in the vicinity of the three ‘slow regions’ of phase
space where the saddle-node bifurcations are about to
occur, and exhibit rapid transitions between these ‘slow
regions’. This phenomenon has been referred to as the
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Figure 2. (a) Bifurcation diagram for the repressilator as g varies. A family of stable periodic orbits (olive), shown with maxima and minima of x;, emanates from a
supercritical Hopf bifurcation at g, and terminates at another supercritical Hopf bifurcation at g,. The stable (solid) branch of equilibria (black) becomes unstable
(dashed) between these two bifurcations. The dotted vertical indicates the g;-value used for (b,c). (b) Time courses of oscillatory concentrations x;, X,, X3 when g, =
0.2, g, = g3 = 0.05. (c) The solution shown in (b) in the phase space (grey) converging to the periodic orbit (olive). The cross () is the unique saddle equilibrium,
at Xeq = (0.58469, 0.87298, 0.45578). Remaining parameter values are: b; = 1073, a;=50, d;=0.01, h=3,fori=1,2, 3.

Figure 3. lllustration of cross-repression among three genes X;, X, and X;
formed with two copies of the circuit shown in figure 1, oriented in opposing
directions.

‘ghost of SNIC" [27], and indicates the possibility of S2.
We identify these slow regions with the sub-states
discussed earlier.

In figure 4c,d, we show time courses of system (3.1) before
(figure 4c) and after (figure 4d) the SNIC bifurcation with
same ICs. Figure 4c shows the time evolution of the three
genes for ¢=1.5<ggnic. Whenever one of the genes is
highly expressed, the expression levels of the other two is
low. In figure 4d, we observe the exit from the oscillatory be-
haviour associated with a further increase of parameter g (g =
1.6). Here, gene X; is stably expressed at a high level, while
genes X, and X3 are stably expressed at very low levels.

In summary, for ¢ increasing, the system shows three
different behaviours: (i) convergence to a (unique) stable
equilibrium; (ii) oscillations among three sub-states; and (iii)
attraction to one of the stable equilibria. The natural interpret-
ation, compatible with S1, is to see the first two cases as
reflecting multipotency within the stem cell, while the third
case represents attainment of one of multiple differentiated
cell types.

The phenotype attained in the differentiated state
depends on the IC used for the simulation and its intrinsic
properties, here illustrated through different g-values, as
shown in figure 5. Figure 5a colour-codes the (x;, x,)-plane
according to the final equilibrium for three different ICs for
x3(f), and fixed g. Figure 5b shows the effect of varying par-
ameter ¢ on the same colourmap when x3(0) is fixed. The
three coloured regions in the (x;, xp)-plane twist around a
central point. Increasing x3(0) tightens the twists of these
spiralling regions while the opposite occurs when g increases.
Moreover, variations in g keep the central twisting point fixed
at (x1(0), x2(0))=(1, 1) whereas increasing x3(0) makes this
point drift away.

To obtain insight into the feasibility of S2 for this system,
we explore the bifurcation behaviour in the (g, a)-plane.
Figure 6a shows the continuation of the bifurcations ident-
ified for a=9 in the (g, a)-plane. When o decreases, the
location of the Hopf bifurcation curve (HB) moves to larger
g whereas the curve of saddle-node bifurcations (SN) on
which the SNIC bifurcation occurs moves to lower values
of g. At a=a* ~ 3, the SNIC regime terminates at a codimen-
sion-two bifurcation, indicated by a grey dot. Two new
bifurcation curves emerge from this point, indicated by the
labels HC (homoclinic) and SN (saddle-node). For a<o¥,
the three saddle-node bifurcations (due to symmetry) occur
away from the periodic orbit in phase space, resulting in a
region of the (g, @)-plane in which these new equilibria
(three stable and three saddle equilibria) coexist with the
stable periodic orbits. The periodic orbits then collide with
the three saddle equilibria at a global bifurcation and disap-
pear. As in the SNIC bifurcation, the period of the periodic
orbits goes to infinity as the orbits approach the global bifur-
cation, but the mathematical details of the behaviour differ
from the SNIC case, as shown for example by the scaling of
the period with distance to the bifurcation point being
different (see electronic supplementary material).

We observe also that as o decreases further the heterocli-
nic bifurcation (HC) and SN curves move further apart from
each other in the (g, a)-plane, with maximum separation at
ax0.1.

For a < o*, the HB (green) and HC curves (red) determine
the left and right boundaries of the oscillatory region,
respectively. Also note that the HB and HC curves meet and
are tangent to each other at o =0.1 which is not generic but
arises here due to the additional symmetry existing when a =
0.1=p8. When a=p, ODEs (3.1) are symmetric under two
independent symmetry operations: the cyclic permutation
symmetry (x1, X, X3) = (X2, X3, ¥1) and the interchange of any
two of the three variables, e.g. (x1, xp, Xx3) = (X2, X1, X3).
In group theory notation, the symmetry group is now the
symmetries of an equilateral triangle D; rather than just
the cyclic group of order three, Z;. This additional sym-
metry implies the tangency between the two curves. The
analysis around this point will be discussed in detail
in a separate paper [28] and has been observed in other
contexts [29,30].

Figure 6b shows the bifurcation diagram, varying g, for
a=1 corresponding to the lower horizontal dashed line
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Figure 4. (a) Bifurcation diagram with respect to g in log-scale for &« =9, 8= 0.1, h=3, and d = 0.2. (b) The period of the periodic orbits shown in (a) increases
to infinity while g tends to the SNIC bifurcation. (c) Time courses of the expression level of genes X; (red), X; (green) and X; (blue) showing the sustained
oscillations, for g =1.5. (d) For g = 1.6, the system stops oscillating and exits to a differentiated cell.
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Figure 5. (a) Colourmaps indicating which gene is expressed starting from ICs in the (x;, X,)-plane, for g = 2 and three different ICs of x3: x3(0) = 0.5, 1 and 1.5.
(b) The same colourmaps as (a) for x;(0) = 1 and three different values of g: g=2, 4 and 6.

indicated in figure 6a. Here, we observe an interval of g-
values in which the stable periodic orbit coexists with the
three stable equilibria. Consequently, we would expect that
this transition to a stable equilibrium occurs rather smoothly
since the sub-states already exist prior to the termination of
the oscillations.

These observations support S2. Once the system has
entered the oscillatory regime by tuning of g through a first
signalling pathway, a second signalling pathway might inter-
vene to lower a, stop the oscillations, and drive the system to
differentiation. This scenario requires that the change of «
happens faster than the permanence of the system close to
a selected sub-state. This slowdown of the cycling dynamics
is therefore essential for this mechanism.

Thus, after establishment of the stem cell, increasing the
first signal initiates the cyclical expression of fate-specific
TFs corresponding to the different differentiated cell-types.
Subsequently, in each primed sub-state, as a result of TF
specific activation of sensitivity to fate specification signals,
the cell is sensitized to local signals. When a cell receives
such a signal for sufficient time, this shifts & and removes
the oscillations, thereby initiating differentiation.

3.1. lllustrating the two scenarios with time-dependent

parameters
So far we have assumed that all the parameters of system (3.1)
are fixed and do not vary in time. In this section, we explore
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Figure 7. (a) The development over time from a multipotent cell to a differentiated cell controlled by a time-dependent profile g(t) (shown in the lower panel)
according to S1. Parameters are as figure 4c. (b) Development from a stable oscillatory regime into a differentiated cell according to S2, when the secondary
parameter ¢ starts decreasing at f = 0 (shown in the lower panel). Here g=1.5 is held constant, and all other parameters take the same values as in

figure 4c.

more directly the two scenarios S1 and S2 by assuming that rel-
evant parameters are regulated in time by an external signalling
pathway. We will consider the case when either one or both of g
and a are time dependent. In S1, parameter g only is responsible
for shifting the cell from the multipotent regime into the
oscillatory regime and then into the differentiated cell. Accord-
ingly, we assume that g(t) follows the form of an increasing
Hill function, from 0 and saturating at ¢ > gsnic as

_ &

where we set § = 1.7, p = 1.25 and 7= 1000. The bottom panel of
figure 7a illustrates the time-variation of g(f). The top panel in
figure 7a shows how the system responds to g(t), moving
through the three different regimes as g(t) increases and tends
to the value ¢ (compare with figure 44). In detail, the system
first settles quickly from the IC to the single stable equilibrium
and follows it as g(t) slowly approaches the Hopf bifurcation.
After Hopf, we observe the onset of rapid but finite-frequency

oscillations. As ¢ — gsnic, the period of oscillations increases
significantly, giving rise to dynamical phases close to each of
the three sub-states. Finally, when g(t) crosses gsnic, the oscil-
lations disappear and the system settles at one of the three
equilibria, each corresponding to a different expressed gene.
For example, in figure 7, gene X3 (blue) is expressed and the
other two genes remain at a low level.

As discussed for S1, the precise state of the system when g
goes through gsnic, as well as the value of the saturation level
g play crucial roles in selecting cell fate. The shape of the pro-
file of g(t) is also relevant for this selection.

For S2, we hypothesize that two parameters, ¢ and o, are
involved in cell differentiation. As shown in figure 7b, we first
assume that parameter g shifts the system into the oscillatory
regime while o remains fixed. At a certain time, we suppose a
second pathway causes a decrease in o, modelled as

(t =By

alt) =9 —H(t—1) e
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Figure 8. Colourmaps show the expressed gene in the (7, f)-plane starting from the same IC for g=1.5 (a) and g = 1.51 (b).

where H is a Heaviside step function (i.e. #(s) = 0 when s <0
and H(s) = 1 when s> 0), f is the time when the time depen-
dency of a(t) starts, and the constants 7=1000 and p=1
control the profile shape.

S2 clearly allows more control over the final fate of the
cell through the increased number of coefficients involved
in specifying the time-dependency of the second bifurcation
parameter. To understand these further dependencies, we
analyse the effect of variations in the switch-on time f and
the time-scale parameter 7 for the saturation of a(t). Shown
in figure 8, we colour-code the parameter plane (7, f) based
on the expressed gene for g=1.5 (figure 81) and g=1.51
(figure 8b). The (7, f)-plane is divided into stripes which
periodically alternate between red, green and blue. The
lower value of g in figure 8a corresponds to narrower stripes
as a result of the smaller oscillation period, with the system
being more sensitive to changes in switch-on time and satur-
ation time scale. Further, more horizontal stripes in figure 8b
indicate that cell fates become less sensitive to 7 for this larger
value of g, at least in the regime close to the global
bifurcation.

3.2. Breaking the symmetry

Until now, we assumed that system (3.1) is symmetric and all
the association rates o; and 8, i, j=1, 2, 3 for the TFs X;, X,
and X3 are equal. Here, we break the symmetry in the reci-
procal repressing loops in figure 3 and consider the case
that ¢; and g; take different values, as specified in figure 9.
Note that we keep the remaining parameters ¢ and d,
unchanged.

Figure 9a shows the bifurcation diagram with respect to g
in log-scale. The structure remains qualitatively unchanged
compared to the symmetric case. For ¢ small, a unique stable
equilibrium exists, which undergoes a Hopf bifurcation and
becomes unstable. For g large, there are six branches of equili-
bria; the stable branches merge with the saddle-type ones and
disappear as g decreases. The family of stable periodic orbits
emerging from the Hopf bifurcation terminates at a SNIC
bifurcation. However, here, only one equilibrium lies on the
invariant cycle contrary to the symmetric case, with three equi-
libria on the invariant cycle. This happens because the saddle-
node bifurcations, at which the six branches of equilibria
appear, occur at different g-values (they are no longer sym-
metry-related), indicated by the vertical dotted lines.

Figure 9b shows time courses of the gene concentrations
just before the SNIC bifurcation at ggnic ~ 1.41054; the other
parameter values are as in figure 9a. As before, each TF is
expressed cyclically when the other two are at low levels.

However, gene X, remains expressed for a significantly
longer time than the other two, particularly X3. Due to the
occurrence of the saddle-node bifurcation with high level of
X, at smaller values of g, the slow region created around
the bifurcation has a stronger effect which leads to a longer
‘dwelling time’ at expressed X,. In fact, the dwelling time
for each expressed gene depends on the distance of g-value
at which the corresponding saddle-node bifurcation (indi-
cated with a dotted vertical line of the same colour) occurs.

Analysis of figure 9 determines that with the current par-
ameters, the conditions favour gene X,; therefore, when g
crosses to the right of the SNIC bifurcation, the system settles
at a stable equilibrium where X, is expressed. Changing this
condition results in a shift in the location of the saddle-node
bifurcations along the horizontal axis and might alter the
order of saddle-node bifurcations; consequently, lengthening
the dwelling time for another gene.

4. The cross-repressilator with an ‘AND gate’

The third model we consider here is similar to system (3.1)

with the difference that each gene is repressed only if all

other genes are highly expressed (a so-called ‘AND gate’).
This model is described by

dx + @12 4 graalis

d_t] - bl t & glhzlzz S 21% - d1X1,
(1 + a1xy”) (1 + Byx3”)

dx + !B 4 gl

oy SAIEEN DB g, b ()
(1 + apx3?)(1 4 Boxy™)

d h31 h3y

and ﬂ =03 831 ha g3hZX1 + g33xi — dSX3r
dt (1 + azxy™) (1 + B3x,?)

where again the decreasing Hill functions describe the effect
of repressing genes (see electronic supplementary material).
We also set g;;=g; for i, j=1,..., 3 and dy=d,=d3=d. We
also fix a;= ;=1 and the Hill function exponents h;; =3 for
ij=1,2,3.

As previously, we explore system (4.1) numerically and
compute the bifurcation diagram, varying g; while keeping
g» and g3 fixed (and unequal). Figure 10a shows a bifurcation
diagram for system (4.1) with respect to g;. For small values
of g1, the system has a single stable equilibrium (black solid
line) which undergoes a supercritical Hopf bifurcation and
becomes unstable (dashed line). The stable periodic orbits
(olive) are indicated by the maximum and minimum values
of x1. The periodic orbit, similar to the ‘OR gate’ case, termi-
nates at a SNIC bifurcation where it collides with a saddle-
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Figure 10. (a) Bifurcation diagram of system (5.1) with respect to g, for g, = 0.76, g3 = 1.9 and d = 0.3. (b) Time courses of the expression level of genes X; (red),
X3 (green) and X3 (blue) showing the emergence of an intermediate expression level in the oscillatory regime of system (4.1) when g, = 2.8. (c) Gene expression

levels converging to equilibrium in the tristable regime for g; =3.

node bifurcation. Note that these branches are part of a single
branch of equilibria terminating at another oscillatory regime
at very large parameter values g; (not shown). Figure 10b,c
shows time courses of the expression level of each gene in
system (4.1) for values of g; mentioned in the caption.

Clearly, the behaviour of the “AND gate’” model follows
closely the analysis presented for system (3.1), but with one
important and biologically relevant difference. Compared to
system (3.1), in which only one gene could be highly
expressed and the other two genes were necessarily at very
low levels, in system (4.1), two genes can be expressed at
high or moderate levels simultaneously. Of course, the pre-
cise levels depend on parameter values, but the "AND gate’
structure is crucial in admitting states with more than one
high expression level. The form of the periodic orbit also
changes and shows that it lingers in sub-states where two
gene expression levels are non-zero. This notable feature is
potentially useful in matching models with quantitative
experimental data where it allows one to select a model
that allows or prevents the existence of phenotypes depen-
dent upon the expression of a single or a combination of
master regulator TFs.

5. Extension to four and five genes

So far, we considered GRNs with only three genes. We now
investigate the dynamics with more than three genes. For
the same cross-repressilator in “AND gate” configuration dis-
cussed in the previous section, an odd number of genes is

{2

Figure 11. (a) Extension of the cross-repressilator GRN to four genes with
cross connections that support oscillations. (b) A cyclical arrangement of
five genes, sufficient to drive oscillations without additional cross connections.

necessary to create a negative feedback loop that supports
sustained oscillations [31]. Hence a trivial extension of the
cross-repressilator to four genes, preserving the cyclical top-
ology, fails to reproduce oscillatory dynamics, and therefore
we do not consider it here. Even numbers of genes in the
cycle result in states where the gene expression levels alter-
nate around the loop. However, adding cross connections to
this four-gene network so as to build three-gene negative
loops, embedded within the four-gene GRN as shown in
figure 11a, recovers the oscillatory dynamics. For five genes,
the simple cyclical topology of the cross-repressilator, with
only ‘nearest neighbour” interactions and without additional
cross-regulation, shown in figure 11, maintains oscillatory
behaviour.
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Figure 12. (a) Bifurcation diagram of system (5.1) with respect to g; for g, = 1.6, g3 =05, g4= 1.5 and d = 0.4. (b,c) Time courses of the expression level of
genes X; (red), X (green), X3 (blue) and X, (magenta) with two different behaviours: in the multipotent oscillatory regime of system (5.1) when g; =3 (b) and in

the multistable regime for g; = 3.6 (c).

5.1. The four-gene network
Here, we describe the dynamics of a GRN with four genes, as
illustrated in figure 11a. The network is fully connected such

that each gene is repressed by the other three genes, operating
in “AND gate’ configuration. The results in (see electronic
supplementary material for details):

dx; — b+ 811 +g12x212 +g13xglz + g14xil4 +g15xg12xg13 +g16x212x214 _._gnxgnxiu _dixy
dr (1+ oqxh“)( 1+ lehw)( 1+ Y1XZM)
dx, byt g1+ 892 x3 + 93 XZM +9 4x121 + g25xgzs x424 + g% xgzs xlm + g27sz4 xitzl .
dt (1+ athzs)( + ,Bzx]m)( + szhﬂ) (5.1)
% - 931 + g3 x434 + g33xh31 + 8343(232 + gngZM xlsl + 93 xZM xzsz + 83795]1131 xgsz dns
ar (1 + a3xh34)( 1+ ,3395131)( + ,y3xhaz)
o % s Qu1 + Qa2 x]lm + 943 x242 + g44x§43 + 245x]11 a2 + Qa6 th X3“ + g47x’;42 x’;m e
dt 1+ 0‘4xh‘“)( 1+ B4xh42)( 1+ 743(}143) .

For simplicity, we again set g;;=g; and d;=d fori,j=1,..., 4.
We also keep fixed the values ¢;=0.5 for j=5,..., 7, a;=Bi=
yi=land h;=3 fori,j=1,...,4 (#)).

Figure 12a shows the bifurcation diagram of system (5.1)
with respect to g;, together with time courses of the
expression levels of all genes in the system for two specific
values of parameter g; in the multipotent (figure 12b) and
differentiated (figure 12c) regimes. In figure 124, a single
branch of stable equilibria (solid; black) undergoes a Hopf
bifurcation and becomes unstable/saddle (dashed). The
envelope of stable periodic orbits (olive) emanating from
the Hopf bifurcation terminates at a SNIC bifurcation
where new branches of equilibria appear. Four of these new
branches are stable, and collide with the other four unstable
branches, disappearing at saddle-node bifurcations.

Figure 12b,c shows time series of the expression levels
of the genes in the oscillatory and differentiated regimes for
g1 =3 and g; = 3.6, respectively. One notable, and biologically
relevant, feature of this model is that all four genes can be
expressed, with one gene highly expressed, two genes
expressed at intermediate levels, and one gene only slightly
expressed. This scenario is consistent with differentiation
reflecting a combinatorial role for multiple TFs. The relative
concentrations of the expressed genes would open up
possibilities for differentiation to multiple cell types.

5.2. The five-gene network
We now consider the five-gene network depicted in figure
11b. The network comprises two inhibitory loops arranged

in opposing directions so that gene X; is repressed by genes
X1 and Xj,1, again in “AND gate’ configuration. Therefore,
similar to the three-gene case, the dynamical equations are

dx; b gn -|-g12x212 -I-g133€hb J

W =0 T Ty 1X1,
(1+ a1x5)(1 4 Byx5"®)

d 23 th

e _, o 8 +82hzx3 +823xh o,

AT (1 )1+ )

dx; 831 + g32x4 +g33x2

E = b3 + Ton ™ d3X3, (52)
(1 + azxy™) (1 + B3xy™)

d

gle n gn +g4zx5 +g43x2 s
(1+ agx®) (1 + Byas®)

and dxs =bs + 851 +g52x1 +g53xi — dsxs,
dt (1+ as2™) (1 + Bsxy*)

where the maximal expression rates imposed by the anti-
clockwise and the clockwise loops respectively are equal to
g1, §» and d; to d. We also fix the values ;=p;=y;=1 and
hij=3 fori,j=1,...,5 (i#}). Figure 13a shows the bifurcation
diagram remains unchanged with respect to g; except for the
number of stable (solid; black) and saddle (dashed; black)
branches in the multistable regime. Figure 13b exhibits time
courses of gene expression levels when g; =2. Figure 13c
=2.5 when the cell differen-
tiates. In the differentiated regime, the number of expressed

shows gene concentrations for g;

genes increases to three compared with the three-gene case.
We conjecture that more generally for a cyclic network of n
genes, (n+1)/2 genes are expressed at high or moderate
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Figure 13. (a) Bifurcation diagram of system (5.2) with respect to g, when g, = 0.35, g3 =0.2 and d = 0.4. (b) Time series of the solutions in the oscillatory/
multipotent regime when g; =2 and (c) multistable/differentiated regime for g, = 2.5.

(but unequal) levels and (1 —1)/2 are either not expressed at
all or are only weakly expressed.

Biologically, the stable generation of cells expressing mix-
tures of key fate specification TFs shown by these four- and
five-gene models matches closely the concept of combinator-
ial TF expression defining similar cell-types. This is most
keenly demonstrated in the peripheral and central nervous
systems where distinct neuron types express mixtures of
TFs that together specify their individual fate [32]. It may
be that the fully differentiated phenotype represents the
impact of a mix of TFs expressed at different levels, even
where we tend to think of a single dominant master regulator,
such as Mitf in melanocyte development.

6. Conclusion

We have presented a detailed bifurcation analysis of four var-
iants of the standard repressilator model, and discussed their
suitability as novel generic models for the process of cellular
differentiation. While the original repressilator fails to pro-
vide convincing dynamical behaviour, we find that the
variants proposed here exhibit biologically relevant features.
Our modelling moves beyond Waddington’s vision of the
epigenetic landscape since such a picture cannot capture
highly dynamical internal states of cells which our model
places centre stage.

Bifurcation analysis of the systems using [33] reveals that
the oscillatory behaviour emerges from a Hopf bifurcation. At
the late stages of multipotency, the oscillating cell visits a set
of sub-states where the relevant fate-specific transcription fac-
tor(s) are highly expressed relative to the other gene(s). The
oscillations terminate at a global bifurcation and the cell
settles at a state resembling that of a committed cell-type.
From a biological perspective, we can think of the individual
fate-specific TFs as defining individual cell fates. Where they
oscillate, the stem cell retains multipotency (it sequentially
transits nearby all states), but at the same time it becomes
periodically biased to adopt individual fates due, we pro-
pose, to changing exposure to fate-specification signals.
When such a signal is received at a sufficiently high level, it
may force oscillations to cease and a single TF becomes
stably expressed at the expense of the others—cell differen-
tiation has begun.

We have focused on two possible scenarios for driving the
oscillatory behaviour. In the first scenario, the same pathway
is responsible for initiating and terminating the oscillations,
by the increase of the chosen parameter. In the second

scenario, a first pathway brings the system in the oscillatory
region, and a second one intervenes to drive the exit from
it. Our results show that the second scenario, however,
gives more control over cell fate. Moreover, the timing of con-
trolling signals is essential in our framework, since this
combines with ICs to determine the specific TF that remains
stably expressed, and thus the differentiated cell-type.
Depending on the type of gates assumed in the network,
one or two genes (or more in networks of higher dimension-
ality) can be co-expressed during both the oscillatory phase
and in the selected differentiated cell type. During the oscil-
genes may be expressed
transiently—these might correspond to partially restricted
cell intermediates (expressing a subset of fate-specific TFs);

lations, combinations of

however, we emphasize that in our scenarios these retain
oscillations and hence must be thought of as fully multipo-
tent, despite their ‘snapshot appearance’. In the selected
differentiated cell-type, the combination and the levels of
expressed TFs vary with ICs and timing of the fate-specifica-
tion factor; thus different cell-types, with specific
quantitatively distinguishable combinations of TFs, are gen-
erated. Such a model now provides a view of how
multipotency might be exhibited in stem cells, in contrast to
the series of bipotential intermediates that underpin standard
thinking in development. Note that the external signals drive
a fully multipotent cell to a specific committed state directly,
without further intermediates with restricted potency.
Finally, the case with which stable (committed) states consist-
ing of mixed expression of two or more TFs can be generated
may well relate to the mechanism producing related cell-
types, e.g. neuron types in both the central and peripheral
nervous system.

There is a wider context for the results presented here: the
identification of dynamical scenarios typical for repressilator-
type GRNSs, particularly in view of their proposed role in
clock circuits underlying global patterning processes in
development [34]. Although the developmental context con-
sidered there is different, the formulation and behaviour of
the mathematical models has some points of similarity with
our analysis, such as the occurrence of Hopf and SNIC bifur-
cations, which are generic bifurcations involving time-
periodic oscillations.

A key difference with our work is ordering of the different
regimes. Model 1 of [34] shows a progression from oscil-
lations to a single stable equilibrium, and then a saddle-
node bifurcation that creates multiple equilibria. Model 2 of
[34] has no Hopf bifurcation but instead a SNIC separating
oscillatory from multistable regime; there is no single
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equilibrium. By contrast, our model robustly indicates a pro-
gression from a single equilibrium to oscillations via a Hopf
bifurcation, with the oscillations then terminating at a
global bifurcation where multiple equilibria emerge. We
note that the distinction between the SNIC mechanism and
the combination of the global and saddle-node bifurcations
is likely to be extremely difficult to detect experimentally
due to the high level of resolution required in time, and the
effects of noise. It is however mathematically important in
terms of comparisons between models.

In terms of model construction, a key point of difference is
that both Model 1 and Model 2 in [34] are constructed by
interpolating, rather artificially, between two mechanisms
potentially driven by distinct and unrelated morphogens.
Our dynamical model is structurally more robust and parsi-
monious as our work has shown that the transition from
equilibrium to oscillations whose frequency drops to zero,
to ‘differentiated’ equilibria, is a natural result of a single
GRN mechanism. Naturally, spatial patterning is not part of
our model since we focus on the dynamics within a single
cell, but connections between

establishing temporal
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