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Abstract

Anatomical brain templates are commonly used as references in neurological MRI

studies, for bringing data into a common space for group-level statistics and coordi-

nate reporting. Given the inherent variability in brain morphology across age and

geography, it is important to have templates that are as representative as possible for

both age and population. A representative-template increases the accuracy of align-

ment, decreases distortions as well as potential biases in final coordinate reports. In

this study, we developed and validated a new set of T1w Indian brain templates (IBT)

from a large number of brain scans (total n = 466) acquired across different locations

and multiple 3T MRI scanners in India. A new tool in AFNI, make_template_dask.py,

was created to efficiently make five age-specific IBTs (ages 6–60 years) as well as

maximum probability map (MPM) atlases for each template; for each age-group's

template–atlas pair, there is both a “population-average” and a “typical” version.

Validation experiments on an independent Indian structural and functional-MRI
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dataset show the appropriateness of IBTs for spatial normalization of Indian brains.

The results indicate significant structural differences when comparing the IBTs and

MNI template, with these differences being maximal along the Anterior–Posterior

and Inferior–Superior axes, but minimal Left–Right. For each age-group, the MPM

brain atlases provide reasonably good representation of the native-space volumes in

the IBT space, except in a few regions with high intersubject variability. These find-

ings provide evidence to support the use of age and population-specific templates in

human brain mapping studies.
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1 | INTRODUCTION

The shape, size, and volume of the human brain is highly variable

across individuals, as well as across age, gender and geographical

location, or ethnicity. This fact is of prime importance in neuroimaging

group studies, where the brains of all subjects are typically aligned to

a single template space for data analysis and for the reporting of

findings where analogous anatomical structures are mapped on to the

same coordinate location across the subjects. A brain template

provides a standard 3D coordinate frame to combine and/or compare

data from many subjects, across different imaging modalities, struc-

tural, or functional and even different laboratories around the world.

The properties of the template (size, shape, tissue contrast, etc.)

directly affect the quality of alignment.

An early brain atlas was constructed by Talairach and

Tournoux (1988) from a post mortem brain of one 60-yr-old French

woman, introducing the concepts of coordinate system and spatial

transformation to brain imaging. However, using a single subject brain

as a template introduces several idiosyncrasies, as it does not account

for groupwide anatomical variability, asymmetry, age-related differ-

ences, and so on. In order to address some of these issues, a subse-

quent initiative from the Montreal Neurological Institute (MNI)

resulted in a statistical brain template (MNI-305) using 305 young

right-handed subjects (Evans et al., 1993). While this composite

template better accounted for anatomical variability, it also had rela-

tively low tissue contrast and structural definition, which can affect

the ability of alignment algorithms to provide high quality anatomical

matching across a group study. In 2001, the international consortium

for human brain mapping (ICBM) introduced the revised MNI-152

template (Mazziotta et al., 2001b) with better contrast and structure

definition, where 152 individual brains were linearly registered to

MNI305 to make an average template. The ICBM-452 template

(Mazziotta et al., 2001a) included all three sites of ICBM and provided

even better signal-to-noise ratio due to the nearly threefold increase

in the number of subjects. These MNI templates were widely adopted

by several image processing pipelines, with the associated set of

coordinates known as “MNI space.” Furthermore, an unbiased

nonlinear average of the adult MNI152 and a pediatric template with

20–40 iterative nonlinear averages has also been made available

(Fonov et al., 2011). These templates provide the advantages of

retaining group representativeness of the MNI305 or MNI152 while

still providing the details that are closer to those apparent in a single

subject; however, their “representativeness” is limited to a fairly iso-

lated geographic location and (typically, Western) population, even

though neuroimaging studies draw from populations across the globe.

More recently, several research groups around the world have

developed and validated brain templates that are representative of

their (broadly) local population. Lee et al. (2005) created a set of

Korean Brain templates with 78 subjects in an age range between

18 to 77 years (young template <55 years and elderly template

>55 years). Additionally, Tang et al. (2010) generated a Chinese brain

template of 56 subjects (mean age 24.4 years). In each case, the

groups demonstrated significantly reduced warp deformations and

increased registration accuracy when applying these templates to

studies of local populations. It should be noted that even though the

templates draw from subjects within a population, there is still a large

amount of inherent variability evident in the brain morphology, due to

combinations of factors such as inherent structural variability, multi-

ethnic composition, and differences in genetic influences and environ-

mental exposures.

The benefit of utilizing a population-representative template in

the Indian context has also been recognized, with the additional need

for age-specific templates due to the increasingly wide range of ages

enrolled in studies. Recent attempts at developing brain templates for

Indian population have tended to focus on the young adult age group

(21–30 years) with relatively small (Rao et al., 2017) to modest sample

sizes (Bhalerao et al., 2018; Pai et al., 2020; Sivaswamy et al., 2019),

and have utilized data from a single site/scanner. Additionally, to date,

whole-brain annotated reference atlases based on segmentation have

not accompanied the generated templates. In this study, we present

and validate a new set of brain templates that have been created from

a large number of subjects from multisite acquisitions across India,

with five age ranges provided (between 6 and 60 years), as well as

brain atlases for each template. For each age group's template–atlas

pair, there is both a “population average” and “typical” version (the

latter being the individual brain which most closely matches the
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population average, which potentially provides higher detail as an

alignment target and atlas). We present several validation tests for the

accuracy and representativeness of the templates, and we also use

data from separately acquired subjects to demonstrate the benefits of

these templates over the existing standard MNI templates for studies

on Indian cohorts.

2 | METHODS

2.1 | Participants

The datasets used in the present study were selected retrospectively

from healthy control subjects of several imaging studies, across multi-

ple centers and different populations across India. They included

imaging data from the ongoing Indian multisite developmental cohort

study, the Consortium on Vulnerability to Externalising Disorders and

Addictions (cVEDA) (Sharma et al., 2020; Zhang et al., 2020) and from

stored datasets contributed by researchers at the National Institute of

Mental Health and Neurosciences (NIMHANS, Bengaluru, India). All

of these studies were approved by the ethics review boards at the

corresponding participating sites and informed consent was obtained

from each participant (or from their parent, in the case of subjects

below 16 years, along with participant's written assent) with a specific

request to collect, store and share anonymized data for research.

Inclusion criteria included not having a personal history of prior brain

injury, neurological disorder or psychiatric diagnosis. The sample was

comprised of 466 subjects from a large number of states across India

and acquired at multiple sites. Based on age and demographic

distributions, subject datasets were divided into 5 groups: C1, late

childhood (6–11 years); C2, adolescence (12–18 years); C3, young

adulthood (19–25 years); C4, adulthood (26–40 years); C5, late adult-

hood (41–60 years). The sample size and demographic information of

each cohort are summarized in Table 1.

2.2 | Image acquisition

T1-weighted (T1w) three-dimensional high resolution structural brain

MRI scans were acquired from five 3T MRI scanners located at three

different locations across India: Bengaluru (site A, C, and D), Mysuru

(site B), and Chandigarh (site E). The subjects belonged to several

neighboring states to these locations, with wide geographical

representation throughout India. As with most multisite studies, the

acquisition parameters varied slightly across sites and scanners, but

were generally similar, with good gray/white matter contrast with a

voxel size close to 1 mm isotropic; details are listed in Table 2.

2.3 | Data preprocessing and initial quality
assurance

This processing primarily used programs in the AFNI (v19.0.20)

(Cox, 1996) and FreeSurfer (v6.0) (Fischl, 2012) neuroimaging toolboxes,

as well as the “dask” scheduling tool in Python developed by the Dask

Development Team (2016). Unless otherwise noted, programs named

here are contained within the AFNI distribution. The following

processing steps are shown schematically in Figure 1, in the first column.

Datasets were first processed using AFNI's “fat_proc_convert_

dcm_anat.” Using this, DICOMs were converted to NIFTI files using

dcm2niix_afni (the AFNI-distributed version of dcm2niix; Li, Morgan,

Ashburner, Smith, & Rorden, 2016). For uniformity and initialization,

with this tool, they were also given the same orientation (RAI), and

the physical coordinate origin was placed at the volume's center of

mass (to simplify later alignments).

Next, “fat_proc_axialize_anat” was applied to reduce the variance

in the spatial orientation of brains for later alignment and for practical

considerations of further processing steps, as described here. Each

volume was affinely registered to a reference anatomical template

(MNI ICBM 152 T1w) that had previously been AC-PC aligned; align-

ment included an additional weight mask to emphasize subcortical

structure alignment (e.g., AC-PC structures), and only the solid-body

parameters of the alignment were applied, so that no changes in

shape were incurred. Because datasets had been acquired with varied

spatial resolution and FOV (see Table 2), the datasets were resampled

(using a high-order sinc function, to minimize smoothing) to the grid

of the reference base of 1 mm isotropic voxels.

All datasets were visually and systematically checked for quality

of both data and registration using the QC image montages that were

automatically generated by the previous program. T1w volumes with

noticeable ringing or other artifact (e.g., due to subject motion or

dicom reconstruction errors) were noted and removed from further

analyses. T1w volumes with any incidental findings (for example, large

ventricles, cavum septum pellucidum) were also removed.

FreeSurfer's “recon-all” (Fischl, 2012) was run on each T1w

data set to estimate surfaces, parcellation and segmentation maps.

TABLE 1 Demographic profiles

Age category Age description Age in years, mean (range) Sample size N (% female) No. of states No. of scanners

C1 Late childhood 9.3 (6–11) 28 (46.43%) 5 4

C2 Adolescence 15.1 (12–18) 106 (47.17%) 9 5

C3 Young adulthood 21.3 (19–25) 181 (40.89%) 15 5

C4 Adulthood 31.1 (26–40) 89 (42.7%) 11 2

C5 Late adulthood 52.7 (41–60) 62 (43.55%) 6 2
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AFNI's “@SUMA_Make_Spec_FS” was then run to convert the

FreeSurfer output to NIFTI files and to generate standard meshes of

the surface in formats usable by AFNI and SUMA. Additionally,

@SUMA_Make_Spec_FS subdivides the FreeSurfer parcellations into

tissue types such as gray matter (GM), white matter (WM), cerebro-

spinal fluid (CSF), ventricle, and so on. This was followed by visual

inspection of parcellation maps overlaid on anatomical volumes.

Next, a whole brain mask of each anatomical volume was created.

In several cases, the skullstripped brain volumes output by recon-all

(brain_mask.nii) included large amounts of nonbrain material (skull,

dura, face, etc.), and so an alternative mask was generated using only

the ROIs comprising the parcellation and segmentation maps. For

each subject, a whole brain mask was generated by: first making a

preliminary mask from all of the ROIs identified by recon-all; then

inflating that premask by 3 voxels; and finally shrinking the result

by two voxels (thus filling in any holes inside the brain mask and

smoothing the outer edges). This produced whole brain masks that

were uniformly specific to each subject's intracranial volume.

Finally, AFNI's 3dUnifize was run on each T1w volume in order to

reduce the intensity inhomogeneity (e.g., due to the bias field) and to

normalize the intensity of tissues within the volume. This ensures that

each subject's brain, which had been acquired on different scanners

with potentially different scalings, would have equal weight when

averaging (e.g., WM is scaled to approximately a value of 1,000 in

each brain, and similarly for other tissues), and also reduces the risk of

a bright outlier region driving poor alignment.

2.4 | Mean template generation

After the above preprocessing steps and QC, the following

templatizing algorithm was applied for each cohort (C1-5) separately.

TABLE 2 Acquisition parameters

Acq Site Scanner dx dy dz TR† TE TI FA Matrix No. No.

Seq Label Model (mm) (mm) (mm) (ms) (ms) (ms) (deg) size Sag Subj‡

1 A Achievaa 1 1 1 8.2 3.8 745 8 256 × 256 165 50

2 A Achievaa 0.9 0.9 1 8.2 3.8 800 8 257 × 256 160 38

3 B Ingeniaa 1.2 1 1 6.9 3.2 725 9 256 × 256 170 29

4 C Ingeniaa 1 1 1 6.9 3.3 925 9 256 × 256 211 10

5 D Skyrab 1.2 1 1 2,300 3.0 900 9 256 × 240 176 82

6 D Skyrab 1 1 1 1900 2.4 900 9 256 × 256 192 56

7 D Skyrab 0.9 0.9 0.9 1,600 2.1 900 9 256 × 256 176 124

8 E Veriob 1.2 0.5 0.5 2,300 3.0 900 9 512 × 480 176 77

Abbreviations: Acq Seq, acquisition sequence; dx, dy, dz are voxel dimensions; TR, repetition time; TE, echo time; TI, inversion time; FA, flip angle; No. Sag,

number of sagittal slices.
†The TR for 3D scans such as these is defined differently between Philips and Siemens scanners, with the relationship being TRPhilips ≈ (TRSiemens − TI)/

(No. Sag).
‡This is the final number of subjects included in final templates (total = 466), after all steps of QC and subject removal.
aPhilips, 3T.
bSiemens, 3T.

F IGURE 1 Schematic representation of the steps involved in the Dask pipeline (make_template_dask.py) for generating population-average
brain templates
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The general procedure was to alternate between alignment to a refer-

ence base (with increasingly higher order of refinement) and averaging

the aligned brains to generate a new reference base for the subse-

quent iteration. In this way one can generate a cohort mean template

of successively greater specificity and detail; after several iterations,

the alignment essentially converges (i.e., additional refinement

becomes negligible) and is halted. Warps were generated and saved at

each step. The final nonlinear warps and affine transformations were

concatenated for each subject at the end in order to generate the final

group average template. These steps are also included in the sche-

matic Figure 1, in the first column (bottom) and second and third

columns.

The first level of alignment was made from each anatomical in the

cohort to the MNI ICBM-152 T1w template using a 6 degree of free-

dom (DF) rigid body equivalent registration, meaning a full affine

transformation was computed, but only the rigid components were

extracted and applied. The average of all subjects' brains, rigidly

aligned to the initial template, was used to create a single average

volume “mean-rigid”; here and at each alignment stage, a cohort

standard deviation map was also created, to highlight locations of

relatively high and low variability. That stage's average volume was

then used as a base for the next stage of alignment for each subject,

using a 12 DF linear affine registration, and with the results averaged

to create the next base “mean-affine.” For these alignments, AFNI's

“lpa” cost function (absolute value of local Pearson correlation)

(Saad et al., 2009) was used for high quality alignment of features

between volumes of similar contrast. The cost function computes the

absolute value of the Pearson correlation between the volume and

the current template in patches of the volume at a time.

As a practical consideration, we note that lower level alignments

such as these have a general property of producing a smoothed brain,

which has the additional effect of increasing the apparent size of the

base dataset (i.e., the edge is blurred outward). Therefore, in these

initial levels we added a step to control the overall volume of the

template. We calculated the mean intracranial volume (ICV) of all

the subjects in the cohort Vcoh, and then calculated the volume of the

initial mean-affine brain mask Vaff. The volume ratio rvol = Vcoh/Vaff

was calculated, and each of the three dimensions of the mean-affine

volume were scaled down by the appropriate length scaling factor r1=3vol

. In this way, the final volume of the templating process retained a

representative size for the cohort.

The next alignment stages were comprised of nonlinear registra-

tion using AFNI's 3dQwarp (Cox & Glen, 2013). At each successive

level the nonlinear alignment was performed to an increasingly higher

refinement, resulting in mean volumes of greater detail. Specifically,

nonlinear alignment at each stage was implemented to create mean

templates as follows (A-E), using 3dQwarp's default “pcl” (Pearson

correlation, clipped) cost function to reduce the effects of any outlier

values (and unless otherwise specified, applying a 3D Gaussian

blur): [A)].

• mean-NL0: after registering to mean-affine with a minimum patch

size of 101 mm and blurring of 0 mm (base) and 9 mm (source);

• mean-NL1: after registering to mean-NL0 with a minimum patch

size of 49 mm and blurring of 1 mm (base) and 6 mm (source);

• mean-NL2: after registering to mean-NL1 with a minimum patch

size of 23 mm and blurring of 0 mm (base) and 4 mm (source);

• mean-NL3: after registering to mean-NL2 with a minimum patch

size of 13 mm and blurring of 0 mm (base) and 2 mm median filter

(source);

• mean-NL4: after registering to mean-NL3 with a minimum patch

size of 9 mm and blurring of 0 mm (base) and 2 mm median filter

(source).

Each mean-NL* volume was resized in the same manner as the

initial stages, although the correction factors were much smaller here.

Additionally, each mean-NL* volume was anisotropically smoothed

(preserving edges within the volume, for detail) using 3danisosmooth,

in order to sharpen its contrast for subsequent alignments.

The mean-NL4 volume became the final group mean template for

each cohort, as in all cases results appeared to have essentially

converged after this number of step. The coordinate system of this

mean volume defines the template space for that age group, and is

labeled “IBT_C1,” “IBT_C2,” and so on.

2.5 | “Typical” subject template generation

We used the following approach to find the maximally representative

individual brain for the mean template from the underlying cohort, in

order to generate an additional “typical” template for that space, in

complement to the mean template.

To find the most typical subject for the mean template

quantitatively, the lpa cost function value from aligning each subject's

anatomical to the final mean-NL4 was compared across the group;

that is, the degree of similarity of each subject's aligned volume to the

mean template base was compared across the cohort. The individual

brain in that mean template space with the lowest cost function value

was selected to be the “typical template” brain. Alignment results

were also visually verified for each typical template. We note that the

typical template volume uses the same coordinate system as the mean

template, and thus no additional “coordinate space” is created in this

process.

2.6 | Atlas generation for mean and typical
templates

For each cohort, atlases were generated for each of the mean and

typical templates based on FreeSurfer parcellation and segmentation

maps.1 By default, recon-all produces two maps of ROIs (including

both cortical and subcortical GM, WM, ventricles, etc.): the “2000”

map, using the Desikan-Killiany Atlas (Desikan et al., 2006) and the

“2009” map, using the Destrieux Atlas (Destrieux, Fischl, Dale, &

Halgren, 2010). Each of these maps was used to create a “2000” and

“2009” atlas for each template.
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For the mean template, maximum probability map (MPM) atlases

were reconstructed as follows. The FreeSurfer parcellations for each

subject were transformed to the IBT space using the warps created

during the template creation process (and “nearest neighbor” inter-

polation, to preserve ROI identity). For a given parcellation, the

fraction of overlap of a given ROI at each voxel in the template was

computed. That overlap fraction is essentially the probability of a

region to be mapped to that voxel. In this way, an MPM atlas was

created for each of the 2000 and 2009 parcellations, labeled

“IBT_C1_MPM_2000,” “IBT_C1_MPM_2009,” and so on. The value of

each voxel's maximum probability was also kept and stored in a map,

for reference and validation. Locations with max probability near

1 show greatest uniformity across group, and locations with lower

values show greater variability.

For each typical template volume, atlases based on the 2000 and

2009 FreeSurfer parcellation were also created. First, the parcellations

from original subject space were mapped to the individual template

space. Then, each parcellation was passed through a modal smoothing

process using 3dLocalstat: for each voxel in the atlas, its value was

reassigned to the mode of its NN = 1 neighborhood (i.e., among

“facewise” neighbors, so within a 7 voxel neighborhood). In this way

the final atlas parcellation was slightly regularized, in order to reduce

the effects of resampling to the template space. A typical brain atlas

was created from each of the 2000 and 2009 parcellations, labeled

“IBT_C1_TYP_2000,” “IBT_C1_TYP_2009,” and so on.

2.7 | Validation and tests

The fractional volumes of each ROI in the MPM atlases were checked

for being representative of each cohort. For this we calculated the

logarithm of the relative volume ratio of each ROI:

ri = log
VMPM,i=VMPM,ICV

1
N

P
j
Vj,i=Vj,ICV

0
B@

1
CA, ð1Þ

where the numerator is the fractional volume of a given ith ROI in the

MPM (i.e., volume of the ROI divided by that template's ICV), and the

denominator is the fractional volume of that ith ROI averaged across

all N subjects (i.e., for each jth subject, volume of the ROI divided by

the subject's ICV, in native space). Thus, ri values close to 0 reflect

high similarity of the MPM ROI to the cohort mean, and negative or

positive values reflect a relative compression or expansion, respec-

tively, of the MPM ROI relative to that for a particular cohort.

In order to quantify the intersubject brain morphological variability

for participants in each age-band, we calculated a region-wise mean

deformation value (mDV) from the deformation warp fields generated

during nonlinear registration to the age-specific IBT. For this, the

absolute warp value was summed across all three axes (L1-norm) and

averaged across all the voxels within each ROI in the age-specific

MPM atlas. A larger mDV indicates greater intersubject brain morpho-

logical variability.

To examine the utility of the IBTs on a real, representative

dataset, a separate sample of Indian population data was included for

validation and testing purposes. For each cohort, the validation group

(“V1,” matched with cohort C1; “V2,” matched with cohort C2; etc.)

comprised 20 subjects within the corresponding age range. The T1w

and resting state functional MRI (rs-fMRI) data acquisition information

and demographics of these additional groups are provided in supple-

mentary text. For each IBT, in comparison to the MNI ICBM-152

template, the following validation tests were conducted using the

T1w and resting functional data.

We first used the deformation field to characterize the difference

between the two templates (IBT vs. MNI). For each subject in the vali-

dation cohort, we calculated the absolute amount of displacement

needed to move a voxel location from native space to the target in

the new age-specific IBT and the standard MNI ICBM-152 templates,

for nonlinear registration. A median absolute distance along each axis

(LR = left–right; PA = posterior–anterior; IS = inferior–superior) was

calculated from the dimensional deformation field in each voxel. The

median absolute distances when warping to MNI and cohort-specific

IBT along each axis were compared using a paired sample Wilcoxon's

signed-ranks test.

Finally, the practical benefits of using the IBT as reference volume

for FMRI alignment were investigated by processing resting state

FMRI data from age-specific validation cohorts using the same pipe-

line twice: once with the IBT, and once with the standard MNI

template. AFNI's afni_proc.py command was used to generate the full

fMRI processing pipeline and the exact command is provided in the

supplementary text. We used AFNI's 3dReHo (Taylor & Saad, 2013)

to calculate a common resting state FMRI parameter, ReHo (region

homogeneity, which is Kendall's Coefficient of Concordance, W, in

statistics; Kendall & Babington Smith, 1939; Zang, Jiang, Lu, He, &

Tian, 2004), within each atlas ROI for the data in each of the IBT and

MNI spaces (as per template-specific Desikan-Killiany Atlas, which

exists in both spaces). We then performed a paired t-test comparison

on the ROI-ReHo values, in order to compare ReHo values between

template space targets. In the current pair-wise comparisons, a greater

ReHo would indicate greater temporal coherence of BOLD time

series, likely due improvement in overall alignment across subjects

within each ROI.

3 | RESULTS

The first part of the output consists of both “population average” and

“typical” Indian brain templates for five specific age-ranges: late-

childhood (C1), adolescence (C2), young adulthood (C3), adulthood

(C4) and late adulthood (C5) [see Table 1 for the age-ranges]. The

second part of the output is a set four IBT atlases (IBTAs) for each age

range: both an MPM and a typical subject version of each of the

Desikan-Killiany (FreeSurfer's “2000”) and Destrieux (FreeSurfer's

“2009”) atlases.

Figure 2 shows an example of the successive stages in the crea-

tion of the C1 IBT. Throughout the refinement, details become
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progressively clearer, with tissue contrast and feature identification

increasing. Additionally, the variance decreases in the gray and white

tissues with each stage. The contrast-to-noise ratio (CNR) between

GM and WM improved through the successive stages in all the

template age-groups (see Figure S1).

Figure 3 shows an example of the IBT and IBTA outputs for the

C3 group, displaying multiple slices in sagittal, coronal and axial views;

in all cases, the population average template is underlayed. The top

row shows a size comparison with the overlaid MNI template (shows

as edges). In the second row, the “typical” template version is overlaid

translucently, showing the very high degree of structural similarity

between the two template versions. The bottom two rows show the

MPM 2000 and 2009 IBTAs. Similar outputs for other age groups are

provided in the Supplementary Information, in Figures S2–S6.

F IGURE 2 Axial slices of mean (top row) and SD (bottom row) maps through successive stages of the templatizing algorithm (first stage at the
left) for the C1 age-band. Note that the mean and SD maps have separate scales, to show details more clearly in each

F IGURE 3 Three sets of sagittal, coronal and axial views of the “population-average” C3 IBT, displayed as underlay in grayscale in each row
(A–D). Row A depicts the edge-filtered version of the MNI 2009 nonlinear template as overlay for size comparison. Row B shows the “typical”
IBT C3 dataset as a translucent overlay; note the very high degree of structural similarity, as expected. The Indian MPM version of the DK atlas
(FreeSurfer's 2000 atlas) is shown in row C as overlay and Destrieux atlas (FreeSurfer's 2009 atlas) as overlay in row D
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Figure 4's left panel displays the logarithm of the relative volume

ratio of each ROI in the IBT MPM atlas (see Equation (1)), showing

how representative the atlas is of each cohort in a region-wise man-

ner. As shown in the figure, most cortical regions have values close

to zero, indicating that MPM ROIs in the IBT space provide repre-

sentative volumes of the native space ROIs for each age group. The

largest expansions were observed in the bilateral caudal and rostral

middle frontal gyrus, bilateral rostral anterior cingulate, bilateral

superior and inferior parietal cortices across the age groups. These

are also the regions that show greater mDV (Figure 4's right-panel)

indicating that greater intersubject variability could be in part

responsible for greater volumetric differences between native-space

and MPM volumes. The scatter-plots in Supplementary Information

(Figure S7) indicates that there were significant correlations between

relative volume ratios and mDV for each age group (R-values:

0.24–0.42 and p-values <.05).

Figure 5A–E shows the comparison of warp distances from the

anatomical (T1w) volumes of the validation cohorts (V1-5) to each of

the age-matched IBT “population mean” templates (orange), versus

the V1-5 warp distances to the standard MNI template (blue); for

more detailed comparison, average warp distances along each of the

main volumetric axes are shown separately. In all cases, alignment to

an IBT dataset required much less overall displacement on average.

Warps to MNI were highly significantly greater (p < .05, corrected for

N = 3 × 5 multiple comparisons) along the PA and IS axes in all cases.

Along the LR axes, differences were smaller but still significant at the

same level for 4/5 cohorts (again, warps to MNI being larger); the C4

cohort showed no significant difference along the LR axis, but overall

F IGURE 4 Evaluation of the region-wise similarity of the MPM volumes as measured (left panel) by the relative volume ratio for each ROI via
Equation (1), and (right panel) by mean deformation value (mDV) of each ROI; rows A–E show results for each age-specific group C1–C5,
respectively. In the left-panel ROIs with notably different volume fractions are highlighted in purple (increases) and green (decreases), and in the
right-panel ROIs with greater intersubject variability are shown as increasingly yellow

F IGURE 5 Validation cohort T1w results: (A–E) IBT-based results are in orange, and MNI-based results in blue. Wilcoxon's signed-ranks test
was used to compare the distributions; p-values are shown at the top of each panel. For each validation group (V1-5), boxplots of the median
warp magnitude along each major axis (LR, PA, IS) to a given template are shown in panel A–E. The warp distributions to MNI space are
significantly larger along the AP and IS axes in all cases. While the differences tend to be smallest along the LR axis (particularly for C4), warps to
MNI are nevertheless significantly larger for 4/5 of the cohorts along this axis, as well
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differences for this group were still large, due to the warps along the

other axes.

Finally, we investigated the practical difference when using IBT

versus MNI as a template space for fMRI processing, using the valida-

tion cohorts. ReHo values were compared between corresponding

ROIs in the IBT and MNI spaces, and the paired t-tests of the values

showed that each IBT tended to have higher ReHo values throughout

most regions of the brain. These results are shown in Figure 6. While

some medial and posterior regions showed higher ReHo in the MNI

space, the overall greater ReHo values in the IBT space may be the

result of slightly improved alignments on average, so that more similar

time series are grouped together per ROI.

4 | DISCUSSION

We have introduced five new India brain template (IBTs) spaces,

spanning an age range from 6–60 years. Additionally, corresponding

atlases (IBTAs) from widely used segmentations were also created for

each space. These should form useful reference templates and region

maps for brain imaging studies involving predominantly Indian

populations. Both the creation of age-specific templates and the

inclusion of associated atlases make the present study distinct from

previous Indian population brain template projects (Bhalerao

et al., 2018; Pai et al., 2020; Rao et al., 2017; Sivaswamy et al., 2019);

additionally, we have generated both “population mean” and high-

contrast “typical” templates for each age band. The IBT volumes and

corresponding atlases are publicly available for download, in standard

NIFTI format, and freely usable by the wider neuroimaging community.

The need for age-specific templates in particular has been recog-

nized across different populations (Fonov et al., 2011; Wilke,

Schmithorst, & Holland, 2002; Yoon et al., 2009); however, Indian

versions of age-specific brain templates have not been available to

date. While adult brain templates may still provide reasonably accu-

rate anatomical priors for normalizing lower resolution smoothed

functional data, they may not be appropriate for high resolution struc-

tural and functional data (Wilke et al., 2002). For example, Yoon

et al. (2009) examined the “template effect” in a pediatric population

and noted significantly greater amount of deformation required for

nonlinear normalization to the MNI152 adult template than compared

to an age-appropriate template (2.2 vs. 1.7 mm). Further, the authors

also noted significant differences in both volume-based and surface-

based morphological features between data warped to pediatric and

adult brain templates. Such discrepancies are also reported in aging

studies, where use of young-adult template (such as the MNI) for

older adults can result in biases such as regional distortion and

systematic over-expansion of older brains (Buckner et al., 2004).

Age-appropriate template for older adults have also been shown to

provide more accurate tissue segmentation for structural imaging

(Fillmore, Phillips-Meek, & Richards, 2015) and more focused activa-

tion patterns with improvement in sensitivity for fMRI group analyses

(Huang et al., 2010).

In addition to age, consideration should also be given to the

ethnic or population-specific differences (Lee et al., 2005; Rao

et al., 2017; Tang et al., 2010), when choosing the appropriate brain

template. As expected, there are noticeable structural differences

when comparing the new IBTs with existing, popular standard tem-

plates (such as the MNI), which have been made from very different

subject populations. Overall, registration to the IBTs from the Indian

population validation groups required much less deformation of the

input datasets and resulted in more accurate stereotactic standardiza-

tion and anatomical localization. The relative differences in warping

along the major axes of the brain were shown here using validation

groups from the local population. The differences in warping magni-

tudes varied both by axis and by the age of subjects. Thus, the struc-

tural differences in templates are not trivial, that is, just scaling, but

F IGURE 6 Validation cohort fMRI results. (A–E) Comparison of the region-wise ReHo values in the IBT versus MNI space for each validation
group C1–C5. The colors indicate the directions and magnitude of the mean difference of ReHo values between IBT and MNI. The unthresholded
results are in top panel and Bonferroni corrected results are in the bottom panel. The warm-red color indicates regions where the ReHo values
are greater in IBT and cool-blue colors are those where ReHo values are greater in MNI. The ReHo provides a measure of local FC as index of
temporal coherence (Kendall's coefficient of concordance) of the BOLD time series within a set of a given voxel's nearest neighbors in an ROI
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instead reflect shape variations that are likely to significantly affect

the overall goodness-of-fit and anatomical alignment across a group

study.

Such aspects were highlighted in the differences of outcomes in

fMRI processing when using IBT versus MNI templates: the IBT-based

output tended to have higher ReHo values among ROI pairs. The lat-

ter fact in particular suggests that the IBTs provided better function-

to-anatomical alignment across groups, so that voxel with functionally

similar time series tended to be grouped together more preferentially.

One might expect this to be a relatively small effect, because align-

ment to the MNI templates still appears generally reasonable; one

would expect the overlap pattern differences to be occurring fraction-

ally within ROIs and predominantly at boundaries. Indeed, the ReHo

differences were relatively small, but with a noticeable trend toward

higher values in the IBT-based datasets.

It is important to emphasize that these structural differences are

only with regards to morphology; they do not relate to functional or

behavioral outcomes, nor to intelligence, and so on. The purpose and

goal of population-specific templates is for the practical consideration

of maximizing the matching of structures across a group during an

alignment step of processing, as well as to better match functional

regions to structures. These are geometric and signal-to-noise consid-

erations, which are important in brain studies (as demonstrated here),

but which are unrelated to the brain behavior itself.

The wide variety of brain structural patterns in any group, even

in an apparently homogeneous one, is also worth commenting

on. This inherent variability affects both the creation and utilization

of brain templates (Yang et al., 2020). In any population brain struc-

tures can vary to the degree of having different numbers of sulci in

the same region (e.g., [Thompson, Schwartz, Lin, Khan, &

Toga, 1996] and op cit); this is true even in a group of controls who

are highly localized, genetically related, similar age and background,

and so on. Thus, there is a minimum and nontrivial degree of variabil-

ity in alignment that one can reasonably expect both when combin-

ing multiple subjects to generate a template, as well as in the overlap

of anatomical structures when applying the template. Indeed, the

Indian population (currently over 1.3 billion people) is spread across

a wide range of geographies with diversity in linguistic-ethnic

compositions as well as extensive genetic admixtures (Basu, Sarkar-

Roy, & Majumder, 2016). In this study, the final mean template for

each cohort contained variability. However, this was relatively low

compared to the mean dataset values, and the final mean template

contained a large amount of clearly defined structure. Moreover, the

fractional overlap of ROIs when generating the maximum probability

map atlases showed a high degree of agreement across the group

through most of the brain.

The variability present in the template generation is also observ-

able in the atlases. The intersubject variability (as measured by the

mean deformation values for various regions during nonlinear registra-

tion to age and population-specific template) also correlated positively

with the expansion of MPM volumes, in all age groups (see Figure S7).

While the final MPM atlases indicate the most frequent positions of

each brain region in a given cohort, we also provide the probability

density maps for each ROI in the atlas (see Figure S8 for example),

which can be of additional use in ROI-based analyses.

While spatial normalization to IBT offers distinct advantages in

terms of spatial accuracy and detection power, it may still be desirable

to have the results from any particular analysis also reported in another

space. For example, for comparisons with previously published studies,

one might want to compare the locations of a finding with those

reported in MNI, Talairach, or Korean template coordinate spaces.

Therefore, a nonlinear coordinate transformation mapping between IBT

and the commonMNI space has also been calculated, and a similar coor-

dinate warp between any coordinate frames can be calculated easily.

There are several methodological strengths and limitations related

to the current study that should be noted. We used combined state-

of-the-art linear and nonlinear averaging techniques using AFNI's

completely automated pipeline “make_template_dask.py,” which uses

the Dask python parallelization to efficiently make a template from a

large group of subjects. We addressed several specific challenges

involved in the template creation, such as intensity normalization from

different scanners, scaling, resizing of the overall brain size to be

representative of the cohort at each iteration, and anisotropic

smoothing with preservation of edges. While the overall sample size

of the study was relatively large, the late childhood and the late adult-

hood templates had relative modest sample sizes. Therefore, it will be

of benefit for the constructed templates to continue to be updated

with larger sample sizes as we collect more MRI datasets. Future work

should also expand the templates for ages <6 yr and >60 yr. We will

also expand this work to include development of a cortical surface

atlas, which may allow for a registration procedure involving align-

ment of highly variable cortical folding patterns.

5 | CONCLUSIONS

In conclusion, the present work demonstrates the appropriateness of

using age and population-specific templates as reference targets for

spatial normalization of structural and functional neuroimaging data.

This database of age-specific IBTs and IBTAs is made freely available to

the wider neuroimaging community of researchers and clinicians world-

wide. We hope that these tools will facilitate research into neurological

understand in general and into the functional and morphometric

changes that occur over life-course in Indian population in particular.
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