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ABSTRACT Intracellular calcium signaling has been implicated in the control of a
variety of circadian processes in animals and plants, but its role in microbial clocks
has remained largely cryptic. To examine the role of intracellular Ca21 in the
Neurospora clock, we screened mutants with knockouts of calcium transporter genes
and identified a gene encoding a calcium exporter, nca-2, uniquely as having signifi-
cant period effects. The loss of NCA-2 results in an increase in the cytosolic calcium
level, and this leads to hyper-phosphorylation of core clock components, FRQ and
WC-1, and a short period, as measured by both the core oscillator and the overt
clock. Genetic analyses showed that mutations in certain frq phospho-sites and in
Ca21-calmodulin-dependent kinase 2 (camk-2) are epistatic to nca-2 in controlling the
pace of the oscillator. These data are consistent with a model in which elevated in-
tracellular Ca21 leads to the increased activity of CAMK-2, leading to enhanced FRQ
phosphorylation, accelerated closure of the circadian feedback loop, and a shortened
circadian period length. At a mechanistic level, some CAMKs undergo more auto-
phosphorylations in the Dnca-2 mutant, consistent with high calcium levels in the
Dnca-2 mutant influencing the enzymatic activities of CAMKs. NCA-2 interacts with
multiple proteins, including CSP-6, a protein known to be required for circadian out-
put. Most importantly, the expression of nca-2 is circadian clock-controlled at both
the transcriptional and translational levels, and this in combination with the period
effects seen in strains lacking NCA-2 firmly places calcium signaling within the larger
circadian system, where it acts as both an input to and an output from the core
clock.

IMPORTANCE Circadian rhythms are based on cell-autonomous, auto-regulatory
feedback loops formed by interlocked positive and negative arms, and they regu-
late myriad molecular and cellular processes in most eukaryotes, including fungi.
Intracellular calcium signaling is also a process that impacts a broad range of bio-
logical events in most eukaryotes. Clues have suggested that calcium signaling
can influence circadian oscillators through multiple pathways; however, mecha-
nistic details have been lacking in microorganisms. When we built on prior work
describing calcium transporters in the fungus Neurospora, one such transporter,
NCA-2, was identified as a regulator of circadian period length. Increased intracel-
lular calcium levels caused by the loss of NCA-2 resulted in overactivation of cal-
cium-responsive protein kinases, in turn leading to a shortened circadian period
length. Importantly, the expression of NCA-2 is itself controlled by the molecular
clock. In this way, calcium signaling can be seen as providing both input to and
output from the circadian system.
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In most eukaryotes and certain prokaryotes, circadian clocks link environmental cues,
such as temperature and light, to metabolism to regulate various physiological and

molecular events, ranging from virulence and immunity to cell cycle control (1–3). In
fungi and mammals, the core circadian machinery is built based on a transcriptional-
translational feedback mechanism in which the positive arm drives the transcription of
components comprising the negative arm, which, in turn, feeds back to repress the
positive arm, terminating its own expression. Neurospora crassa has been widely used
as a model eukaryote for circadian studies for decades. In Neurospora, the White Collar
complex (WCC), formed from WC-1 and WC-2, serves as the positive-arm transcrip-
tional activator for the core clock gene frequency (frq) by binding to one of two DNA
elements, the Clock box (C-box) in the dark or the Proximal Light-Response Element
(PLRE) in the light (4–6). FRQ, the gene product of frq, interacts with FRH (FRQ-interact-
ing RNA helicase) (7, 8) and casein kinase I (CKI) (9) to form the FFC complex, the nega-
tive arm that represses WCC activity by promoting its phosphorylation at a group of
residues (10).

Protein phosphorylation has been shown to control protein functions via protein-
protein/DNA associations, protein stability and activity, and subcellular localization, all
of which have been proven or suggested to regulate functions of circadian compo-
nents (11–14). In Neurospora, FRQ is intricately regulated by over 100 time-specific
phosphorylation events (9, 15); multiple kinases, such as CKI, CKII, protein kinase A
(PKA), and Ca21-calmodulin (CaM)-dependent kinase 1 (CAMK-1), and phosphatases,
like PP2A, have been reported to directly or indirectly control FRQ phosphorylation sta-
tus (16–18). Extensive phosphorylation has also been observed on WCC under light
and dark conditions (10, 16, 19, 20). Recently, over 90 phosphoresidues have been
mapped on WC-1 and WC-2, governing their circadian repression and controlling circa-
dian output, and a small subset of these has been shown to be essential for feedback
loop closure (10).

Calcium as a second messenger regulates a wide variety of cellular pathways. For
example, elevated Ca21 in the cytosol and mitochondria of neurons is required to syn-
chronize neuronal electrical activity (e.g., reviewed in reference 21), all muscle fibers
use Ca21 as their main regulatory and signaling molecule (e.g., reviewed in reference
22), and Ca21 influx induces oocyte development in many species during mammalian
fertilization (23). At the molecular level, enzymes and other proteins can be regulated
by calcium via allosteric regulatory effects (24). Indeed, diverse evidence also connects
calcium signaling with circadian regulation. In Arabidopsis thaliana, the concentration
of cytosolic Ca21 oscillates over time (25, 26), which regulates circadian period length
through the action of a CALMODULIN-LIKE protein on the core circadian oscillator (27).
Circadian oscillation of Ca21 has been observed in hypothalamic suprachiasmatic nu-
cleus (SCN) neurons, driving daily physiological events (28). In addition, a small body of
literature has described effects of calcium ionophores and calmodulin antagonists on
the Neurospora clock (29–33). Although this research was published before there was
sufficient understanding of basic cellular physiology to fully interpret the work, it pro-
vides a rich context for studies on the role of calcium signaling in the Neurospora clock.

Despite the paucity of recent data on circadian effects of calcium in fungi, the
cellular physiology of calcium metabolism in fungi, including Neurospora, is well
understood (34–40) and is consistent with general knowledge of animal cells. The
resting concentration of Ca21 in the cytoplasm of fungal and mammalian cells is
normally maintained at 50 to 200 nM (41–45), which is 20,000- to 100,000-fold lower
than that in a typical extracellular environment (46). To be maintained at this low
level in the cell, Ca21 is actively pumped out from the cytosol to the extracellular
space, reticulum, vacuole, and/or mitochondria (34, 35, 47–51); bearing binding af-
finity to Ca21, certain proteins in the cell can also contribute to lowering the level of
free cytosolic Ca21 (52).

To elicit signaling events, the cell releases Ca21 from organelles or Ca21 enters the
cell from extracellular environments. When stimulated by certain signals, cytoplasmic
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Ca21 can be suddenly increased to reach ;500 to 1,000 nM through activation of cer-
tain ion channels in the endoplasmic reticulum (ER) and plasma membrane or indirect
signal transduction pathways, such as G protein-coupled receptors (e.g., reviewed in
references 53 and 54). Cytosolic calcium bursts lead to activation of CAMKs (55–59). In
mammals, the CAMK cascade includes three kinases: CaM kinase kinase (CaMKK),
CaMKI, and CaMKIV. CaMKI and CaMKIV are phosphorylated and activated by CaMKK
(55, 60–65). CaMKK and CaMKIV reside in the nucleus and cytoplasm, while CaMKI is
located only in the cytosol. Nuclear CaMKIV promotes the phosphorylation of several
transcription factors, such as CREB and CBP, to regulate gene expression (60, 66, 67).
The Neurospora genome encodes four CAMK genes that are subject to diverse regula-
tion, although little is known about their intracellular localization (18, 37).

By impacting a wide range of cellular processes, circadian clocks and calcium signal-
ing are two classic regulatory mechanisms evolved to coordinate environmental fac-
tors, cellular responses, and metabolism. In this study, a screen of calcium regulators
identified nca-2, a calcium pump gene, as a regulator of circadian period length in
Neurospora. In Dnca-2 strains, FRQ and WC-1 become hyper-phosphorylated; deletion
of camk-2 individually blocks the period-shortening effect and FRQ hyper-phosphoryla-
tions in the Dnca-2 mutant. NCA-2 interacts with multiple proteins, which suggests
that it might function in cellular processes in addition to the circadian clock.

RESULTS
Identification of nca-2 as a regulator of the Neurospora circadian clock. Calcium

signaling impacts circadian processes (see, e.g., references 18, 30, and 31) and directly
controls a wide range of cellular and physiological events, but the means through
which it impacts the circadian system is not fully described. Neurospora encodes sev-
eral calcium transporter genes, including nca-1 (a sarco/endoplasmic reticulum Ca21-
ATPase [SERCA]-type ATPase), two closely related genes, nca-2 and nca-3 (plasma
membrane Ca21-ATPase [PMCA]-type ATPases), pmr-1 (a secretory pathway Ca21-
ATPase [SPCA]-type Ca21 ATPase), and cax (a vacuolar Ca21/H1 exchanger) (35). To
facilitate monitoring of circadian phenotypes, individual strains with these calcium
pump genes knocked out were backcrossed to ras-1bd and frq C-box-driven luciferase
strains and analyzed by race tube and luciferase assays. Of these deletion mutants
tested, the Dpmr-1 mutant shows an extremely slow growth rate on race tubes
(Fig. 1A) but is nicely rhythmic, with a slightly shorter period, in the luciferase assay
(Fig. 1B); disruption of nca-2, a plasma membrane-located calcium pump, leads to an
;2-h-shorter period than that of the wild type (WT) by race tube (Fig. 1A) and lucifer-
ase (Fig. 1B) analyses. (Of note, although on any given day the period estimates of
strains bearing mutated calcium pumps showed normal precision, period length assays
done on different days were more varied than is typical. For this reason, comparisons
within figures always reflect assays of different strains done on the same day with the
same medium.) Appearing after 12 hours in constant-darkness (DD12), newly synthe-
sized FRQ in the Dnca-2 mutant is slightly more abundant than in the WT (Fig. 1C, left)
and frq mRNA levels in the subjective circadian night phase (DD4, -8, -24, -28) of the
Dnca-2 mutant are substantially higher than in the WT (Fig. 1C, right), consistent with a
faster-running circadian clock in the Dnca-2 mutant (Fig. 1A and B). The cytosolic cal-
cium level in the Dnca-2 mutant is increased about 9.3-fold compared to that in the
WT (36), suggesting a basis for this period change. To verify that the period shortening
in the Dnca-2 mutant was due to this increased intracellular Ca21, the Dnca-2 strain
was examined on race tubes prepared without calcium in the medium. Interestingly, in
Ca21-free medium, the Dnca-2 mutant displays a WT period on race tubes, while with
normal levels of calcium in the medium, its clock becomes ;4-h shorter than that of
the WT (Fig. 1D), confirming that the role of nca-2 in regulating the pace of the circa-
dian oscillator is through controlling the cytosolic calcium level. These data indicate
that nca-2 is required for keeping calcium in the cytosol at reduced levels to maintain
a normal circadian period.
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FIG 1 Gene deletions of calcium pumps were tested for circadian phenotypes by race tube (A) and
luciferase (B) analyses. Strains were cultured on 0.1% glucose race tube medium in a 96-well plate and
synchronized by growth in constant light overnight (16 to 24 h), followed by transfer to darkness.
Bioluminescence signals were monitored with a CCD camera every hour, bioluminescence data were
acquired using ImageJ with a custom macro, and period lengths were manually calculated. Raw
bioluminescence data from three replicates were plotted with the x axis and y axis representing time (in
hours) and arbitrary units, respectively. (C, left) Western blot showing the expression level of FRQ in the WT
and the Dnca-2 mutant over 28 h detected with FRQ-specific antibody (a-FRQ). DD, number of hours after
the light-to-dark transfer. (right) RT-qPCR showing relative levels of frq mRNA expressed in the WT and the
Dnca-2 mutant. rac-1 was used as an internal control, to which frq expression is normalized (n= 3, mean
values 6 standard errors of the means). Asterisks indicate statistical significance in a comparison with the
WT as determined by a two-tailed Student t test. *****, P , 0.00001; ****, P = 0.00006; ***, P = 0.001337; **,
P , 0.01; *, P = 0.010131; NS, the difference is not significant. (D) Race tube assays of the WT and the
Dnca-2 mutant strain using race tube media in the presence or absence of 2mM calcium chloride. Growth
fronts of the strains were marked by vertical black lines every 24 h. nca-3 (NCU05154), the calcium P-type
ATPase; nca-1 (NCU03305), the calcium-transporting ATPase sarcoplasmic/endoplasmic reticulum type; cax
(NCU07075), the calcium/proton exchanger; pmr-1 (NCU03292), the calcium-transporting ATPase type 2C
member 1; nca-2 (NCU04736), the plasma membrane calcium-transporting ATPase 3. Gene names, numbers
beginning with “NCU,” and descriptions were obtained from the FungiDB website (https://fungidb.org/
fungidb/app). The period was determined as described in Materials and Methods and is reported 6
standard deviations (SD) (n=3).
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WC-1 and FRQ are hyper-phosphorylated in the Dnca-2 mutant. WC-1 and FRQ
are essential components in the positive and negative arms, respectively, of the
Neurospora feedback loop, and their phosphorylation has been proven to play an
essential role in determining their circadian functions (9, 10, 15, 16, 19). In addition to
serving as the main transcription factor driving the expression of frq, WC-1 is the princi-
pal blue light photoreceptor for the organism, forming a homodimer (4) and getting
hyper-phosphorylated (20) upon light exposure. To probe WC-1 and FRQ in the Dnca-2
mutant, amounts and phosphorylation profiles of WC-1 and FRQ were analyzed by
Western blotting using specific antibodies. The stability of FRQ in the Dnca-2 mutant is
very similar to that in the WT (Fig. S1), and although WC-1 appeared slightly less stable,
the cellular levels of WC-1 were even above those of the WT, altogether suggesting
that the stability of the core clock components does not determine the shortened pe-
riod in the Dnca-2 mutant and that WC-1’s level and stability are not consistent with
the period length shortening in the Dnca-2 mutant. Following a light pulse, WC-1 is
more abundant and hyper-phosphorylated in the Dnca-2 mutant than in the WT
(Fig. 2A), whereas, surprisingly, expression of wc-1 is significantly lower than that in the
WT (Fig. 2B). Consistent with the data from the light pulse experiment, in the dark, the
Dnca-2 mutant contains a higher level of WC-1 with more phosphorylations (Fig. 2C)
despite a low mRNA level (;20 to 50% of the level in the WT) (Fig. 2D). These data sug-
gest that nca-2 regulates wc-1 expression at both the transcriptional and posttranscrip-
tional levels independently of light and dark conditions. The hyper-phosphorylation of
WC-1 in the Dnca-2 mutant was confirmed by a more sensitive assay (Fig. 2E) using
Phos tag gels (68), such as have been applied to resolve single phosphoresidues on
WC-1 and WC-2 (10). Like WC-1, FRQ in the Dnca-2 mutant is also more heavily phos-
phorylated than in the WT at DD14, -16, and -18 (Fig. 2F), when newly synthesized FRQ
is the dominant form in the cell, and at DD24 (Fig. 2G), when all FRQ becomes exten-
sively phosphorylated prior to its turnover (Fig. 1A). All together, these data demon-
strate that WC-1 and FRQ become hyper-phosphorylated in the Dnca-2 mutant, sug-
gesting that the elevated calcium in the Dnca-2 mutant might lead to an
overactivation of a kinase(s) or repression of a phosphatase(s) targeting FRQ and WC-1,
thereby altering their activities in the clock.

Epistasis analysis is consistent with an effect of the Dnca-2 mutant on FRQ but
not on WCC. FRQ is phosphorylated in a time-specific manner at over 100 sites, and
elimination of certain phospho-sites in different domains can cause opposite pheno-
types on period lengths (9, 15). Because the loss of nca-2 elicits FRQ hyper-phosphoryl-
ation at almost all time points examined (Fig. 2F and G), we reasoned that this
enhanced FRQ phosphorylation in the Dnca-2 mutant might contribute to the short
period length in this strain. If this is so, then circadian period lengths in frq mutants
encoding proteins that cannot be phosphorylated at key residues should not be short-
ened. To this end, several frq phospho-mutants displaying long circadian periods from
reference 9 were individually backcrossed to Dnca-2 and frq-luc strains and assayed by
tracking bioluminescent signals in real-time in darkness. While circadian periods of
frqS541A, S545A, frqS548A, and frq7 mutants responded to a loss of nca-2, as did the WT (Fig. 3
and see Fig. S2A in the supplemental material), the absence of nca-2 does not signifi-
cantly influence the period length of the frqS72A, S73A, S76A, frqS538A, S540A, or frqS632A, S634A

mutants (Fig. 3). These proteins cannot be phosphorylated at these residues, which
results in period lengthening (9), so the epistasis of these frq alleles is consistent with
NCA-2 influencing FRQ phosphorylation at these sites.

To examine the effect of nca-2 deletion on WCC phosphorylation and period
length in the same manner, the Dnca-2 mutant was backcrossed to several wcc
mutants in which key phosphoresidues that have been identified and shown to
determine the circadian feedback loop closure (10) were eliminated, and the strains
were monitored by the luciferase assay. The absence of nca-2 further shortens the
periods of wc-1S971A, S988A, S990A, S992A, S994A, S995A and wc-2S433A strains (Fig. S2A), sug-
gesting that nca-2 regulates the core oscillator independently of WCC phosphoryla-
tion at the sites essential for its repression. Consistently with this, in the Dnca-2
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mutant, the phosphorylation levels of WC-1 S971 and S990, two key sites required
for FFC-mediated WCC repression, are similar to that in the WT (Fig. S2B), further
suggesting that altered phosphorylation of the positive arm in the oscillator is not
the cause of the short period of the Dnca-2 mutant.

FIG 2 The circadian components WC-1 and FRQ are hyper-phosphorylated in the Dnca-2 mutant. (A) Total
WC-1 was monitored by Western blotting. Samples were cultured in constant darkness prior to a 15-, 30-, 60-,
and 120-min light exposure. Nonspecific bands in the same blot are shown for equal loadings. Decreased
electrophoretic mobility is indicative of phosphorylation status (7). (B) mRNAs extracted from samples cultured
in the dark for 24 h or following a 15-, 30-, or 120-min light exposure, as indicated, were reverse transcribed to
cDNA, followed by quantitative PCR with a primer set specific to wc-1. (C) Western blotting of WC-1 in a 24-h
time course with a 4-h interval. (D) As in panel C, RT-qPCR was performed with samples harvested under the
circadian conditions indicated. Phosphorylation profiles of WC-1 (E) and FRQ (F, G) in the WT and the Dnca-2
mutant were analyzed by Western blotting using SDS-PAGE gels bearing 20mM Phos tag chemicals and a ratio
of 149:1 acrylamide to bisacrylamide (G). (F) Western blotting of FRQ in the WT and the Dnca-2 mutant from
DD14 to DD24 with a 2-h resolution. * in panel E denotes the mobility of unphosphorylated WC-1 and the
bracket the region corresponding to hyper-phosphorylated WC-1. Arrows indicate hyper-phosphorylated FRQs
observed in the Dnca-2 mutant.
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camk-2 deletion does not further shorten the period of the Dnca-2 mutant.
Data in Fig. 2 and 3 are consistent with NCA-2 acting through kinases or phosphatases
on FRQ, and the elevated calcium in the Dnca-2 mutant (36) might activate Ca21-re-
sponsive kinases to overphosphorylate FRQ (Fig. 2F and G). CAMKs have been well
documented to be activated by elevated intracellular Ca21 and calmodulin. There are
four camk genes (camk-1 to -4) annotated in the Neurospora genome, and their cata-
lytic domains are conserved despite a low overall identity of amino acid sequences
(37). Expression of camk-1 to -4 genes moderately increases in the Dnca-2mutant com-
pared to their levels of expression in the WT across 28 h in the dark (Fig. S3). Among
the four CAMKs, CAMK-1 has been reported to directly phosphorylate FRQ at multiple
sites in vitro, although only a very subtle period defect was observed in the Dcamk-1
mutant (18); however, in our hands, the Dcamk-1 strain showed greatly reduced

FIG 3 Some frq alleles are epistatic to the Dnca-2 mutant. The frq C-box promoter activity was measured using C-box–
luciferase at the his-3 locus in the indicated frq phospho-mutants in the presence or absence of nca-2. Strains were
grown on 0.1% glucose race tube medium in constant light overnight (16 to 24 h) prior to transfer to darkness. The
frqS72A, S73A, S76A, frqS541A, S545A, frqS538A, S540A, frqS548A, and frqS632A, S634A mutants were derived from reference 9. Period was
determined as described in Materials and Methods and is reported 6 SD (n= 3).

Neurospora Clock and Calcium-Regulated Phosphorylation ®

May/June 2021 Volume 12 Issue 3 e01493-21 mbio.asm.org 7

https://mbio.asm.org


growth and was arrhythmic on race tubes (Fig. S4A), suggesting that prior data may
have reflected a revertant strain. To further evaluate this and characterize roles for
CAMKs, we made all combinations of Dcamk mutants, backcrossed these to the C-box–
luc reporter, and assayed their clocks. We found that circadian periods of strains with
individual or combinational knockouts of camk genes are indeed quite similar to that
of the WT (Fig. S4B). To test whether the Dnca-2 mutant regulates the clock through
camk-1 to -4, the Dnca-2 mutant was backcrossed to mutants lacking camk-1 to -4, and
circadian periods were assayed by luciferase analyses. Interestingly, the Dcamk-1, -3,
and -4mutants each showed the characteristic period shortening when in combination
with the Dnca-2 mutant; however, the Dcamk-2 Dnca-2mutant showed the same circa-
dian period as the Dcamk-2 single mutant, with no additional shortening due to Dnca-
2 (Fig. 4A), suggesting that nca-2 and camk-2 function in the same pathway to regulate
the circadian period. Because in certain cases activated kinases not only phosphorylate
their substrates but also actuate autophosphorylation in cis or in trans, phosphoryla-
tion on these kinases can be indicative of their activities. To test this, the phosphoryla-
tion status of CAMK-1 to -4 was determined by Western blotting using the 149:1 (acryl-
amide-bisacrylamide) Phos tag gel that has been used to resolve single
phosphorylation events on WC-1 and WC-2 (10). CAMK-2 and -4 display similar phos-
pho-profiles in the presence or absence of nca-2, while, interestingly, CAMK-1 and -3 in
the Dnca-2 mutant undergo more phosphorylations than they do in the WT back-
ground (Fig. 4B), suggesting that their activities might be stimulated due to elevated
calcium resulting from the absence of nca-2. Taken together, these data suggest that
the elevated calcium concentration in the Dnca-2mutant directly or indirectly activates
CAMKs, which leads to hyper-phosphorylation of FRQ, thereby shortening the circadian
period. The data further indicate that although intracellular calcium can influence peri-
odicity through CAMKs, phosphorylation by CAMKs is not required for rhythmicity; it is
modulatory.

Characterization of nca-2. In the Neurospora genome, transcription of ;40% of
coding genes is circadianly controlled directly or indirectly by the WCC-FFC oscillator
(69, 70). We used transcriptional and translational fusions with the luciferase gene to
see whether nca-2 is a ccg (clock-controlled gene). First, the nca-2 promoter was fused
to the luciferase gene and transformed to the csr locus for real-time analysis of nca-2
transcription, showing that transcription driven by the nca-2 promoter is clearly rhyth-
mic (Fig. 5A). Second, after fusing the nca-2 coding sequence with the luciferase open
reading frame (ORF), tracking the bioluminescent signal of NCA-2-LUC protein revealed
that the NCA-2-LUC signal also oscillates in a typical circadian manner (Fig. 5B). These
data indicate that calcium signaling in the cell might be regulated by the circadian
clock through rhythmically transcribing and translating a calcium pump gene, nca-2.
These data place NCA-2 in the larger cellular circadian system; levels of nca-2 and NCA-
2 expression are clock regulated, and NCA-2 activity, or a lack thereof, impacts circa-
dian period length. To identify potential DNA elements conferring circadian transcrip-
tion of nca-2, we searched rhythmic motifs derived from reference 69. These were iden-
tified as sequences that were overrepresented among rhythmically expressed genes.
Interestingly, the first three of the four types of motifs identified in reference 69 are
found in the nca-2 promoter (1.7 kb upstream of ATG) (data not shown). However, we
do not know what transcription factors (TFs) bind to these motifs; they do not appear
in available databases, including the extensive catalogue of inferred sequence prefer-
ences of DNA-binding proteins (Cis-BP; http://cisbp.ccbr.utoronto.ca) (71) that covers
.1,000 TFs from 131 species, including Neurospora. Although there were weak
matches to the motifs, none of the matches were from Neurospora (data not shown).

Consistently with its role as a calcium exporter, NCA-2 is predicted to contain two
calcium ATPase domains and a haloacid dehalogenase (HAD) domain (Fig. S5A). To
understand the role of NCA-2 at a mechanistic level, we mapped the NCA-2 interac-
tome by affinity purification. C-terminally V5-10�His-3�FLAG (VHF)-tagged NCA-2 was
affinity purified under a nondenaturing condition (Fig. 5C), and its interacting proteins
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were identified by mass spectrometry. Among NCA-2’s interactors identified (Table S1)
was the phosphatase CSP-6, whose interaction with NCA-2 was confirmed by immuno-
precipitation (Fig. 5D). CSP-6 has been shown to control circadian output and WCC
phosphorylations independently of the circadian feedback loop (72), suggesting that
NCA-2 might have other roles relevant to CSP-6. Both the Dcsp-6 mutant and the Dcsp-
6 Dnca-2 double mutant display an arrhythmic overt clock on race tubes (Fig. S5B),
indicating that the Dnca-2 mutant is unable to rescue the output defect in the Dcsp-6

FIG 4 Period shortening of the Dnca-2 mutant is rescued by deletion of camk-2. (A) Luciferase assays were performed
with a frq C-box promoter-driven luciferase gene at the his-3 locus in individual camk-1 to -4 knockouts in the presence
or absence of nca-2, as indicated. Periods (in hours) are reported as described in Materials and Methods and are
reported 6 SD (n= 3). (B, top) Total levels of CAMK-1 to -4, which have a 3�FLAG tag at their C termini, in the WT or
the Dnca-2 background were assayed by Western blotting with FLAG antibody. (Bottom) Phosphorylation profiles of
CAMK-1 to -4 were analyzed for the same sample set with 149:1 acrylamide to bisacrylamide SDS-PAGE gels containing
the Phos tag. Asterisks indicate nonspecific bands. For CAMK-1, -2, and -4, total lysates were applied, while CAMK-3
was first pulled down by FLAG antibody-conjugated resins and subsequently assayed by WB due to an overlap
between CAMK-3 phospho-isoforms and nonspecific bands in the Phos tag gel.
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mutant. Interestingly, however, while growing more slowly than the Dcsp-6 mutant,
the Dcsp-6 Dnca-2 double mutant shows a period similar to that of the Dnca-2 mutant
by the luciferase assay (Fig. S5C), suggesting that nca-2 does not act through csp-6 in
controlling the pace of the core oscillator. All together, these data demonstrate that

FIG 5 nca-2 is a ccg and modulates both input to and output from the core clock. (A) The nca-2 promoter fused to the
luciferase gene was transformed to the csr locus, and luciferase signals were followed at 25°C in the dark. Periods (in
hours) were determined as described in Materials and Methods and are reported 6 SD (n=3). (B) The nca-2 open reading
frame was fused to the 59 end of the firefly luciferase gene, and the same assay as described for panel A was performed
to trace the luciferase signal. (C) Representative silver-stained gel showing NCA-2VHF and its interactome purified from a
culture grown in the light. NCA-2VHF and interactors were affinity purified, trichloroacetic acid (TCA) precipitated, and
analyzed by mass spectrometry. (D) NCA-2 is tagged with a V5 tag, and one of its interactors, CSP-6, was tagged with a
3�FLAG tag. Coimmunoprecipitation was performed using V5 resin, and Western blotting was done with V5 and FLAG
antibodies. (E) Working model for the roles of intracellular calcium and of nca-2 in the circadian system. In the Dnca-2
mutant, increased calcium overactivates CAMKs, which induces FRQ overphosphorylation and thereby causes a faster-
running clock; the circadian clock regulates the expression of the nca-2 and camk genes.
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nca-2 is a ccg and suggest that cellular calcium signaling might be regulated by the cir-
cadian clock via rhythmic expression of nca-2.

Downregulation of calcineurin does not influence the circadian period. In a
wide variety of eukaryotes, a prolonged increase in intracellular Ca21 activates a cal-
cium- and calmodulin-dependent serine/threonine protein phosphatase, calcineurin,
which mediates the dephosphorylation of transcription factors, such as NFAT, to regu-
late gene expression (73–86). calcineurin (ncu03833) is an essential gene in Candida
albicans and Neurospora (87, 88), so to determine whether calcineurin influences the
circadian clock, we downregulated its expression by replacing its native promoter with
the qa-2 promoter, an inducible promoter activated by quinic acid (QA). In the absence
of QA, WC-1 is undetectable and FRQ is barely seen in qa-2-driven calcineurin
(Fig. S6A), consistent with a short period/arrhythmic clock observed in the strain
(Fig. S6B). To better examine this, we assayed rhythmicity at extremely low levels of
the inducer, i.e., levels just sufficient for rhythmicity (1028 M QA), or at high levels at or
above WT expression levels (1022 M QA). We found that period length was not propor-
tional to the level of calcineurin expression at levels supporting any rhythmicity and
that even at vanishingly low calcineurin expression levels, the core oscillator displays a
period similar to that of the WT, suggesting that the level of calcineurin does not deter-
mine the pace of the clock. This said, the severe reduction in WC-1 levels in the qa-2-
driven calcineurin strain cultured without QA would be consistent with at least an indi-
rect role for calcineurin in controlling WC-1 expression.

DISCUSSION

In this study, we have identified nca-2 as encoding a calcium pump involved in reg-
ulating circadian period length through CAMK-mediated FRQ phosphorylations. These
data confirm that calcium signaling, a crucial regulatory pathway in mediating cellular
and biochemical processes, must be well controlled for normal circadian period length
determination. Most significantly, calcium signaling is now placed as an ancillary feed-
back loop within the larger circadian oscillatory system. The clock controls the expres-
sion of NCA-2—and thereby, intracellular calcium levels—and intracellular calcium, in
turn, modulates the period length of the clock. In this regard, the larger Neurospora cir-
cadian system is regulated by calcium in a manner reminiscent of that seen in the
mammalian brain (e.g., see reference 89). As prolonged activation of signaling path-
ways is wasteful and harmful to the cell, the elevated cytosolic calcium in the Dnca-2
mutant overactivates CAMKs, leading to FRQ hyper-phosphorylation and thereby caus-
ing a period defect (Fig. 5E). The involvement of intracellular Ca21 in the circadian sys-
tem is further nuanced by the finding that the expression of some camk genes is clock
controlled (Fig. S3 and see references 69 and 70), so both the activator and effectors of
calcium-induced regulation are clock-modulated and clock-affecting. This emphasizes
the pervasive nature of both circadian and calcium control of the biology of the cell
(Fig. 5E).

Among calcium-trafficking genes, nca-2 encodes the major Ca21 exporter (34).
Neurospora encodes three transporter nca genes as well as the vacuolar calcium im-
porter gene cax, but interestingly, only disruption of nca-2 leads to a significant period
change (Fig. 1A), suggesting that NCA-2 plays a major role in lowering cytosolic cal-
cium. Consistently with this, the calcium level in the Dnca-2 mutant has been reported
to rise ;9.3 times, while it remains normal in the Dnca-1 or Dnca-3 mutant (36). It is
possible that NCA-2 has higher affinity for Ca21, is more abundant on the plasma mem-
brane, or is more efficient in transporting calcium than the other two NCAs.

Temporal FRQ phosphorylation, the core pacemaking mechanism in the circadian
feedback loop, is mediated by multiple kinases, including at least CKI, CKII, and CAMK-1
(9, 16, 18). Deletion of the camk-2 gene prevents the high intracellular Ca21 level from
shortening the circadian period, indicating its dominant role in mediating the effect of
calcium on the clock and making it a likely addition to the CAMKs active on the clock.
Periods of several frq phosphorylation mutants, the frqS72A, S73A, S76A, frqS538A, S540A, and
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frqS632A, S634A mutants (Fig. 3), were not significantly altered in the background of the
Dnca-2 mutant, and the domain where FRQ S72, S73, and S76 are located bears CAMK
motifs (9), consistent with calcium-activated CAMK acting through these residues.
Interestingly, although it is CAMK-1 that has been shown to directly phosphorylate FRQ in
vitro (18), its loss here did not abrogate the effects of the loss of NCA-2. It may be that the
phosphosites targeted by different CAMKs on FRQ are distinct and have different effects
on rhythmicity. A freshly germinated Dcamk-1 mutant displays a developmental defect
(18, 37), whereas mutants with the other three camk genes knocked out individually
grow as robustly as the WT (Fig. S4A). However, the growth defect of Dcamk-1 strains
appears to rapidly revert back to normal after a few rounds of inoculation of the Dcamk-1
mutant on new slants (18), suggesting that other CAMKs might be able to gradually com-
pensate for the loss of camk-1 over time.

WCC can be phosphorylated at over 90 sites, and a small group of these is required
for the closure of the circadian feedback loop (10). Interestingly, in the Dnca-2 mutant,
WC-1 is hyper-phosphorylated and more abundant than in the WT despite a reduced
wc-1 RNA level (Fig. 1A); this finding is consistent with a “black widow” model in which
site-specific phosphorylation of transcription activators makes them inactive in driving
transcription but more stable (90). However, lacking key phosphoresidues determining
the feedback loop closure, wc-1 mutants, such as the wc-1S971A, S988A, S990A, S992A, S994A, S995A

and wc-2S394A, S428A, S429A, S433A, S435A mutants, show rhythms with short circadian period
lengths due to an elevated activity of WCC (10), whereas Dnca-2 strains bearing hyper-
phosphorylated and more stable WC-1 also display a short period (Fig. 1 A and B and 2C
and E). One possible explanation is that the hyper-phosphorylation of WC-1 in the
Dnca-2 mutant occurs at residues regulating the circadian amplitude/output instead
of at residues required for the feedback loop closure, while the period-shortening
effect in the Dnca-2 mutant is caused by enhanced FRQ phosphorylation. WCC phos-
phoresidues can be briefly classified into two categories: the ones involved in the
feedback loop closure and the other ones regulating the robustness of frq transcrip-
tion (the amplitude reflecting the peak to trough in circadian cycles) (10). Key wcc
phospho-mutants showed an additive effect with the Dnca-2 mutant on period
length, suggesting that NCA-2 is not directly involved in the regulation of sites par-
ticipating in feedback loop closure but instead regulates WCC phosphoresidues rele-
vant to the circadian amplitude.

MATERIALS ANDMETHODS
Strains and culture conditions. 328-4 (ras-1bd A) was used as a wild-type strain in the race tube

analyses, and 661-4a (ras-1bd A), which bears the frq C-box fused to a codon-optimized luciferase gene at
the his-3 locus, served as the wild type in luciferase assays. Neurospora transformation was performed as
previously reported (91, 92). Medium in the race tube analyses contained 1� Vogel’s salts, 0.17% argi-
nine, 1.5% agar, 50 ng/ml biotin, and 0.1% glucose, and liquid culture medium (LCM) contained 1�
Vogel’s salts, 0.5% arginine, 50 ng/ml biotin, and 2% glucose. Unless otherwise specified, race tubes
were cultured in constant light for 16 to 24 h at 25°C to synchronize strains and then transferred to the
dark at 25°C. The Vogeloid (10�) used to make the Ca21-free medium in Fig. 1D contains 100mM NH4Cl,
20mM MgCl2�6H2O, 100mM KCl, 20mM methionine, 50 ng/ml biotin, and 0.1% glucose (36).

Bioluminescence assays. Luciferase assays were conducted as previously described (10). Briefly,
strains with the frq C-box–luciferase transcriptional reporter at the his-3 locus were grown in 96-well
plates bearing 0.1% glucose race tube medium having luciferin in constant light overnight (16 to 24 h)
at 25°C and then transferred to the dark at 25°C to start circadian cycles. Bioluminescent signals were
tracked by a charge-coupled device (CCD) camera every hour for 5 or more days. Luciferase data were
extracted using the NIH ImageJ software with a custom macro, and circadian period lengths were man-
ually determined.

Protein lysate and WB. For Western blotting (WB), 15 mg of whole-cell protein lysate was loaded per
lane on a 3 to 8% Tris-acetate or 6.5% Tris-glycine (bearing a Phos tag) SDS gel (92). Custom-raised antibod-
ies against WC-1, WC-2, FRQ, and FRH have been described previously (93–95). V5 antibody (Thermo Pierce)
and FLAG antibody (M2; Sigma-Aldrich) were diluted 1:5,000 for use as the primary antibody. To analyze
the phosphorylation profiles of CAMKs, 20mM Phos tag chemical (ApexBio) was added to the homemade
6.5% Tris-glycine SDS-PAGE gel bearing a ratio of 149:1 acrylamide to bisacrylamide (10).

IP. Immunoprecipitation (IP) was performed as previously described (91, 92). Briefly, 2 mg of total
protein was incubated with 20ml of V5 agarose (Sigma-Aldrich), with rotation at 4°C for 2 h. The agarose
beads were washed with 1ml of protein extraction buffer (50mM HEPES [pH 7.4], 137mM NaCl, 10%
glycerol, 0.4% NP-40) twice and eluted with 50ml of 5� SDS sample buffer at 99°C for 5min.
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Other techniques. RNA extraction, reverse transcription (RT), and quantitative PCR (qPCR) were con-
ducted as previously reported (72, 91). V5-10�His-3�FLAG (VHF)-tagged NCA-2 was purified with the
same method applied for isolation of C-terminal VHF-tagged WC-1, and mass spectrometry analyses
were performed as previously described (72, 91). Data acquisition and analysis of luciferase runs were
carried out as previously described (10).
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