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Background
In recent years, robotic exoskeletons have been widely applied in assisting the human 
body. However, human intention recognition technology remains a bottleneck that 
restricts the development of robotic exoskeletons. The main methods of intention rec-
ognition for human motion are based on human bioelectrical signals and mechanical 
sensor signals [1]. Human bioelectrical signals are potentials excited by neurons that 
carry human behavioral information when transmitted to related tissues/organs, directly 
reflecting human intentions. These signals can be collected from the human body via 
specialized electrodes, and motion intention can be judged by analyzing the signals. 
These methods include physiological models, classification and regression techniques, 

Abstract 

Objective: Human intention recognition technology plays a vital role in the applica-
tion of robotic exoskeletons and powered exoskeletons. However, the precise esti-
mation of the continuous motion of each joint represents a major challenge. In the 
current study, we present a method for estimating continuous elbow joint movement.

Methods: We developed a novel approach for estimating the elbow joint angle based 
on human physiological structure. We used surface electromyography signals to ana-
lyze the biomechanical properties of the muscle and combined it with physiological 
structure to achieve a model for estimating continuous motion. And a genetic algo-
rithm was used to optimize unknown parameters.

Results: We performed extensive trials to verify the generalizability and effectiveness 
of this method. The trial types included elbow joint motion with single cycle trials, 
typical cycle trials, gradually increasing amplitude trials, and random movement trials 
for handheld loads of 1.25 and 2.5 kg. The results revealed that the average root-mean-
square errors ranged from 0.12 to 0.26 rad, reflecting an appropriate level of estimation 
accuracy.

Conclusion: Establishing a reasonable physiological model and applying an efficient 
optimization algorithm enabled more accurate estimation of the joint angle. The pro-
posed method provides a theoretical foundation for robotic exoskeletons and powered 
exoskeletons to understand the intentions of human continuous motion.

Keywords: Intention recognition, Elbow movement, Upper-limb physiological 
structure, Biomechanical, Surface electromyography, Genetic algorithm
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which have been used to estimate motion intention [2]. Currently available mechanical 
sensors mainly include angle sensors, inertial units and force sensors, which can be used 
to collect motion information such as angle, velocity, acceleration and ground reaction 
force during limb swing to judge the current motion state. However, mechanical sen-
sor signals have a large time delay compared with bioelectrical signals, which can affect 
real-time recognition results. Using surface electromyography (sEMG) as incoming sig-
nals to realize a ‘friendly’ human–robot interface (HRI) for robotic exoskeletons is a sim-
ple method [3–5]. Previous studies of human intention identified by sEMG have largely 
focused on the classification of human actions for HRI systems. However, this method 
has only been used to predict a small number of discrete movements of the human body. 
Using the predicted results of this method to control a robot cannot achieve continuous 
movement that is comparable to that of human joints. Moreover, it cannot guarantee 
that the movement of the robot and human are closely matched [6, 7]. However, employ-
ing sEMG to directly measure a person’s intent during continuous motion has become 
an important area of research [6, 8]. For the type of continuous movement examined in 
the present study, human intent must be recognized from sEMG in a continuous man-
ner, instead of discretely. In addition, the flexibility of human joints plays an important 
role in daily life, particularly in cases of high-precision poses with rapid switching, which 
reflect the superiority of joint flexibility. The current study presents a method for esti-
mating continuous motion of the elbow joint based on the physiological structure of the 
upper limb, which is a method utilizing sEMG to determine human intent.

Previous studies have adopted many methods to estimate the continuous motion of 
human joints on the basis of sEMG. These studies have generally used muscle physi-
ological mechanics to establish a joint dynamics model with sEMG data as the input. 
The Hill-based muscle model (HMM) is the model most frequently used to achieve 
continuous EMG recognition [9–11]. Buchanan et  al. [12] proposed a method of for-
ward dynamic neuromusculoskeletal modeling of the human elbow joint based on EMG, 
which includes muscle activation kinetics, HMM-based muscle contraction dynamics, 
elbow musculoskeletal geometry, and forward dynamics for the elbow joint. In addi-
tion, an effective tuning method for parameter identification was used to identify physi-
ological parameters [12]. Han et al. [7] used an extended Kalman filter to improve the 
accuracy of the continuous motion estimation of the human elbow joint, which involved 
extracting sEMG features to establish a measurement equation, enabling the establish-
ment of a state space with a “physiological motion” equation of the elbow joint. The 
feedback mechanism improved the robustness of the estimation model. Based on the 
HMM, Shao et  al. [13] proposed the use of muscle internal viscous force to estimate 
human joint moment by examining the physiological structure of muscle. In simula-
tions, although its effect on the results was much weaker than the noise of sEMG signals, 
Shao et al.’s [13] method more fully illustrated the mechanism of the musculotendinous 
force. On the basis of Shao’s study, Pau et al. [14] established a skeletal muscle model of 
the human upper limb and improved the estimation of elbow joint motion. However, the 
skeletal muscle model did not fully match the skeletal muscle structure of the human 
body.

On the basis of Pau’s study [14], we focused on the physiological structure of the 
skeletal muscles, proposing a new geometric model of the human upper limb. This 
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method better reflects the physiological structure and avoids the need for measuring 
a large number of unknown physiological parameters from human specimens based 
on anatomy. Moreover, the proposed approach enables simplification of the required 
calculation and improved estimation accuracy.

We establish a visualized structural model of the human elbow joint by examin-
ing physiological structure. We use this model as a basic framework and establish the 
relationship between original sEMG signals and joint angles that vary with time. First, 
a muscle biomechanical model is established with muscle activity as the input. Sec-
ond, a dynamics model of the elbow joint is established with the muscle biomechani-
cal force as the input, and a genetic algorithm is simultaneously used to optimize the 
parameters. Finally, through extensive trials, we verified the reliability of joint con-
tinuous motion estimation based on the physiological model by results analysis and 
parameter comparison. An overview of the study is shown in Fig. 1.

Methods
Physiological structure

The bony complex of the elbow is an intricate mechanical system comprising the fore-
arm bones (radius and ulna) and the upper arm bone (humerus).

From the perspective of anatomical medicine, the muscles associated with elbow 
flexion/extension include the biceps, triceps, brachioradialis, brachialis, and 
anconeus. During movement, the brachioradialis and anconeus play coordinating 
roles, whereas the biceps and triceps are the main muscles responsible for elbow joint 
flexion and extension, respectively [14, 15], which is one of the reasons we examined 
the biceps and triceps in the current study. In addition, the brachialis, which is a deep 
muscle, was initially taken into consideration. However, according to the previous 
study [16], during elbow joint extension, the brachialis is only a small muscle antago-
nist to the triceps, and the sEMG signals produced by the brachialis are difficult to 
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Fig. 1 Overview of the continuous motion estimation model (CMEM)
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measure. Thus, we did not include the brachialis in the analysis. Taking these factors 
into consideration, we focused on the biceps and triceps as the main research targets 
in the current study.

To establish a physiological model of the elbow, it is necessary to understand the dis-
tribution of the major muscle groups: the long head of the biceps originates from the 
supraglenoid tubercle while the coracoradialis originates from the coracoid process of 
the scapula. Both muscles converge on the muscle belly and integrate to become the 
biceps tendon that inserts on the radial tuberosity. The triceps has three heads; the long 
head originates on the scapula and the two short heads originate from the humerus. 
They integrate to become the triceps tendon that inserts on the olecranon, as shown in 
Fig. 2.

The elbow joint comprises the trochlea on the humeral side and the trochlear notch 
and olecranon process on the ulnar side. The trochlea is a hyperboloid-shaped cylinder 
that fits well into the trochlear notch [17]. Because of these structures, the elbow joint 
can be modeled as a hinge joint [14, 15, 18].

The physiological structure of the forearm comprises the ulna and radius. The tendi-
nous insertion of the triceps averages 20–24 mm by 8–12 mm and extends to the medial 
margin of the olecranon [19] (see the right side of Fig. 2). We labeled the insertion of the 
triceps as point B. The angle between the straight lines connected by the elbow joint’s 
center of rotation (O), point B, and the axis of the forearm is denoted as ξ (see Fig. 3).

The physiological characteristics described above are important for understanding elbow 
movement and form the basis of our mathematical model. We established a physiological 

Fig. 2 The distribution of muscle groups associated with the upper limb and a lateral drawing of the elbow 
joint
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Fig. 3 Physiological structure of the forearm
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structural model of the elbow joint to solve the dynamics model (see Fig. 4). This model 
comprises an equivalent line of muscle fibers and bones.

In Fig. 4, J and C represent the equivalent origination points of the biceps and triceps on 
the shoulder, respectively; AO and BOE represent the humerus and the bones of the fore-
arm, respectively; and Fbi and Ftr represent the force of the biceps and triceps, respectively.

To simplify the complexity of the structural model, we assumed that the axis of the 
humerus and forearm create an angle of 0° when the elbow is fully extended [20, 21]. Thus, 
ξ = ξ2. lOH and lOI are the arms of the biceps and triceps muscle forces, respectively, which 
can be obtained using a geometric model.

Musculotendinous force

On the basis of the HMM, each musculotendon unit is modeled as a muscular unit with 
two parallel elements: an active contractile element (CE) producing the active muscle force 
Fc and a nonlinear passive elastic element (PE) producing the passive force Fp, as shown in 
Fig. 5 [10].

From the HMM, we realize that the muscle force F is produced by the combined effects 
of the muscle contractile force and muscle passive force [12], as expressed by:

where Fc is the muscle contractile force, Fp is the muscle passive force, and ϕ is the pen-
nation angle. The optimal pennation angles of the biceps and triceps are no more than 
10° [22]. When the optimal pennation angle is 10°, the relative change in the rate of the 
muscle force is approximately 0.047, which shows that the pennation angle has little 
effect on the muscle force. This can be written as ϕ = 0 , and, thus, cosϕ = 1 [14, 23].

(1)F = (FC + FP) cosϕ

Fig. 4 Physiological structural model of the elbow joint
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The model of the muscle contractile force and muscle passive force is expressed as 
[10–12]:

where fA(l), fV(v), and fp(l) are, respectively, the normalized muscle contractile force–
length relationship, the muscle contractile force–velocity relationship, and the passive 
elastic force–length relationship. We take fV(v) = 1 [7, 24, 25], and a(k) is the muscle acti-
vation at time k. Fmax is the maximum isometric muscle force while l is the normalized 
muscle fiber length, which is equal to the current muscle fiber length lm divided by the 
optimal muscle fiber length l0m:

According to the HMM, the length of the skeletal muscle unit can be calculated as:

From this equation, we can calculate the current length of muscle fiber lm. lt is the 
length of the tendon, which can be regarded as a constant. lmt is the length of skeletal 
muscle, which can be calculated using a geometric model of the human upper limb 
(see Fig. 4). The skeletal muscle lengths of the biceps and triceps are calculated as: 

Thus, we established the musculotendinous model. Therefore, when determining 
the constants Fmax, lt, and l0m, we can calculate lm with (4), l with (3), and F with (1).

(2)
{

Fc = fA(l) · fV (v) · a(k) · Fmax

Fp = fP(l) · Fmax

(3)l =
lm

lm
0

(4)lmt
= lt + lm · cosφ

(5)
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Prediction model

When the upper limb around the elbow joint is involved with rotation, it can be regarded 
as a fixed axis rotation of the forearm. The total torque can then be calculated as:

where MG is the gravitational moment of the forearm and hand acting on the elbow joint 
while MF is the external moment acting on the elbow joint.

Assuming that the moment of inertia of the forearm (including the forearm, hand, and 
load) is J, we have the kinetic equation:

where θ̈k is the angular acceleration and Tk is the total torque at time k.
We can then obtain the elbow joint dynamics model in discrete time through joint 

dynamics analysis: 

The dynamic model of the elbow joint can be solved using simultaneous Eqs. (6), (7), 
and (8), which are based on the biceps and triceps muscle force as input and the elbow 
angle as output.

By combining the three models described above, we obtain the continuous motion 
estimation model (CMEM) of the elbow joint, which has sEMG signals as input and the 
elbow rotation angle as output.

Experiment
Experimental setup

An experimental method was devised to verify the performance of the CMEM, as shown 
in Fig. 6. To make the experiment more robust, we selected five subjects with an aver-
age age of 25 years to hold loads of 1.25 and 2.5 kg while we examined continuous joint 
motion. The experiment involved single cycle trials (SCTs), typical cycle trials (TCTs), 

(6)T = Fbi · lOH − Ftr · lOI −MF −MG

(7)J · θ̈k = Tk

(8)
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Fig. 6 Experimental setup
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gradually increasing amplitude trials (GIATs), and random movement trials (RMTs). 
We performed five sets of tests for each type of trial in each subject. Subjects rested for 
5 min between the sets of tests to avoid fatigue.

Before the application of sEMG electrodes, the skin surface was cleaned by rubbing it 
with alcohol to remove dirt. A Delsys wireless acquisition module (Natick, Massachu-
setts, USA) was used to collect sEMG signals at a sampling frequency of 2000 Hz. The 
elbow joint angle was measured with an incremental photoelectric encoder sensor, using 
the STM32F4 development board for angle capture, and the capture frequency was set 
to 400 Hz. In the course of the experiment, each subject was asked to keep their arm as 
relaxed as possible and their upper arm in a vertical position. The subject maintained a 
smooth and continuous rotating speed of the elbow joint.

Data processing

The acquired raw sEMG signals were preprocessed to obtain the preprocessed sEMG 
signals. First, the raw sEMG signals were filtered using a second-order Butterworth 
filter with a cutoff frequency of 20 Hz for high-pass filtering. Full-wave rectification 
was then performed. A fourth-order Butterworth filter with a cutoff frequency of 
4 Hz was then used for low-pass filtering. Normalized signals were finally obtained as 
the results divided by the maximum voluntary contraction (MVC) of the muscle.

The MVC is an sEMG measurement corresponding to maximal contraction without 
causing pain or discomfort [14]. The testing process of MVC has been reported in 
previous studies [15, 26]. We referred to these methods for testing MVC in the cur-
rent study. After each subject completed all trials, the MVC for each muscle group 
was recorded and averaged. Three elbow joint positions (i.e., the angles between the 
forearm and the ground were approximately 30°, 60° and 90°) were tested. At each 
position, the subject gradually increased the flexion or extension torque to its max-
imum and remained at that level for approximately 2  s. The motions of maximum 
isometric voluntary flexion and maximum isometric voluntary extension were con-
ducted alternately, and verbal encouragement was given for each trial. The subjects 
had an adequate recovery period between contractions to avoid fatigue. We selected 
the maximum myoelectric amplitude in these three positions. The trials were repeated 
three times, and we took the average as the final result for each subject.

The sampling frequency of the joint angle was 400 Hz, while the sampling frequency 
of muscle activity was 2000 Hz, the same as that of the sEMG signals. Therefore, to 
ensure that the measured angle and muscle activity had the same sample size, we used 
a 5-ms time window to calculate the mean muscle activity:

where ak is the average muscle activation of the kth time window and vj,k is the jth origi-
nal muscle activation in the kth time window.

(9)ak =
1

5

5
∑

j

vj,k
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Model parameter identification

In the simulation, there were 17 undetermined parameters of the CMEM, which were 
difficult to measure directly. The model parameters of the elbow joint vary between 
individuals because of individual body differences. It is therefore necessary to identify 
the relevant parameters before the model is applied to a specific object.

In the current study, we used a genetic algorithm to identify model parameters. The 
purpose of parameter identification was to find a set of optimal parameters by adjust-
ing the parameters of the CMEM, so that the joint angles θ obtained by the model are 
as close as possible to the real values. The genetic algorithm was used to optimize the 
unknown physiological parameters, which strongly affect the output or closely related 
to structural models. The optimization objective function was:

where θci is the actual measured angle and θmi is the angle of model estimation at time i.
The initial population evolves in the optimization process, and we used results 

reported in the literature [23, 27] as a reference. This not only reduced the search 
space and increased the optimization speed but also eliminated parameter values that 
deviated significantly from the actual situation (i.e., those that were inconsistent with 
anatomical knowledge). A decrease in the value of the objective function was taken as 
the direction of evolution. The optimization process is shown in Fig. 7. Using model 
parameter identification, we acquired a set of optimal model parameter values that 
were closest to the actual joint angles. After completing an experiment, we calculated 
the root-mean-square error (RMSE) of the estimated angles relative to the measured 
angles to indicate accuracy.

Results
Figure  8 shows the relevant results of the TCTs, which are taken as an example of 
the performance of the prediction model. Panels (a) and (d) show one group of the 
motion results of TCTs with 1.25 and 2.5 kg loads, with RMSEs of 0.19 and 0.18 rad, 
respectively. The red line represents the estimated angles, which were the simula-
tion results of the CMEM. The blue line represents the measured angles, which were 

(10)min

n
∑

1

(θci − θmi)
2

sEMG
Initial values of 

model parameters

Angle of model θm

Optimization objective function

Measured angle θc

Adjust the 
model 

parameters

Elbow joint motion 
estimation model

Actual elbow angle by
Photoelectric encoder

Fig. 7 The process of parameter identification based on a genetic algorithm
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collected by the photoelectric encoder. The trends of estimated angles and measured 
angles were largely consistent.

Panels (b) and (e) show the corresponding torque results obtained with 1.25 and 
2.5 kg loads, respectively. The red line represents the torque produced by the muscle 
force and the blue line represents the torque produced by the external force. The dif-
ference between them determines the angle acceleration of the elbow joint. In other 
words, the difference reflects the stability of the predictions. This finding indicates 
that the experimental results for 2.5  kg were more stable than those for 1.25  kg in 
the current sample. It can be seen in Fig.  8c, f that the error range for 1.25  kg was 
greater than that for 2.5 kg, with values of − 0.30 to 0.47 rad and − 0.23 to 0.33 rad, 
respectively.

The estimated results of the CMEM after tuning for SCTs, GIATs, and RMTs are 
shown in Fig. 9. Table 1 summarizes average RMSE values of each set of trial results 
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Fig. 8 a Comparison between the real and estimated motion with RMSE was 0.19 rad (1.25-kg load). b 
Comparison between the real and estimated torque results with 1.25-kg load. c Estimated angles error when 
the load was 1.25 kg; d comparison between the real and estimated motion with RMSE was 0.18 rad (2.5-kg 
load); e comparison between the real and estimated torque results with a 2.5-kg load. f Estimated angles 
error when the load was 2.5 kg
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across all five subjects. The total average is the average RMSE for all subjects. The total 
averages for 1.25 kg were 0.12, 0.22, 0.22, and 0.26 rad while the averages for 2.5 kg 
were 0.12, 0.23, 0.24, and 0.25 rad for SCTs, TCTs, GIATs, and RMTs, respectively.
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Fig. 9 a, d Are results of the SCTs with 1.25-kg and 2.5-kg loads, RMSEs were 0.12 rad and 0.11 rad, 
respectively. b, e Are results of the GIATs with 1.25-kg and 2.5-kg loads, RMSEs were 0.19 rad and 0.17 rad, 
respectively. c, f Are results of the RMTs with 1.25-kg and 2.5-kg loads, RMSEs were 0.20 rad and 0.19 rad, 
respectively

Table 1 Summary of average RMSEs and standard deviations of each type of trial results

The unit is rad; Sub subject; Each type of trial included the results of 1.25-kg and 2.5 kg-loads

Sub SCT TCT GIAT RMT

A 0.12 ± 0.02 0.10 ± 0.02 0.20 ± 0.03 0.21 ± 0.04 0.19 ± 0.03 0.18 ± 0.03 0.22 ± 0.04 0.19 ± 0.03

B 0.13 ± 0.03 0.12 ± 0.03 0.25 ± 0.04 0.27 ± 0.07 0.26 ± 0.04 0.29 ± 0.06 0.32 ± 0.07 0.33 ± 0.04

C 0.13 ± 0.03 0.11 ± 0.02 0.19 ± 0.03 0.21 ± 0.03 0.21 ± 0.03 0.24 ± 0.04 0.24 ± 0.04 0.23 ± 0.03

D 0.12 ± 0.02 0.13 ± 0.04 0.24 ± 0.06 0.23 ± 0.04 0.25 ± 0.05 0.25 ± 0.04 0.28 ± 0.06 0.27 ± 0.05

E 0.12 ± 0.03 0.11 ± 0.03 0.21 ± 0.03 0.20 ± 0.03 0.19 ± 0.03 0.21 ± 0.03 0.24 ± 0.04 0.24 ± 0.05

Overall 0.12 ± 0.02 0.12 ± 0.03 0.22 ± 0.04 0.23 ± 0.05 0.22 ± 0.05 0.24 ± 0.05 0.26 ± 0.06 0.25 ± 0.06
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Discussion
A previous study by Artemiadis et al. [28] reported that RMSEs of the joint angle pre-
diction ranged from 0.03 to 0.16  rad, but the range of arm motion was limited to the 
horizontal plane. Han et al. [7] used the filtering algorithm of an extended Kalman fil-
ter, achieving RMSEs of the typical continuous cycle motion of the elbow joint of 0.11–
0.13 rad. Koo et al. [15] established a motion estimation model for the elbow joint and 
achieved RMSEs of single flexion and single extension movements of 0.61 and 0.33 rad, 
respectively. Pau et  al. [14] established a physiological elbow joint model, reporting 
RMSEs of 0.11, 0.38, 0.34, and 0.39 rad, respectively, for SCTs, TCTs, GITs, and RMTs. 
Similar to these previous results, the average RMSEs in the current study ranged from 
0.12 to 0.26 rad.

We established a CMEM based on the physiological structures of the elbow joint. 
The physiological characteristics of the elbow joint were mainly characterized by the 
geometric model of the upper limb. In the proposed model, the distance between 
points J and C, which were the equivalent origination points of the biceps and tri-
ceps in the shoulder, should be emphasized. These distances affect the accuracy of the 
model estimation results, especially the length of lAC. If lJC is ignored (i.e., ξ1 = ξ2 = 0), 
lOH and lOI will be zero when the joint angle θ is zero. This means that the arms of the 
biceps and triceps force are equal to zero. In such a case, the elbow would be in the 
dead position, requiring an external force to bend. This does not meet the required 
characteristics of elbow joint physiological movement. When we considered the lJC, 
the prediction accuracy and the rationality of the model were significantly improved.

During the course of the experiment, the sEMG amplitude for the biceps was signif-
icantly higher than that for the triceps. In the optimization process, the model param-
eters associated with the biceps were more effective than those associated with the 
triceps. Table 2 lists the average values of the optimized geometric model parameters 
obtained by the genetic algorithm for subject A with each movement type. It can be 
seen that lAC and lOK had stable ranges of 0.092–0.1 and 0.023–0.04 m, respectively. 
However, lAJ and lOB fluctuated greatly, with lAJ ranging from 0.021 to 0.096 m and lOB 

Table 2 The average values of optimized geometric model parameters by GA

This table omits the optimized muscle activity model parameters and each experiment includes the results of 1.25-kg and 
2.5-kg loads
a SCT single-cycle trials, TCT  typical continuous-cycle trials, GIAT gradually increasing amplitude trials, RMT random-
movement trials

Movement  typesa lAO/m lAC/m lAJ/m lOE/m lOK/m lOB/m l0
m/m lt/m m/kg J/kg m2

SCT 0.225 0.092 0.092 0.36 0.024 0.092 0.2 0.1 1.94 0.522

0.231 0.096 0.021 0.44 0.035 0.081 0.2 0.1 1.93 0.811

TCT 0.238 0.1 0.092 0.41 0.028 0.045 0.2 0.1 1.85 0.722

0.220 0.098 0.067 0.50 0.04 0.069 0.2 0.1 2 0.906

GIAT 0.222 0.096 0.035 0.37 0.023 0.013 0.2 0.1 1.95 0.554

0.234 0.1 0.059 0.42 0.038 0.086 0.2 0.1 1.97 0.846

RMT 0.223 0.092 0.096 0.41 0.027 0.094 0.2 0.1 2 0.722

0.224 0.096 0.024 0.35 0.025 0.071 0.2 0.1 2 0.824

Average 0.227 0.096 0.061 0.41 0.03 0.069 0.2 0.1 1.96 0.628

0.847
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ranging from 0.013 to 0.092 m. These findings indicate that lAC and lOK had a greater 
effect than lAJ and lOB on the accuracy of the experimental results. Using the total 
average value of lAC and lAO, we calculated the average value of ξ1 to be 0.44 rad. Thus, 
lAC appears to play an important role in elbow movement and should not be ignored.

To verify the accuracy and generalizability of the CMEM, extensive trials were 
required, including comparisons between the four types of trials with 1.25 and 2.5-
kg loads. Statistical analysis of the estimated accuracy revealed that the SCTs had 
smaller average RMSEs (0.12 and 0.12  rad, respectively) and RMSEs became larger 
as the joint movement became more complex. The total average RMSEs were 0.22 
and 0.23  rad, respectively, for TCTs, and 0.22 and 0.24  rad, respectively, for GIATs. 
The RMTs exhibited the most complex movement and the largest RSMEs (0.26 and 
0.25  rad respectively). We plotted a histogram to compare the total average RMSEs 
of each type of movement when using our proposed method, as shown in Fig.  10. 
Although subjects were required to rotate the joint as uniformly as possible during 
the experiments, it was unavoidable that the end acceleration would cause an abrupt 
change in sEMG signals in the actual movement process and that this acceleration 
would be more random for complex movement. In addition, although we conducted 
denoising and feature extraction of sEMG signals in the current study, the sudden 
change in raw signals still affected the accuracy of the experimental results. Effective 
feature extraction technology for sEMG signals is therefore essential.

The present study used a genetic algorithm to search for the optimal values of 
unknown physiological parameters in the CMEM. However, the tuning process inevi-
tably fell into a local minimum. It was thus necessary to increase the number of optimi-
zation experiments and identify narrower ranges for parameter searches. This not only 
reduced the search time but also improved the accuracy of searching for a global mini-
mum. In addition, the genetic algorithm has limitations in terms of practical application, 
because the optimization process and motion estimation cannot be performed at the 
same time. Thus, in future studies, we plan to use an online filtering method instead of 
a genetic algorithm to achieve the real-time prediction of human joint motion. In addi-
tion, due to the nature of the sEMG signal, the same movement can be generated by dif-
ferent sEMG signal patterns [14]. The generalization ability of the model optimized by a 
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Fig. 10 The total average RMSEs for each type of trial
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genetic algorithm therefore has the limitation that model parameters need to be reopti-
mized for different human bodies and different motion types.

The CMEM of the elbow joint can be applied to the prejudgment of robotic exoskel-
eton movement, and the motion characteristics of the elbow joint can be applied to 
bionic joint robots. Currently, the flexibility of the bionic joint is mainly controlled by 
electric current. It is possible to match the features between sEMG signals and electric 
current to achieve human-controlled movement of a bionic joint. The establishment 
of the current model thus has practical significance. A range of barriers must be over-
come to achieve such a technology, including the development of methods to reduce of 
the impact of muscle fatigue in practical applications, avoid the local minimum in the 
actual optimization by GA, and estimate joint stiffness. These problems must be solved 
to achieve a user-friendly HRI based on CMEM.

Conclusion
In the current study, we proposed a visualized structural model of the human elbow 
joint based on examination of its physiological structure. We used this model as a basic 
framework and applied an efficient optimization algorithm to establish the relationship 
between original sEMG signals and joint angle variations along with human movement. 
This method enabled a better model reflecting the physiological structure and avoided 
the need to measure numerous human physiological parameters. Compared with previ-
ous studies, this approach enabled us to simplify the required calculations and improve 
the estimation accuracy. The proposed method lays a theoretical foundation for robotic 
exoskeletons and powered exoskeletons to understand the intentions of human continu-
ous motion.
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