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Abstract: Correlation filter-based methods have recently performed remarkably well in terms of
accuracy and speed in the visual object tracking research field. However, most existing correlation
filter-based methods are not robust to significant appearance changes in the target, especially when
the target undergoes deformation, illumination variation, and rotation. In this paper, a novel parallel
correlation filters (PCF) framework is proposed for real-time visual object tracking. Firstly, the proposed
method constructs two parallel correlation filters, one for tracking the appearance changes in the target,
and the other for tracking the translation of the target. Secondly, through weighted merging the response
maps of these two parallel correlation filters, the proposed method accurately locates the center position
of the target. Finally, in the training stage, a new reasonable distribution of the correlation output is
proposed to replace the original Gaussian distribution to train more accurate correlation filters, which can
prevent the model from drifting to achieve excellent tracking performance. The extensive qualitative
and quantitative experiments on the common object tracking benchmarks OTB-2013 and OTB-2015
have demonstrated that the proposed PCF tracker outperforms most of the state-of-the-art trackers
and achieves a high real-time tracking performance.

Keywords: visual tracking; parallel correlation filters; reasonable distribution of correlation output;
real-time

1. Introduction

Visual tracking plays a core role in computer vision for its wide applications including video
surveillance, robotics, driver-less vehicles, intelligent interaction, and various automatic systems [1].
The goal of visual tracking is to track the trajectory of the target that is initialized only by the bounding
box from the first frame among the video sequences [2]. During tracking, the appearance of the target
changes randomly and unpredictably when the target undergoes deformation, illumination variation,
and rotation. It is one of the core issues determining the tracking accuracy and robustness in visual
tracking. Although significant progress has been achieved in recent decades, visual tracking is still
a challenging problem due to these factors.

In general, visual trackers can be broadly classified into two categories, generative trackers [3–12],
and discriminative trackers [13–25]. Generative trackers describe the target in the real world by the target
representation method in computer vision and establish a target appearance model dynamically to find
a candidate most similar to the target appearance model in the video sequence. Therefore, generative
trackers can reflect the similarity of the same kind of target [3]. However, it tends to produce a significant
number of false positives and the learning process is complicated. Discriminative trackers extract
the discriminative features of the target and utilize the method of classification in machine learning to
search for the region most similar to the target and locate the position of the target [13]. Discriminative
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trackers can find the optimal classification surface between different categories and reflect the difference
between heterogeneous data. The discriminative model is more elegant and efficient than the generative
model. Therefore, the discriminative model-based methods have been widely applied in the visual
tracking field.

Recently, the discriminative correlation filter-based (DCF-based) methods [13–20] ignited
the interest of scholars for visual tracking due to their high accuracy and speed. The standard
DCF methods utilize the only given sample by the initial bounding box and many synthetic samples to
learn a linear classifier or linear regressor online to predict the position of the target [14]. These synthetic
samples can be easily generated by the circular shift windows in the frequency domain. The DCF
technique is a computationally efficient process in the frequency domain transformed by fast Fourier
transform (FFT) [26,27]. Therefore, the DCF methods achieve significant improvement in terms of
accuracy and speed. Despite their success, it is unreasonable that the DCF methods utilize a fixed
learning rate to learn the linear classifier. The smaller learning rate means that the trained DCF cannot
track the changes in the target appearance. The larger learning rate means that the trained DCF may
produce model drifting caused by the significant changes in the target appearance, especially when
the target undergoes deformation, illumination variation, and rotation. Furthermore, the correlation
output of the DCF methods follows a 2-D Gaussian distribution which is smooth at the response peak.
It is can easily cause the model to drift.

This paper proposes a novel parallel correlation filters (PCF) visual tracker to overcome these
issues described above. The proposed method constructs two parallel correlation filters with different
learning rates. The correlation filter with the bigger learning rate is used to track the appearance
changes in the target. The correlation filter with the smaller learning rate is used to track the translation
of the target. Through weighting the response maps of the two parallel correlation filters, the position
and scale of the target can be predicted accurately. In addition, the standard DCF assumes that
the correlation response obeys the Gaussian distribution which has an unreasonable smooth peak.
The triangle distribution is also not suitable for the DCFs which has a small slope at the hillside of
the correlation response. Hence, a new reasonable distribution of correlation response that organically
merges the two distributions is proposed to replace the original Gaussian distribution to prevent
the model from drifting. In this paper, the implementation codes are all open source in the following
Github web: https://github.com/YijYang/PCF.git.

In summary, the main contributions of this paper include:

1. A novel tracking framework named PCF that constructs two parallel correlation filters to
simultaneously track the appearance and positional changes in the target;

2. A new reasonable distribution of correlation output is proposed to replace the original Gaussian
distribution to prevent the model from drifting to achieve higher tracking accuracy and robustness.

3. Extensive qualitative and quantitative experiments on OTB-2013 [28] and OTB-2015 [29]
benchmarks have demonstrated that the proposed PCF tracker performs better than most
of the state-of-the-art trackers and simultaneously achieves a real-time tracking performance.

2. Related Works

Single visual object tracking is a quite common task in the field of computer vision. It has long
been a focus area studied by many researchers. Plenty of visual trackers, including generative trackers,
DCF-based trackers, and deep learning-based trackers, have been proposed in this field. In this section,
the most representative and the most relevant works will be briefly discussed below.

2.1. Generative Trackers

The generative trackers utilize the features of the target extracted from the previous frame to
dynamically learn the target’s appearance model, and then search for the region that best matches
the prior appearance model among the candidate regions as the location of the target in the subsequent
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frame. Hence, the critical part to generative trackers is to search for the most similar candidate when
the target has changed to some extent in a video frame. Up to now, many representative generative
trackers [3–12] have been proposed, e.g., robust scale-adaptive mean-shift for tracking (ASMS) [3],
incremental visual tracking (IVT) [4], fragment-based tracking (Frag) [5], multitask-based tracking
(MTT) [6,7], distribution fields for tracking (DFT) [8] and distractor-aware tracker (DAT) [9]. ASMS is
a real-time tracking algorithm implemented by minimizing the distance between two probability
density histograms and it can track the scale of the target adaptively. However, it is easily distracted
by similar objects in the surroundings. DFT builds a feature descriptor utilizing the distribution
fields that smooth the objective function without breaking the information about the pixel value of
the target. DAT trains the color histograms model of the target, distractors, and the background,
and it uses the Bayesian function to compute the probability of each pixel belonging to the target,
distractor, or background. However, these generative trackers do not take advantage of the background
information and the performance of the generative models are limited by the dimensions of the target’s
features. Therefore, the generative trackers could be easily distracted by background regions with
similar appearances during tracking and show less discriminative power when the background is
more complex.

2.2. DCF-Based Trackers

In contrast with generative trackers, DCF-based trackers effectively take advantage of
the differences between the target and the background, and achieve better discriminative power
and generative ability to separate the target from the background when the background is more
complex. Recently, discriminative correlation filters (DCFs) have been widely applied in the visual
tracking field in computer vision. Heads from signal processing, David S. Bolme and colleagues
firstly introduced the correlation filter to the visual tracking fields [2]. They proposed the minimum
output sum of squared error (MOSSE) tracker in the article ‘Visual Object Tracking using Adaptive
Correlation Filters’. It produced significant performances, with tracking speed up to 700 frame
rates. Thereafter, numerous improved algorithms [13–20] based on DCFs have been proposed with
accurate and robust tracking performance by sacrificing the tracking speed, e.g., discriminative scale
space tracking (DSST) [13], fast discriminative scale space tracking (FDSST) [13], spatially regularized
discriminative correlation filters (SRDCF) [14], and efficient convolution operators with hand-crafted
features (ECO-HC) [15] have demonstrated excellent performance on the popular benchmarks OTB-2013
and OTB-2015. DSST trains the translation and scale correlation filters using the handcrafted features
extracted from an image sequence respectively. The improved FDSST utilized the principal component
analysis (PCA) function to decrease the dimension of the extracted features to speed up the DSST.
SRDCF adopts a spatial regularized component to penalize the correlation filters coefficients to solve
the boundary effects. ECO-HC utilize a factorized convolution operator and a conservative update
strategy to improve the speed and performance of the correlation filter. However, all these methods
generate the training samples online and update the target appearance model with a fixed learning
rate. Utilizing a fixed learning rate to update the model is unreasonable. DCF-based trackers cannot
track the changes in the target appearance when the learning rate is too small. In contrast, trackers may
produce model drifting when the target undergoes deformation, illumination variation, and rotation.

2.3. Deep Learning-Based Trackers

In several popular benchmarks [28,29], the deep convolutional neural networks (CNNs) have
performed significantly well, which encouraged more recent works to either apply deep CNN features
in the DCF algorithm [30–34] or design deep frameworks [35–40] for more accurate and robust visual
tracking, e.g., learning multi-domain convolutional neural networks for visual tracking (MDNet) [33],
multi-cue correlation filters for robust visual tracking (MCCT) [34], and convolutional residual learning
for visual tracking (CREST) [35]. MDNet trains a multi-domain network composed of shared layers
and multiple branches of domain-specific layers to track the target in different image sequences.
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MCCT constructs multiple-cue DCF experts to track the target independently achieving the strength of
the different type of features. CREST reformulates DCFs as a one-layer convolutional neural network
and exploits the residual learning method to achieve the benefit of end-to-end training and tracking.
In contrast to hand-crafted features, learning DCF trackers that utilize deep CNN features remarkably
increase their accuracy and robustness against the different degrees of change in the appearance model
of the target. However, they suffer from high complexity and poor real-time performance. It is quite
computationally expensive to extract deep CNN features with a high dimensionality or to implement
deep architectures, resulting in poor real-time performance.

3. Proposed Approach

This section first provides a concise description of the standard discriminative correlation filter
framework, then shows the implementation of the proposed PCF in detail. Finally, the algorithm
framework of the PCF is described precisely in Algorithm 1.

3.1. Standard Discriminative Correlation Filter

The standard DCF [2] has been widely studied by many researchers due to its superior tracking
accuracy and speed. The framework of the classical DCF is explicitly described in Figure 1.
The DCF tracker trains a correlation filter model efficiently in the frequency domain by applying
the machine-learning technique to distinguish the target from the background. It then updates the model
online, exploiting the features extracted from the detected result in the current frame.
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Figure 1. Illustration of the standard DCF framework. Firstly, the correlation filter is trained
by the first frame with an initial bounding box and the desired output. Secondly, it extracts
the features from the current frame and multiplies a cosine window to emphasis on the center region.
The features are then transformed into the frequency domain by utilizing the fast Fourier transformation
(FFT). Thirdly, the response map is obtained by multiplying the correlation filter and the extracted
features. The response map is transformed into the time domain by applying the inverse fast Fourier
transformation (IFFT). Finally, the position of the maximum value of the response map is regarded
as the center position of the target in the current frame. The new features are then extracted from
the detected result to train and update the correlation filter.

DCF learns the correlation filter hl
t online by exploiting n target samples f l

1, f l
2, . . . , f l

n, which are

efficiently generated by all cyclic shifts of the training sample. The objective function of the correlation
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filter hl
t is equal to an L2 error function, which can be expressed as Equation (1):

ε(ht) =
n∑

k=1

‖

d∑
l=1

hl
∗ f l

k − gk‖

2

+ λ
d∑

l=1

‖hl
‖

2
(1)

where ∗means the convolutional operator. k, l denote the number of training samples and the total
dimension of the extracted features respectively. The expected correlation output gk is a 2-dimensional

Gaussian distribution with the same size of hl
t. The second term in this Equation is a regularization

term which is utilized to prevent overfitting and λ(λ ≥ 0) is a regularization parameter.
For computational efficiency, Equation (1) can be transformed into the frequency domain by fast

Fourier transform (FFT). Then the objective function can be transformed as follows:

min
(Hl)

(
n∑

k=1

‖

d∑
l=1

H
l
•Fl

k −Gk‖

2

+ λ
d∑

l=1

‖Hl
‖

2
) (2)

where the capital letters denote the discrete Fourier transformations. Hl
t denotes the correlation filter

in the frequency domain and the overbar of H
l
t represents complex conjugation of Hl

t. The convolution

operation ∗ can be efficiently implemented by element-wise product • in the frequency domain.
Therefore, through deriving Equation (2) and setting the derivative as zero, the final solutions are

computed by Equation (5), which is implemented as follows:

Al
t = GFl

t (3)

Bt =
d∑

k=1

F
k
t Fk

t + λ (4)

Hl
t =

Al
t

Bt
, l = 1, 2, . . . , d (5)

where t is the current step of the current video frame. In Equation (5), Hl
t denotes the trained correlation

filter in the frequency domain and l is the dimension value of the filter, here the dimension value
is equal to the dimension of the extracted features. For computational efficiency, the solution can

be divided into two part as Equations (3) and (4), Al
t represents the numerator of the filter, and Bt

represents the denominator of the filter. The overbar of F means the complex conjugation.
In order to adapt to the photometric and geometric variations of the target appearance, Al

t, Bt of
the correlation filter is updated online by Equations (6) and (7) respectively:

Al
t = (1− η0)Al

t−1 + η0GFl
t (6)

Bt = (1− η0)Bt−1 + η0

d∑
k=1

F
k
t Fk

t (7)

where the scalar η0 is a fixed learning rate.
For detecting the position of the target in the frame t, the features Zl are extracted from the region

of the target pending detection. The responding correlation scores yt can be computed by Equation (8).



Sensors 2019, 19, 2362 6 of 22

Then the position of the maximum value of yt is regarded as the center position of the target area in
the current frame.

yt = F−1


d∑

l=1
A

l
t−1Zl

Bt−1 + λ

 (8)

where F−1 denotes the inverse fast Fourier transform (IFFT).
In this paper, the DCF-based tracker ECO-HC [15] was chosen as the baseline tracker due to

its excellent performance in terms of accuracy and robustness. The ECO-HC tracker has made
several improvements on the basis of the standard DCF tracker. Firstly, it factorizes the convolution
operation to reduce the model parameters. Secondly, it simplifies the generation of the training set by
merging similar samples into a component to guarantee the diversity of samples. Thirdly, it employs
the sparse update strategy to avoid the model drift problem where the update interval is set to 6.
However, ECO-HC tracker has its own deficiencies. It is unreasonable to update the correlation model
with a fixed learning rate when the sample appearance changes greatly due to deformation, illumination
variation or rotation. Hence, ECO-HC tracker is difficult to track the target when the target appearance
changes greatly. Furthermore, the Gaussian distribution with a smooth peak is utilized as the desired
output of the correlation filter, which makes the result of the location inaccurate. In contrast to
the ECO-HC, the proposed PCF tracker has been improved on this issue and obtained remarkable
improvements on the benchmarks as shown in Figure 2.

3.2. Parallel Correlation Filters

The fundamental framework of the proposed PCF is explicitly described in Figure 3. In the initial
frame, the PCF tracker trains two parallel correlation filters PCF1 and PCF2 online in a frequency domain
utilizing the shared samples and the sharp correlation output. In the current frame, PCF1 and PCF2
are utilized to track the target respectively. Through weighting the response maps of PCF1 and PCF2,
PCF tracker can detect the position of the target by applying the Newton method. Then it utilizes
the Gaussian mixture model (GMM) [15] to generate a new sample set by adding a new sample or
merging the two closest samples. As with the update strategy in the baseline tracker [15], it utilizes
the new sample set to update the two parallel correlation filters with different learning rates every
six frames.

PCF learns respectively two parallel correlation filters PCF1 h1l
t and PCF2 h2l

t by exploiting m
target samples f l

1k, f l
2k, . . . f l

mk with different weights wt
kp which are determined by the learning rate.

The objective function of PCF1 can be expressed as Equation (9) and the objective function of PCF2 can
be expressed as Equation (10):

ε(h1t) =
n∑

k=1

‖

d∑
l=1

h1l
∗

m∑
p=1

(w1kp f l
kp) − gsk‖

2

+ λ
d∑

l=1

‖ωh1l
‖

2
(9)

ε(h2t) =
n∑

k=1

‖

d∑
l=1

h2l
∗

m∑
p=1

(w2kp f l
kp) − gsk‖

2

+ λ
d∑

l=1

‖ωh2l
‖

2
(10)

where k, p denote the number of samples in the training set and the circular shift set respectively.
The sharp output gsk is merged by the Gaussian distribution and the triangle distribution which will
be described in detail in Section 3.3. The second term of these two Equations is a regularized term
and ω denotes the spatial regularization parameter.
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Figure 2. The qualitative comparisons of the proposed parallel correlation filters (PCF) tracker with
the baseline tracker efficient convolution operators with hand-crafted features (ECO-HC) on five
challenging sequences of the benchmarks. The results are marked in different colors. On all these five
cases, PCF tracker performs better center position precision and overlap precision than the baseline
tracker. PCF tracker successfully tracks the target when the target undergoes significant rotation,
illumination variation, and deformation.

Equations (9) and (10) can be transformed into the frequency domain efficiently by FFT. Due to
the regularization parameter, ω breaks the closed solution of the objective functions, the solutions

of H1l
t−1 and H2l

t−1 are obtained by the conjugation gradient (CG) iterative method [15]. Then for

detecting the position of the target in the frame t, the shared features Zl
t,pos are extracted from the region

of the target pending detection. The center position of the region is determined by the previously
detected position. The corresponding correlation scores yt,pos can be computed by Equation (11).
Then the position of the target in the current frame is optimized by the Newton iterative method.

yt,pos = F−1

 d∑
l=1

(αH1l
t−1Zl

t,pos + (1− α)H2l
t−1Zl

t,pos)

 (11)

where α denotes the fusion factor. H1l
t−1 and H2l

t−1 represent two parallel correlation filters in
the frequency domain.
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Figure 3. The flow chart of the proposed PCF framework. In the initial frame, the PCF tracker trains
two parallel correlation filters PCF1 and PCF2 online in the frequency domain utilizing the shared
samples and the sharp correlation output. In the current frame, PCF1 and PCF2 are utilized to track
the target respectively. Through weighting the response maps of PCF1 and PCF2, the PCF tracker
accurately detects the position of the target by applying the Newton method (NM). It then utilizes
the Gaussian mixture model (GMM) to generate a new shared sample set by adding a new sample or
merging the two closest samples. It utilizes the new sample set to update the two parallel correlation
filters with different learning rates every six frames.

After detection, the new sample is extracted from the tracking result. Then the GMM is utilized to
compute the similarities between the new sample and the components of the training set. After that,
a new training set is generated by adding the new sample or merging two closest samples. The weights
wt

kp of the trained samples are updated by Equation (12).

wt
kp = (1− η)wt−1

kp (12)

where t denotes the t-th frame and η is the learning rate. Different learning rates mean different weights
of samples.

For further detecting the scale of the target [13] in the frame t, the standard DCF is utilized to
extract scale features Zl

t,scale with different scale factors and to compute the scale correlation scores
yt,scale in Equation (13). Then the scale factor of the maximum value of yt,scale is utilized to compute
the scale of the target in the current frame.

yt,scale = F−1


d∑

l=1
A

l
t−1,scaleZl

t,scale

Bt−1,scale + λ

 (13)
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where F−1 represents IFFT. A
l
t−1,scale, Bt−1,scale denote the numerator and the denominator of the scale

correlation filter in the previous frame receptively.

3.3. Reasonable Distribution of the Correlation Response

The Gaussian distribution, the triangle distribution, and the merged distribution are described
clearly in Figure 4a–c respectively. The desired output of the standard DCF methods follows a 2-D
Gaussian distribution with a smooth peak. Due to the DCF training, the model using the synthetic
samples generated by circular shift windows, the peak of the desired output should be sharp to avoid
model drifting. The 2-D Gaussian probability density g(x, y) is expressed in Equation (14).

g(x, y) =
1

2πσ2 e−
(x2+y2)

2σ2 , (−
w
2
≤ x ≤

w
2

,−
h
2
≤ y ≤

h
2
) (14)

where σ represents the standard deviation and it is set to 1/16 in this paper. x, y denotes the coordinates

for the figure pixels. w, h denotes the width and height of the figure, and
(

w
2 , h

2

)
is regarded

as the original point.
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Different from the Gaussian distribution, the triangle distribution shown in Figure 4b has a sharp
peak. However, it has a small slope at the hillside of the distribution. Due to the synthetic samples are
generated by circular shift windows, the positions below the hillside of the distribution are regarded
as the label of negative samples. The values of these positions should set nearly to zero. The 2-D
triangle probability density s(x, y) is expressed in Equation (15).

s(x, y) = (1−
2
w
|x|)(1−

2
h
|y|), (−

w
2
≤ x ≤

w
2

,−
h
2
≤ y ≤

h
2
) (15)

where
(

w
2 , h

2

)
is regarded as the original point.

Both Gaussian distribution and triangle distribution are not suitable for DCF. Hence, a new
sharp distribution of the desired output is proposed to replace the original Gaussian distribution
to achieve higher tracking accuracy and robustness. The 2-D merged probability density m(x, y)
is expressed in Equation (16). The sharp distribution organically merges Gaussian distribution
and triangle distribution by multiplication operators. It simultaneously combines the merits of these
two distributions, with a sharp peak and a large slope at the hillside. Extensive experiments on
benchmarks have demonstrated the effectiveness of the sharp distribution.
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) (16)
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(

w
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)
is regarded as the original point.
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3.4. The Brief Outline of the PCF Tracking Algorithm

The proposed PCF tracking algorithm is briefly described in Algorithm 1. The PCF tracker first
detects the position of the target, and then the scale correlation filter is utilized to refine the scale
of the target. There are some differences between the scale and the position correlation filters.
For the position filters, the PCF tracker extracts the position features from the first frame with
a bounding box. It then uses the extracted features initializes two parallel correlation filters PCF1

H1l
1 and PCF2 H2l

1 online in the frequency domain with a sharp correlation output. From the second

frame to the end frame of the sequence, PCF1 and PCF2 are utilized to track the target respectively.
Through weighting the response maps of these two parallel correlation filters, the PCF tracker can
detect the center position Pt of the target by applying the NM. Then it utilizes the GMM to generate
a new sample set. It also utilizes the features extracted from the new sample set to update the two

parallel correlation filters H1l
t, H2l

t with different learning rates ηt1, ηt2 every six frames. For the scale

filter, the PCF tracker extracts the scale features from the first frame with different scale factors. It then

uses the extracted features initializes the scale correlation filters A1,scale, B1,scale. In the subsequent frame
of the sequence, similar to the position filters, the scale filter utilizes the detected result St to update

the filter At,scale, Bt,scale by the learning rate η0 every frame.

Algorithm 1. PCF Tracking Algorithm

Input:
1: Image It.
2: Detected target position Pt−1 and scale St−1 in the previous frame.

Output:
1: Detected target position Pt and scale St in the current frame.

Loop:
1: Initialize the PCF model H1l

1, H2l
1 and scale model A1,scale,B1,scale in the first frame by Equations (9), (10)

and (4), (5).
2: for t ∈

[
2, t f

]
do.

3: Position detection:
4: Extract position features Zt,pos from It at Pt−1 and St−1 by a search region.
5: Compute two parallel correlation scores y1t,pos, y2t,pos.
6: Merge the two correlation scores to yt,pos by Equation (11).
7: Set Pt to the target position by Newton iterative method.
8: Scale detection:
9: Extract scale feature Zt,scale from It at Pt−1 and St−1 by a search region.
10: Compute correlation scores yt,scale by Equation (13).
11: Set St to the target scale that maximizes yt,scale.
12: Model update every six frames:
13: Extract new sample features Ft,pos and Ft,scale from It at Pt and St.
14: Generate new training set by the GMM method.
15: Update the PCF model H1l

t, H2l
t by the learning rate ηt1, ηt2.

16: Update the scale model At,scale, Bt,scale by the learning rate η0.
17: Return Pt, St.
18: end for.

4. Experiments

In this section, the implementation materials and parameter settings are described in detail.
Comprehensive experiments are then performed on two benchmarks OTB-2013 [28] and OTB-2015 [29]
to validate the effectiveness of the PCF tracker. Finally, the tracking failure cases of the proposed PCF
tracker are analyzed briefly, and the future improvement works are further presented on this basis.
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The results of these experiments have demonstrated that the proposed PCF tracker performs better
than most of the state-of-the-art methods.

4.1. Implementation Details

All experiments are performed on the same desktop (equipping with INTEL i5-4590 CPU with 8G
RAM). The PCF tracker presented in this paper is implemented in MATLAB R2016a. The relevant
parameters of the PCF tracker are briefly described in Table 1. For parameter adjusting, the extensive
parameter setting experiments are conducted on OTB-2013 benchmark. Figure 5 shows that the PCF
tracker achieved the best OPE accuracy at the point (0.9, 0.5). Therefore, the learning rate ηt2 of
PCF2 is set to 0.5 in Equation (12), and the merging factor α of the two response maps is set to 0.9
in Equation (11). Following the baseline tracker [15], the learning rate ηt1 of PCF1 is set to 0.009
in Equation (12). For the generative model of the training set mentioned in Section 3.2, the initial
weight w0

kp of the training sample is set to 1.0 and the number of the target samples m is set to 30.

For the scale filter, the relevant parameters are set to the same values as the baseline tracker proposed
in [19]. In order to make a fair comparison with the state-of-the-art trackers, the same parameters were
used for all experiments on the benchmark data sets.
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Figure 5. The results of the parameter setting experiments on OTB-2013 benchmark. The color bar
denotes the one pass evaluation (OPE) accuracy percent (%) of location error threshold (LET) at 20 pixels.
The horizontal and vertical coordinates represent merging factor α and learning rate ηt2 respectively.
The points ranging from (0.1, 0.1), (0.1, 0.2), . . . , (1.0, 1.0) were obtained in experiments, others were
obtained by the linear interpolation method. When the point (α, ηt2) is set to (0.9, 0.5), the OPE accuracy
is maximized.

Table 1. The parameter settings of the proposed PCF tracker.

Parameters ηt1 ηt2 α w0
kp m

Values 0.009 0.5 0.9 1.0 30

4.2. Ablation Experiments

To evaluate the effectiveness of progressively integrating the strategies proposed in this paper,
the ablation experiments are conducted on OTB-2013 benchmark and the proposed PCF tracker is
compared with the baseline tracker introduced in Section 3.1, the PCF with weighting fusion correlation



Sensors 2019, 19, 2362 12 of 22

response maps (PCF_WF tracker) proposed in Section 3.2 and the PCF with sharp output response
(PCF_SR tracker) described in Section 3.3. The performance of these trackers is evaluated both on
precision at different center location error thresholds and success rate at different overlap thresholds.

Figure 6 explicitly shows the comparison results on OTB-2013 benchmark in terms of the precision
plots (PP) and success plots (SP) of one pass evaluation (OPE). The proposed strategies of weighting
fusion and sharp output response in this paper either obtain significant improvement compared to
the baseline tracker. In terms of the OPE of location error threshold (LET) at 20 pixels, the PCF_WR
tracker and PCF_SR tracker achieve a gain of 3.3% and 3.1% compared to the baseline tracker respectively.
From the aspect of the OPE of areas under the curve (AUC), the PCF_WR tracker and the PCF_SP
tracker obtain a gain of 1.9% and 1.7% contrasted to the baseline tracker respectively. It indicates that
both the two strategies are effective. Overall, the proposed PCF tracker integrating these two strategies
performs the best performance in terms of precision and success rate. Concretely, the PCF tracker
achieves 89.2%, 67.5% in the OPE of LET at 20 pixels and AUC, and compared to the baseline tracker,
the PCF tracker achieves a remarkable gain of 4.3% and 3.2%.
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Figure 6. The results of the ablation experiments on OTB-2013 benchmark for the baseline tracker,
the proposed PCF tracker and the trackers of progressively integrating the presented strategies:
(a) The precision plots (PP) of one pass evaluation (OPE) and the values in brackets denote the OPE
accuracy of location error threshold (LET) at 20 pixels; (b) The success plots (SP) of the OPE
and the numbers in brackets are the areas under the curve (AUC).

Tables 2 and 3 demonstrate separately the PP and SP of the OPE for the compared trackers in
detail on eleven different attributes: scale variation (SV), illumination variation (IV), out-of-plane
rotation (OPR), occlusion (OCC), background cluttered (BC), deformation (DEF), motion blur (MB),
fast motion (FM), in-plane rotation (IPR), out-of-view (OV), and low resolution (LR). Obviously,
the PCF_WF tracker and PCF_SR tracker all achieve various degrees of progress versus the baseline
tracker, and perform well in real-time (average speed 44 FPS and 47 FPS respectively) in the benchmark.
In Table 2, comparing PCF_WF tracker with PCF_SR tracker, the former performs better than the latter
in terms of IV, OPR, BC, DEF, and IPR. However, from the aspects of SV, OCC, MB, FM, OV, and LR,
the latter outperforms the former. This indicates that the strategy of weighting fusion is more robust
to significant appearance changes in the target, especially when the target undergoes deformation,
illumination variation, and rotation, while the scheme of sharp response is more accurate to the problem
of model drifting caused by distractors or blur. In general, Tables 2 and 3 indicate that the proposed PCF
tracker acquires the best or the second results in terms of PP and SP of the OPE on all eleven attributes.
Simultaneously, the PCF tracker runs an average speed of 42 FPS on all sequences of OTB-2013.
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Table 2. The PP of the OPE for the baseline tracker, the proposed PCF tracker and the trackers of
progressively integrating the presented strategies on eleven different attributes (the ranks of results are
expressed in %): scale variation (SV), illumination variation (IV), out-of-plane rotation (OPR), occlusion
(OCC), background cluttered (BC), deformation (DEF), motion blur (MB), fast motion (FM), in-plane
rotation (IPR), out-of-view (OV), and low resolution (LR). The last column is the average running speed
(FPS) on all sequences of OTB-2013. The top three ranks are marked in red, cyan, and blue respectively.

Trackers SV IV OPR OCC BC DEF MB FM IPR OV LR Speed

Baseline 78.2 77.3 82.9 86.1 77.7 86.1 71.6 74.3 77.5 74.7 56.5 49
PCF_WF 80.3 80.9 87.2 89.1 82.4 91.2 73.9 74.3 81.3 79.7 71.0 44
PCF_SR 83.5 79.4 87.0 91.0 81.3 86.2 74.7 78.0 80.9 81.9 76.7 47

PCF 82.4 82.1 88.4 89.5 84.5 91.3 76.0 76.7 82.7 81.1 73.3 42

Table 3. The SP of the OPE for the baseline tracker, the proposed PCF tracker and the trackers of
progressively integrating the presented strategies on different attributes (%): SV, IV, OPR, OCC, BC,
DEF, MB, FM, IPR, OV, LR. The last column is the AUC which represents the average overlap accuracy
of the OPE. The top three ranks are marked in red, cyan, and blue separately.

Trackers SV IV OPR OCC BC DEF MB FM IPR OV LR AUC

Baseline 60.3 59.5 61.6 64.4 58.5 65.1 57.7 57.8 58.1 60.1 35.8 64.3
PCF_WF 61.2 61.8 64.5 65.9 61.0 68.9 58.1 57.5 60.4 63.4 44.5 66.2
PCF_SR 62.8 60.4 64.2 67.4 60.3 65.6 58.3 59.0 59.6 64.7 48.1 66.0

PCF 63.2 63.1 65.9 66.9 63.5 69.6 60.1 59.3 62.2 64.5 48.8 67.5

4.3. Experiments on OTB-2013

OTB-2013 is a common benchmark with 50 sequences that are divided into 11 different attributes:
SV, IV, OPR, OCC, BC, DEF, MB, FM, IPR, OV, LR. On this challenge benchmark, the proposed PCF
tracker is compared with 18 state-of-the-art trackers from the works: tracking-learning-detection
(TLD) [2], distribution fields for tracking (DFT) [8], discriminative scale space tracking (DSST) [13], fast
discriminative scale space tracking (FDSST) [13], spatially regularized discriminative correlation filters
(SRDCF) [14], sum of template and pixel-wise learners (Staple) [16], compressive tracking (CT) [17],
long-term correlation tracking (LCT) [18], locally orderless tracking (LOT) [19], least soft-threshold
squares tracking (LSS) [21], visual tracking with online multiple instance learning (MIL) [22],
scale adaptive kernel correlation filter tracker with feature integration (SAMF) [23], exploiting
the circulant structure of tracking-by-detection with kernels (CSK) [24], high-speed tracking with
kernelized correlation filters (KCF) [25], adaptive decontamination of the training set: A unified
formulation for discriminative visual tracking (SRDCFdecon) [31], convolutional features for correlation
filter-based visual tracking (DeepSRDCF) [32], Fully-convolutional Siamese networks for object tracking
(SiamFC_3s) [36], object tracking via dual linear structured SVM and explicit feature map (DLSSVM) [37].
Only the ranks for the top 10 trackers are reported.

Figure 7 clearly illustrates the PP and SP of the OPE on three different attributes: DEF with 19
sequences, OPR with 39 sequences and IV with 25 sequences. As is shown in Figure 7, the proposed
PCF achieves the best results among the top 10 trackers in these attributes. Specifically, the PCF tracker
obtains 91.3% and 69.6%; 88.4% and 65.9%, and 82.1% and 62.3% on attributes DEF, OPR, and IV,
respectively. It indicates that the PCF tracker is more accurate and robust to the significant changes
in the target appearance compared with the other top nine trackers. Furthermore, the proposed
PCF tracker is very effective for handling the challenges of deformation, illumination variation,
and out-of-plane rotation.
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The overall results on OTB-2013 benchmark among the top ten trackers are illustrated in Figure 
8. Contrasted to the second tracker deepSRDCF-based on deep features, the proposed PCF tracker 
obtains the best ranks of 89.2%, 67.5% on the PP and SP of the OPE, and achieves a visibly gain of 
3.9%, 7.5% in the PP and SP of the OPE respectively. Among the compared trackers employing 
handcrafted features, deep features, or combining these two features, the proposed PCF tracker 
achieves the best ranks and simultaneously runs a real-time speed of 41 FPS on a CPU. Furthermore, 
Tables 4 and 5 explicitly shows the SP and PP of the OPE for the top 10 trackers on 11 challenge 
attributes respectively. As is demonstrated in Tables 4 and 5, the PCF tracker outperforms the other 
top nine trackers on 10 out of 11 attributes of the OPE and obtains the best average precision (AP) 
and areas under the curve (AUC). It validates that the proposed sharp response strategy can 
effectively prevent the model from drifting and the proposed weighting fusion strategy is also very 
efficient to track the changes in the target appearance. Both strategies bring remarkable 
improvements in terms of accuracy and robustness. Besides, qualitative experiments are conducted 
on this benchmark and the results are reported in Figure 9. It further indicates that the proposed PCF 
tracker can accurately track the target with deformation, rotation, and illumination variation. 

Figure 7. The quantitative results of the top ten trackers on OTB-2013 benchmark among three different
contributions: DEF, OPR, and IV. Among the top ten trackers, the proposed PCF tracker obtains the best
results on all three attributes: (a) The PP of the OPE on attribute DEF; (b) The SP of the OPE on attribute
DEF; (c) The PP of the OPE on attribute OPR; (d) The SP of the OPE on attribute OPR; (e) The PP of
OPE on attribute IV; (f) The SP of the OPE on attribute IV.

The overall results on OTB-2013 benchmark among the top ten trackers are illustrated in Figure 8.
Contrasted to the second tracker deepSRDCF-based on deep features, the proposed PCF tracker obtains
the best ranks of 89.2%, 67.5% on the PP and SP of the OPE, and achieves a visibly gain of 3.9%, 7.5% in
the PP and SP of the OPE respectively. Among the compared trackers employing handcrafted features,
deep features, or combining these two features, the proposed PCF tracker achieves the best ranks
and simultaneously runs a real-time speed of 41 FPS on a CPU. Furthermore, Tables 4 and 5 explicitly
shows the SP and PP of the OPE for the top 10 trackers on 11 challenge attributes respectively. As is
demonstrated in Tables 4 and 5, the PCF tracker outperforms the other top nine trackers on 10 out of 11
attributes of the OPE and obtains the best average precision (AP) and areas under the curve (AUC).
It validates that the proposed sharp response strategy can effectively prevent the model from drifting
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and the proposed weighting fusion strategy is also very efficient to track the changes in the target
appearance. Both strategies bring remarkable improvements in terms of accuracy and robustness.
Besides, qualitative experiments are conducted on this benchmark and the results are reported in
Figure 9. It further indicates that the proposed PCF tracker can accurately track the target with
deformation, rotation, and illumination variation.Sensors 2019, 19, x FOR PEER REVIEW 16 of 23 
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Figure 8. The comparing results for the top ten trackers with the whole 50 sequences on OTB-2013
benchmark: (a) The PP of the OPE on all sequences; (b) The SP of the OPE on all sequences.

Table 4. The PP of the OPE on OTB-2013 benchmark for the top ten trackers on eleven different
attributes (%): SV, IV, OPR, OCC, BC, DEF, MB, FM, IPR, OV, LR. The last column is the average
precision (AP) of LET at 20 pixels. The top three ranks are marked in red, cyan, and blue, respectively.

Trackers SV IV OPR OCC BC DEF MB FM IPR OV LR AP

PCF 63.2 63.1 65.9 66.9 63.5 69.6 60.1 59.3 62.2 64.5 48.8 67.5
DeepSRDCF 57.5 53.6 58.6 59.9 53.6 60.1 54.2 54.8 55.0 56.6 46.1 60.0
SiamFC_3s 57.0 50.5 55.9 56.1 54.2 53.5 49.0 51.5 55.2 54.5 52.9 58.5
SRDCF 54.1 51.5 55.1 57.4 53.0 58.6 51.6 51.4 51.7 51.1 41.0 57.4
Staple 53.7 54.3 55.7 55.9 54.5 59.3 47.8 45.2 53.5 40.5 36.2 56.1
SAMF 49.2 49.2 52.5 56.6 49.8 54.9 49.8 47.9 50.9 57.1 33.8 54.1
LCT 50.4 49.3 53.8 52.0 53.9 58.6 42.3 40.8 51.4 48.4 34.8 54.1
FDSST 52.1 51.7 52.1 50.7 57.3 51.4 48.8 47.5 52.3 47.9 28.8 54.0
DLSSVM 42.0 45.9 49.9 51.2 49.8 56.6 52.4 48.9 48.9 49.3 35.9 51.5
DSST 47.6 44.6 43.1 44.9 45.8 38.6 34.3 34.5 46.1 38.4 31.3 46.9

Table 5. The SP of the OPE on OTB-2013 benchmark for the top ten trackers on eleven different
attributes (%): SV, IV, OPR, OCC, BC, DEF, MB, FM, IPR, OV, LR. The last column is the average overlap
accuracy of the OPE. The top three ranks are marked in red, cyan, and blue respectively.

Trackers SV IV OPR OCC BC DEF MB FM IPR OV LR AUC

PCF 82.4 82.1 88.4 89.5 84.5 91.3 76.0 76.7 82.7 81.1 73.3 89.2
DeepSRDCF 80.7 76.5 84.6 85.9 76.7 84.1 74.9 75.6 80.0 78.2 74.9 85.3
SiamFC_3s 76.7 68.0 76.3 75.6 73.1 70.9 64.7 68.2 74.7 68.3 78.0 79.3
SRDCF 75.9 69.0 76.5 77.2 70.6 76.6 69.8 69.4 72.2 65.4 76.8 78.9
Staple 75.3 73.5 77.0 76.3 73.8 77.9 62.7 60.4 73.4 65.4 72.2 76.5
SAMF 73.4 69.0 75.9 80.7 65.6 74.0 64.8 63.0 72.9 66.8 70.8 77.4
LCT 72.1 68.6 76.0 71.1 73.5 78.3 55.9 52.0 72.4 56.7 68.1 75.9
FDSST 75.1 74.0 74.2 70.7 79.4 68.0 68.3 64.4 74.0 59.6 53.9 75.3
DLSSVM 67.4 66.5 75.6 72.3 69.6 82.8 72.9 66.8 74.2 61.9 82.6 75.7
DSST 68.2 60.0 60.0 60.1 59.8 49.1 43.2 42.1 65.1 48.6 69.3 64.3
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Figure 9. The qualitative experiments from four representative sequences on the OTB-2013 benchmark.
The results for the top ten trackers are expressed in different colors. On these challenging sequences,
the proposed PCF tracker achieves remarkable results compared to the other top nine trackers in terms
of accuracy and robustness.

4.4. Experiments on OTB-2015

OTB-2015 is a more challenging benchmark than OTB-2013, including 100 videos with 11 different
attributes: SV, IV, OPR, OCC, BC, DEF, MB, FM, IPR, OV, LR. The proposed PCF tracker is evaluated with
18 state-of-the-art trackers on this benchmark from the works: TLD [2], Incremental learning for robust
visual tracking (IVT) [4], DFT [8], DSST [13], FDSST [13], SRDCF [14], Staple [16], CT [17], LCT [18],
LOT [19], LSS [21], MIL [22], SAMF [23], CSK [24], KCF [25], SRDCFdecon [31], DeepSRDCF [32],
and DLSSVM [37]. Only the ranks for the top 10 trackers are reported.

Figure 10 reports the PP and SP of the OPE determined by three challenges attributes: OPR with
63 videos, IV with 38 videos, and DEF with 44 videos. As is clearly illustrated in Figure 10, the proposed
PCF provides the best results among the top 10 trackers in all three attributes. More particularly,
the PCF tracker obtains 85.1% and 62.6%; 82.5% and 63.6%, and 83.0% and 62.5% on attributes OPR, IV,
and DEF respectively. It again validates the effectiveness of the proposed PCF tracker for handling
the issues of the significant changes in the target appearance.
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Figure 10. Cont.
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Figure 10. The quantitative results of the top ten trackers on OTB-2015 benchmark determined by 
three challenge contributions: DEF, OPR, and IV. Among the top ten trackers, the proposed PCF 
tracker achieves the top ranks in all three attributes: (a) The PP of the OPE on attribute DEF; (b) The 
SP of the OPE on attribute DEF; (c) The PP of the OPE on attribute OPR; (d) The SP of the OPE on 
attribute OPR; (e) The PP of the OPE on attribute IV; (f) The SP of the OPE on attribute IV. 

Figure 11 shows the overall results for the top ten trackers on OTB-2015 benchmark. Among 
these compared trackers, the proposed PCF tracker obtains the best ranks in PP and SP of the OPE 
including the AP scores of 86.3% and the AUC scores of 64.7%. In addition, attributes-based 
evaluations are conducted on this benchmark. The results of this experiment are reported in Tables 6 
and 7. Specifically, the proposed PCF tracker achieves the top scores in terms of PP on 9 out of 11 
attributes as shown in Table 7, and obtains the best ranks in terms of SP on all 11 attributes as 
demonstrated in Table 7. As is demonstrated explicitly in Tables 6 and 7, the proposed PCF tracker 
obtains the best AP and AUC scores compared to the other top nine trackers, at the same time, the 
PCF tracker achieves a real-time performance running about 41 FPS on a CPU. It indicates the 
superior tracking performance for all 11 attributes. In general, the proposed tracker achieves a 
substantial improvement of the other top nine trackers in terms of accuracy, robustness and real-time 
performance. Furthermore, the qualitative experiments are also conducted in all videos of OTB-2015 
benchmark. The results for the four representative videos are illustrated in Figure 12. Among the 
compared trackers, the proposed PCF tracker significantly outperforms the other top nine trackers in 
terms of location and scale estimation. It again validates that the effectiveness of the proposed PCF 
tracker when the target undergoes the situations of deformation, rotation, and illumination variation. 

Figure 10. The quantitative results of the top ten trackers on OTB-2015 benchmark determined by three
challenge contributions: DEF, OPR, and IV. Among the top ten trackers, the proposed PCF tracker
achieves the top ranks in all three attributes: (a) The PP of the OPE on attribute DEF; (b) The SP of
the OPE on attribute DEF; (c) The PP of the OPE on attribute OPR; (d) The SP of the OPE on attribute
OPR; (e) The PP of the OPE on attribute IV; (f) The SP of the OPE on attribute IV.

Figure 11 shows the overall results for the top ten trackers on OTB-2015 benchmark. Among these
compared trackers, the proposed PCF tracker obtains the best ranks in PP and SP of the OPE including
the AP scores of 86.3% and the AUC scores of 64.7%. In addition, attributes-based evaluations are
conducted on this benchmark. The results of this experiment are reported in Tables 6 and 7. Specifically,
the proposed PCF tracker achieves the top scores in terms of PP on 9 out of 11 attributes as shown in
Table 7, and obtains the best ranks in terms of SP on all 11 attributes as demonstrated in Table 7. As is
demonstrated explicitly in Tables 6 and 7, the proposed PCF tracker obtains the best AP and AUC
scores compared to the other top nine trackers, at the same time, the PCF tracker achieves a real-time
performance running about 41 FPS on a CPU. It indicates the superior tracking performance for all
11 attributes. In general, the proposed tracker achieves a substantial improvement of the other top
nine trackers in terms of accuracy, robustness and real-time performance. Furthermore, the qualitative
experiments are also conducted in all videos of OTB-2015 benchmark. The results for the four
representative videos are illustrated in Figure 12. Among the compared trackers, the proposed PCF
tracker significantly outperforms the other top nine trackers in terms of location and scale estimation.
It again validates that the effectiveness of the proposed PCF tracker when the target undergoes
the situations of deformation, rotation, and illumination variation.
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The results for the top ten trackers are marked in different colors. In these challenging videos,
the proposed PCF tracker performs better than the other top nine trackers.

4.5. Analysis of the Failure Cases

Figure 13 shows the failure cases of the proposed PCF tracker. In the first row, the target underwent
complete occlusions for long spans of time which caused the PCF tracker to drift off the target.
While the LCT tracker can still track the target because of the re-detection strategy [18]. In the second row,
the target underwent heavy occlusion with background clutters which also resulted in the PCF tracker
failure to track the target. However, the trackers with deep features (e.g., deepSRDCF and SRDCFdecon)
have high robustness in this situation. Furthermore, in the field of multi-object tracking, the top-down
Bayesian formulation proposed in the work [41] can also solve the problems of occlusion and background
clutters effectively. Hence, in the future works, the works [14,18,31,41] will be analyzed in detail
and the strategies of these works will be merged into the proposed PCF tracker to address these issues.
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5. Conclusions

In this paper, a novel PCF framework was proposed to address the issues of target appearance
changes and model drifting. The proposed method constructed two parallel correlation filters with
different learning rate. The correlation filter with the bigger learning rate was proposed to track
the appearance changes in the target. The correlation filter with the smaller learning rate was
applied to track the location of the target. Through weighting the response maps of the two parallel
correlation filters, the position and scale of the target can be estimated accurately. Furthermore, a new
reasonable distribution of correlation response that organically merges the Gaussian distribution
and the triangle distribution was proposed to replace the original Gaussian distribution to prevent
the model from drifting to achieve higher tracking accuracy and robustness. Extensive qualitative
and quantitative evaluations on serval common benchmarks have demonstrated the competitive
accuracy, robustness, and the superior tracking speed performance of the proposed PCF tracker
compared to the state-of-the-art trackers. After analyzing the failure cases of the proposed PCF tracker,
a new re-detection strategy will be studied in detail to improve the disadvantages of heavy or complete
occlusions in visual tracking.
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