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Imaging arbitrary incoherent 
source distributions 
with near quantum‑limited 
resolution
Erik F. Matlin & Lucas J. Zipp*

We demonstrate an approach to obtaining near quantum-limited far-field imaging resolution of 
incoherent sources with arbitrary distributions. Our method assumes no prior knowledge of the 
source distribution, but rather uses an adaptive approach to imaging via spatial mode demultiplexing 
that iteratively updates both the form of the spatial imaging modes and the estimate of the source 
distribution. The optimal imaging modes are determined by minimizing the estimated Cramér-Rao 
bound over the manifold of all possible sets of orthogonal imaging modes. We have observed through 
Monte Carlo simulations that the manifold-optimized spatial mode demultiplexing measurement 
consistently outperforms standard imaging techniques in the accuracy of source reconstructions and 
comes within a factor of 2 of the absolute quantum limit as set by the quantum Cramér-Rao bound. 
The adaptive framework presented here allows for a consistent approach to achieving near quantum-
limited imaging resolution of arbitrarily distributed sources through spatial mode imaging techniques.

Advances in super-resolution imaging methods in the field of fluorescence microscopy1–3, as well as techniques 
that leverage the use of quantum, non-classical light sources4,5 have demonstrated the ability to surpass the clas-
sical diffraction limit. However, these techniques require either active illumination or special sample preparation 
and are therefore not applicable to passive far-field imaging scenarios. As a result, the resolution limit of standard 
far-field imaging has remained constrained by the classical diffraction limit, as embodied by the well-known 
Rayleigh criterion.

Recently, it was shown that the traditional method of far-field imaging, (i.e., detecting photons in the position 
basis in the image plane) which we will refer to as direct imaging, falls significantly short of the quantum limit 
of resolution when estimating the separation of two incoherent point sources6. Instead, the quantum limit is 
achieved by projecting the light field onto a set of orthogonal spatial modes before detection, sometimes referred 
to as spatial mode demultiplexing imaging (SPADE). Subsequent work, both theoretical and experimental, has 
confirmed this approach for achieving quantum-limited localization of two point sources7–15, including in the 
presence of noise and crosstalk16–18, with experimental realizations of SPADE using interferometers12, digital 
holography13,14, and nonlinear techniques15. In addition, the use of multi-plane light conversion methods has 
demonstrated the feasability of demultiplexing a large number of imaging modes19–21.

Progress has been made in generalizing these techniques to multiple point sources or extended sources22–28, as 
well as to adaptive methods29–31, but no practical framework has been developed for achieving quantum-limited 
resolution in the case of arbitrary incoherent source distributions, with no prior information about the distribu-
tion assumed. This is due to the seemingly daunting challenge of minimizing the Cramér-Rao bound (CRB) for 
arbitrary sources as the number of parameters tends towards infinity, although progress in certain cases has been 
made with the use of semiparametric estimation theory32.

In this work, we demonstrate an adaptive method for achieving near quantum-limited resolution of thermal 
or incoherent sources based on optimizing the spatial imaging modes over the manifold of orthonormal func-
tions, which we term manifold-optimized spatial mode demultiplexing (MO-SPADE). The method provides an 
increase in the fundamental resolution of the imaging system, with performance that approaches the quantum 
limit as set by the quantum Cramér-Rao bound (QCRB). In contrast to super-resolution techniques that apply 
post-processing to achieve sharper image reconstructions33,34, the measurement method described in this work 
fundamentally increases the amount of information available on the source distribution.
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Optimal imaging methodology. The setup of the adaptive spatial mode imager, shown in Fig. 1, consists of 
a two-dimensional source region F(R) emitting light which is imaged in the far-field through a hard aperture. 
At the image plane, the field is sorted into a set of orthonormal spatial modes � = {φj(r)|j = 0, . . . , J − 1} , and 
measured by individual photon counting detectors. In this work, we assume a photon source emitting spatially 
incoherent light with detection events that can be modeled as a Poisson process6. The photon counts in each 
channel are then used to reconstruct a source estimate, as well as to update the optimal set of imaging spatial 
modes for the next measurement iteration. We note that restriction to incoherent sources is not fundamental to 
the approach, and extension to coherent sources is also possible.

To optimize the imaging for arbitrary incoherent source distributions, we parametrize the source by decom-
posing it into a set of orthogonal functions:

where F(R) is the source brightness in the object plane, and fk(R) is the kth function in the source decomposition 
basis set. We will refer to these functions as source modes, to distinguish them from the spatial imaging modes. 
To make the problem computationally tractable we restrict the number of source modes to a finite value K, such 
that F(R) can be adequately approximated in its subspace. The imaging problem then becomes one of accurately 
estimating the multiparameter coefficient vector c = (c1, c2, . . . , cK ) in the presence of noise. We restrict our 
attention to the case where the imaging noise is dominated by the photon shot noise and other noise sources are 
negligible, as is often the case for photon detection in the visible spectrum.

To properly frame this measurement problem, we use the statistical tools of the Fisher information matrix 
and the corresponding Cramér-Rao bound, which sets the lowest achievable mean squared error (MSE) of the 
coefficient estimates of any unbiased estimator. The classical Fisher information per photon measured with the 
orthonormal imaging modes � is constructed as6

where Pj is the probability, conditioned on a detection event, of detecting a photon in imaging mode φj . For 
incoherent source distributions this probability is given by

where |ψPSF
R

� is the field point spread function (PSF) in the image plane originating from source point R . Replac-
ing F(R) with its orthogonal decomposition allows us to directly evaluate the partial derivative terms. The covari-
ance matrix of the coefficient vector for any unbiased estimator satisfies the inequality

known as the Cramér-Rao bound. Specifically, the MSE of any unbiased estimator of the coefficient ck is bounded 
by the corresponding diagonal entry of the Fisher information matrix inverse:
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Figure 1.   Adaptive spatial mode imaging system. Light from the far-field source distribution F(R) is captured 
by a hard aperture and imaged onto a spatial mode sorter of imaging modes � . At each measurement iteration, 
the number of photons detected in each channel nj is used to generate a source estimate, as well as an updated 
set of optimal spatial imaging modes for the next measurement iteration.
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The optimal imaging problem can then be cast into one of minimizing the MSE of the source coefficients 
by minimizing the diagonal elements of the Fisher information matrix inverse. The objective function to be 
minimized is

where W is a weighting matrix that can be applied depending on the nature of the imaging task. In the results 
shown here, we choose W to be equal to the identity matrix, corresponding to minimizing the mean of the diago-
nal elements of the Cramér-Rao bound, CRB = 1/K

∑K
k=1[I]

−1
kk  . The objective function L(�) is minimized over 

the manifold of all possible orthonormal imaging modes using numerical manifold optimization methods35. Our 
specific implementation uses the Scaled Gradient Projection Method (SGPM) designed for the minimization of 
functions over the set of orthonormal matrices, known as the Stiefel manifold36.

Results
Optimized imaging of point sources and extended sources.  Before demonstrating the full adap-
tive imaging method, we first characterize the maximum imaging improvement attainable assuming the true 
source distribution is known for the purposes of computing the Fisher information matrix in Eq. (2). We first 
apply the MO-SPADE imaging method to one-dimensional imaging of a line of incoherent point sources, 
where the locations of the sources are known a priori and the task is to estimate the magnitudes of the point 
sources. This scenario applies, for instance, in estimating the brightness of poorly resolved astronomical 
objects (e.g., exoplanets), whose locations are known from indirect methods. The source modes are then Dirac 
delta functions located at the point sources. For simplicity we assume a shift-invariant Gaussian field PSF of 
ψPSF
R (x) = (2πσ 2)−1/4exp[−(x − R)2/

(

4σ 2
)

] , where we have normalized the image plane spatial coordinate x 
by the magnification factor of the imaging system. The width σ of the Gaussian PSF is approximately related to 
the radius rc of a corresponding Airy disk37 by σ ≈ rc/3.

Figure 2 displays the results of MO-SPADE imaging of five equally spaced point sources using mode sorting 
detection with five spatial imaging modes. We find that for point source spacings �x in the sub-Rayleigh regime, 
MO-SPADE imaging attains a lower CRB compared to direct imaging, with an advantage that grows larger as 
�x → 0 . In terms of resolution, MO-SPADE allows for smaller �x point source spacings before reaching the 
equivalent CRB value of direct imaging, showing an increase in effective resolution by over a factor of 1.5 in 
the deep sub-Rayleigh regime. The spatial imaging modes which attain this performance are shown in Fig. 2b. 
Their profiles are influenced by the source distribution and PSF, and become increasingly complex for larger 
numbers of imaging modes and sub-Rayleigh source modes. We confirmed the performance enhancement via 
Monte Carlo simulations for �x = 0.3σ , collecting a mean value of 〈N〉 photons for each trial (Fig. 2d). The 
non-negative least squares (NNLS) estimates of the point source amplitudes follow the CRB limits as expected 
for large values of 〈N〉 , and confirms that MO-SPADE imaging achieves an order of magnitude reduction in the 
MSE of the source reconstruction. For low photon numbers, the MSE of the NNLS estimates falls below the CRB 
due to its nonzero bias, saturating at a maximum level where the estimation error is of approximately the same 
magnitude as the source amplitudes.

MO-SPADE imaging also shows enhanced performance when imaging arbitrary extended objects. The source 
region is approximately discretized into a set of non-overlapping rectangle functions with width a. We have 
chosen rectangle functions for simplicity, but other basis choices may be more appropriate depending on the 
imaging task. The optimization of the spatial imaging modes � then proceeds in an identical way as with the 
point source demonstration. Figure 3 shows the results of MO-SPADE imaging for three different example 
source distributions of finite extent, including a uniform distribution as well as sources with smoothly varying 
amplitude variations. MO-SPADE imaging achieves more than a 10-fold reduction in the CRB of the extended 
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Figure 2.   Demonstration of MO-SPADE imaging on point sources. (a) Source distribution of 5 equidistant 
point sources, shown here for a separation of �x = 0.3σ . The dashed curve shows the outline of the PSF-
convolved distribution in the image plane. (b) The manifold-optimized spatial imaging modes for the point 
source distribution. (c) The CRB averaged over all point source magnitude coefficients plotted at various point 
source separations. (d) Results of the Monte Carlo simulations for a point source separation of �x = 0.3σ . Each 
data point represents the MSE of 100 trials averaged over all point source magnitudes.
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source amplitude estimation in the deep sub-Rayleigh regime, analogous to the point source imaging task. In 
both of these imaging scenarios, the direct imaging CRB converges towards the optimal CRB for large a or �x , 
in agreement with previous studies on two point sources.

Comparison to the quantum limit.  We also compare our results to the QCRB, which sets a lower 
bound on the CRB that can be achieved for any possible measurement of a quantum system. We compute the 
QCRB on an extended source distribution by taking the inverse of the quantum Fisher information matrix 
Kkl = Re(tr[Lk(ρ)Ll(ρ)ρ]) , where Lk(ρ) is the symmetric logarithmic derivative (SLD) of density matrix ρ 
computed as6:

where �q and |eq� are the eigenvalues and eigenvectors of ρ . This version of the quantum Cramér-Rao bound 
is sometimes referred to as the SLD-CRB, and additional details of the computation are provided in the Sup-
plementary Information.

The multi-parameter QCRB is in general not guaranteed to be attainable by a physically realizable 
measurement38. The conditions under which this bound is attainable have been studied in several recent 
works39–44. If the SLD operators commute, that is [Li ,Lj] = 0 for all i, j, then the bound is attainable with a pro-
jective measurement over the common eigenbasis of the SLD operators. If the SLD operators do not commute, 
then the CRB of all the parameters cannot be saturated simultaneously with a single projective measurement 
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Figure 3.   Demonstration of MO-SPADE imaging for extended sources. Each row corresponds to analysis of 
the source distributions shown in (a–c) respectively. The black outline of the sources shows the discretization 
into rectangle functions with width a = 0.8σ . (d–f) The CRB averaged over all source magnitude coefficients is 
shown for various source mode rectangle widths a. Smaller widths correspond to a larger number of rectangle 
functions being used to discretize the source region at a finer resolution. The entire discretized source region 
extends over ±12σ , and J = K + 1 imaging modes are used. The upper panels plot the ratio between the 
MO-SPADE CRB ( CMO ) and the quantum CRB ( CQ ). (g–i) CRB of the nonzero source amplitude coefficients 
( c6 through c25 ) for a discretization width of a = 0.8σ.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2810  | https://doi.org/10.1038/s41598-022-06644-3

www.nature.com/scientificreports/

basis. However, if the system satisfies the condition tr(ρ[Li ,Lj]) = 0 , known as weak commutativity, then the 
quantum bound is still attainable, although collective measurements over multiple copies of the system may be 
necessary40. In the case of far-field imaging of incoherent sources, the weak commutativity condition holds and 
the bound is always attainable in principle with the aid of collective measurements24.

Figure 2c as well as Fig. 3(d–f) show the comparison between the mean CRB of the MO-SPADE imaging and 
the mean QCRB. We find that in the well-resolved regime the MO-SPADE CRB follows closely the quantum 
CRB, while in the sub-Rayleigh regime the ratio between the MO-SPADE and quantum CRB approaches, but 
never exceeds, a factor of 2, as shown in the upper panels of Fig. 3(d–f), which plots the ratio between the two 
CRBs. These results suggest that for far-field incoherent imaging, collective measurements can provide at most 
a factor of 2 improvement in the CRB compared to the optimal projective measurements as provided by MO-
SPADE imaging, even in the deep sub-Rayleigh regime.

Adaptive imaging on unknown source distributions.  So far in this work, the CRB and optimal imag-
ing modes have been derived under the assumption of a known source distribution. In most practical cases, the 
true source distribution is unknown, and it is the purpose of the imaging measurement itself to estimate the 
source distribution. To solve this problem, an iterative, adaptive approach to imaging is proposed, where the 
measurement duration is divided into multiple measurement periods, and the source distribution and optimal 
MO-SPADE imaging modes are alternately estimated. At each adaptive iteration i the estimated Fisher informa-
tion is calculated using the source estimate cest

i−1
 from the previous iteration along with both previous and current 

imaging modes, weighted according to the relative number of collected photons Ni,

The set of orthonormal imaging modes, �i , are optimized by minimizing the estimated CRB: 
L(�i) = tr

(

W
[

I
est
i

]−1
)

 . To initialize the adaptive iterations, we set �0 as the direct imaging basis to take the 
first measurement. At each iteration, all previous measurement data is used in calculating the estimated source 
coefficients. By following this iterative scheme, we obtain progressively better estimates of the source distribution, 
and simultaneously approach the optimal imaging modes for the true source distribution. We note that since 
previous measurement information collected with different imaging bases is included in the source reconstruc-
tions, the number of adaptive imaging modes in each iteration can be less than the total number of sources 
modes. This can potentially allow for large improvements in the imaging while only using a relatively small 
number of adaptive imaging modes. Additional details on the adaptive algorithm are provided in the Supple-
mentary Information.
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Figure 4.   Adaptive imaging simulations. (a) Monte Carlo simulations of adaptive imaging for the source in 
Fig. 3b discretized into widths of a = 0.8σ . Each data point represents the MSE of 25 trials averaged over all 
source coefficients. Optimal MO-SPADE refers to the case where prior knowledge of the source is used in 
optimizing the modes, while adaptive MO-SPADE follows the adaptive imaging procedure outlined in the main 
text, with no prior knowledge of the source assumed. Only 8 imaging modes are used in the adaptive imaging. 
Note that at low photon levels, the bias of the NNLS estimator allows the MSE to go below the CRB, while at 
high photon levels, the MSE of all methods approaches an error floor due to the discretized approximation of 
the continuous source. (b,c) The imaging modes for the two iterations of the adaptive imaging process for a 
specific Monte Carlo trial with �N� = 10

6 photons.
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To validate the adaptive approach, we performed a Monte Carlo simulation of the reconstruction performance 
using the NNLS estimator for the one-dimensional source shown in Fig. 3b, discretized into 28 source mode 
rectangles with width a = 0.8σ . In this simulation, only 8 imaging modes are used for each adaptive step, and 
the measurement duration is split equally among the initial direct imaging step and two adaptive MO-SPADE 
measurements—a configuration that we have empirically found to work well. The results of this simulation are 
shown in Fig. 4. At low photon levels, the bias of the NNLS estimator allows the MSE to fall below the respective 
CRB bounds, and saturates at a maximum error value, as was the case for the point source estimation problem. 
As the number of photons increases, the MSE begins to follow the CRB, where this trend continues until the 
approximation of the source by discrete rectangular modes imposes a floor on the reconstruction error. In the 
CRB-following region, the adaptive MO-SPADE imaging attains a performance that is more than an order of 
magnitude better than direct imaging and is within a small factor of the optimal (prior-knowledge) MO-SPADE 
imaging.

An example of the spatial imaging modes which achieve this performance are shown in Fig. 4(b,c). While 
many of the modes are relatively unchanged between the two iterations, some of the modes exhibit altered oscil-
lation patterns. The small differences between the iterations agrees with our empirical findings that additional 
iterations of the adaptive imaging procedure beyond the first two tend to produce only marginal improvements 
in image reconstruction quality.

Finally, we demonstrate the performance of the adaptive imaging on arbitrary two-dimensional source 
distributions. For these results, we assume a two-dimensional Gaussian PSF with width σ , corresponding to 
apodized imaging through a circular aperture. As in the previous one-dimensional example of adaptive imag-
ing, the measurement time is divided evenly among the initial direct imaging step and the two adaptive modal 
measurements. Figure 5 shows the results of the adaptive imaging measurement for a source that exhibits spatial 
frequency chirp and varying contrast, as well as for a Siemens star target. Both sources are placed on top of large 
uniform backgrounds, simulating the case of low-contrast imaging. The case of low-contrast imaging is particu-
larly advantageous for MO-SPADE imaging, as the bias of the non-negative estimators is lower in the relevant 
regime where the MSE of the image reconstruction is on the order of the image contrast. Comparing the NNLS 
reconstruction results, adaptive MO-SPADE imaging outperforms direct imaging and is able to resolve features 
below the classical Rayleigh resolution limit, with a MSE several times smaller than the direct imaging result. 
For these plots, the number of imaging modes used in the adaptive modal measurements is equal to the number 
of source modes plus one, which in both cases equates to 577 imaging modes. However, it is likely that far fewer 
modes could be used for each adaptive iteration while still obtaining close to optimal results.

Figure 5.   Adaptive imaging on low-contrast 2D sources for (a) a chirped source and (b) a Siemens star target. 
The images correspond to �N� = 3× 10

13 photons collected, and the sources have Michelson contrasts of 0.028 
(chirped source) and 0.025 (Siemens star source). For the NNLS reconstructions, the chirped and Siemens star 
sources are discretized into square bins with a width of �x ≈ 0.9σ . The adaptive reconstruction achieves 4.1 
times lower MSE than direct reconstruction for the chirped source, and 7.2 times lower MSE for the Siemens 
star pattern.
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Discussion
Our results demonstrate a general framework for the imaging of arbitrary distributions with near quantum-
limited resolution and accuracy. Further improvements to the adaptive imaging method described here could be 
made by incorporating the bias of estimators into the optimization framework45. This would allow for improved 
imaging performance with estimators that are biased at low photon numbers, such as NNLS and maximum 
likelihood estimators (e.g. Richardson-Lucy deconvolution). The adaptive imaging method presented here for 
incoherent thermal sources can be applied to many fields such as multi-emitter fluorescence microscopy and 
astronomical imaging. Spatial mode imaging is a rapidly developing field, and methods which can incorporate 
the large number of spatial modes required for adaptive modal imaging of arbitrary 2D sources are being actively 
investigated20. Based on these promising trends, it may be possible to experimentally demonstrate the modal 
imaging results presented here in the near future.
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