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Abstract

Background

The incidence of Acute Kidney Injury (AKI) and its human and economic cost is increasing

steadily. One way to reduce the burden associated with AKI is to prevent the event alto-

gether. An important step in prevention lies in AKI risk prediction. Due to the increasing num-

ber of available risk prediction models (RPMs) clinicians need to be able to rely on

systematic reviews (SRs) to provide an objective assessment on which RPM can be used in

a specific setting. Our aim was to assess the quality of SRs of RPMs in AKI.

Methods

The protocol for this overview was registered in PROSPERO. MEDLINE and Embase were

searched for SRs of RPMs of AKI in any setting from 2003 till August 2020. We used the

ROBIS tool to assess the methodological quality of the retrieved SRs.

Results

Eight SRs were retrieved. All studies were assessed as being at high risk for bias using the

ROBIS tool. Eight reviews had a high risk of bias in study eligibility criteria (domain 1), five

for study identification and selection (domain 2), seven for data collection and appraisal

(domain 3) and seven for synthesis and findings (domain 4). Five reviews were scored at

high risk of bias across all four domains. Risk of bias assessment with a formal risk of bias

tool was only performed in five reviews. Primary studies were heterogeneous and used a

wide range of AKI definitions. Only 19 unique RPM were externally validated, of which 11

had only 1 external validation report.

Conclusion

The methodological quality of SRs of RPMs of AKI is inconsistent. Most SRs lack a formal

risk of bias assessment. SRs ought to adhere to certain standard quality criteria so that clini-

cians can rely on them to select a RPM for use in an individual patient.
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Trial registration

PROSPERO registration number is CRD 42020204236, available at https://www.crd.york.

ac.uk/prospero/display_record.php?RecordID=204236.

Introduction

The use of more complex technical procedures and interventions in an overall elderly popula-

tion burdened with comorbidities, has led to a global increase in the incidence of acute kidney

injury (AKI) [1]. People who develop AKI during their stay in hospital are about twice as likely

to die than those who don’t. Around a third of patients hospitalized with AKI will retain a

degree of kidney damage, and their risk of progressive chronic kidney disease will be up to

twice as high [2–4]. Often, AKI is not readily detected, even when its development is predict-

able and avoidable [5]. As it has proved difficult to find effective interventions for reversing

established AKI, the focus has gradually shifted from treatment to early diagnosis and preven-

tion of AKI [6].

Key to preventing AKI is the ability to predict AKI before it actually occurs. To that end,

many mathematical models have been developed using different combinations of laboratory

and clinical variables, comorbidities and demographics. AKI is a heterogeneous disease,

requiring distinct risk prediction models (RPMs), adapted to the setting of implementation. So

many have been published however, that it has become difficult to identify which ones can be

reliably used for predicting individual risk in any specific setting.

Systematic reviews (SRs) of RPMs for AKI aim to comprehensively search for and critically

appraise RPMs for their accuracy, discriminatory properties and external validity. Such SRs

should help us to identify reliable RPMs, which can be implemented in daily practice and

improve patient outcome. But for such SRs to draw reliable and transparent conclusions, they

must adhere to certain methodological standards [7–9]. Increasingly, methods consortia have

issued guidance and checklists on how to conceive and conduct SRs of RPMs [10]. Adherence

to such guidance should ensure all relevant studies are captured and a formal assessment of

the risk of bias in the included studies, allowing critical appraisal of the evidence, occurred

[7,8,11–13]. SRs of RPMs that do not comply with these standards may not only fail to improve

but even harm patient outcome.

We aimed to provide an overview of SRs of RPMs for AKI in adults across different settings

and critically appraised these reviews to explore if they could be reliably used for selecting AKI

RPMs for large scale routine clinical application.

Methods

We followed the recommendations from Cochrane to conduct this overview of SRs (Cochrane

Handbook for Systematic Reviews of Interventions version 6.1 (updated September 2020).

Cochrane, 2020. Available from www.training.cochrane.org/handbook) [14].

Criteria for selection of studies

We included SRs of RPMs for AKI in adults in any setting. Reviews including only children

were excluded. We defined a SR of RPMs for AKI as any study that identified itself as such and

had aimed to conduct a comprehensive search for primary studies with the aim of providing

an up-to-date summary of the state of research knowledge on AKI risk prediction. We did not
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restrict based on the study design of the primary studies included in the review. Also, given

our goal to assess the risk of bias of the SR process, we placed no restriction on methods for

critically appraising the included studies.

The protocol for this review was registered at PROSPERO (CRD 42020204236) available at

https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=204236.

We reported according to the Preferred Reporting Items for SRs and Meta-Analyses guide-

lines (PRISMA) [12] and followed the guidelines for Meta-Analyses and SRs of Observational

Studies (MOOSE) [13] and consulted the Checklist for critical Appraisal and data extraction

for SRs of prediction Modelling Studies (CHARMS) during data extraction [7].

Search methods

We searched MEDLINE (2003 to August Week 1, 2020) and Embase (2003 to August 2020)

combining vocabulary terms and text words for AKI and prognostic studies. We did not apply

any methodological filter for identifying SRs because we wanted to avoid missing reviews that

had been misclassified and we wanted to screen for additional primary studies on RPMs for

AKI for further research purposes. We searched both databases from 2003 onwards as the AKI

definition became more standardized with the advent of RIFLE (and later AKIN and KDIGO)

from that moment on [15–17]. The search was restricted to English language publications for

reasons of feasibility. The full search strategy is available as supplemental material Item S1 File

and via the PROSPERO website. References of relevant reviews were screened to identify addi-

tional reports. Two authors (PVA and JV) independently screened titles and abstracts and sub-

sequently reviewed full texts for inclusion according to the preset inclusion criteria.

Discrepancies were resolved by discussion with a third author (WVB).

Data collection process and data items

We developed a draft data extraction form which was piloted and modified as necessary. The

extracted data included the following: start/stop search period, publication date, population/

setting, number of included patients, AKI definition and timing of assessment, AKI incidence,

number of included reports, number of included RPMs, number of internally validated RPMs,

number of externally validated RPMs, ROBIS domains, conflict of interest/funding.

PVA and JV extracted all data using the standardized data extraction form, any discrepan-

cies were resolved by consensus.

It was beyond the scope of this overview to judge the accuracy of individual RPMs included

in the reviews. However, we felt informed assessment of a review’s risk of bias required

description of the AKI definitions researchers used and whether these models were internally

or externally validated.

Risk of bias in systematic reviews of risk prediction models

The risk of bias in the included reviews was assessed according to the Risk of Bias in Systematic

Reviews (ROBIS) tool [18], in line with recommendations made by the Cochrane handbook

[10]. The tool involves three phases. (S1 Table) In summary, the first phase assesses relevance;

an optional assessment not conducted within this overview as the focus of interest was the

methodological reliability of the SR. The second phase identifies concerns with the SR process.

This phase covers four domains as possible sources of bias in the SR process: study eligibility

criteria, identification and selection of studies, data collection and study appraisal, and synthe-

sis and findings. The third and final phase judges overall risk of bias for the SR (low, high,

unclear).
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In view of the expected clinical heterogeneity (low similarity in studies, considering differ-

ent settings with different case mix and variability in the outcome definition) we did not per-

form a quantitative analysis but opted for a qualitative analysis.

Synthesis of systematic review of risk prediction model findings

Given we expected the SRs to cover distinct populations, and distinct RPMs (with or without

one or multiple external validation studies), meaningful statistical meta-analysis was not

expected to have occurred in the included SRs. Hence, we decided to narratively synthetize the

included SRs according to the population and setting, the number of included reports and par-

ticipants, the number of AKI definitions, the search dates and the risk of bias tool used. We

also narratively synthetized information on the number of internal and external validation

studies and reports within each SR.

Results

Retrieval of studies

A total of 16763 citations (i.e. 5165 in MEDLINE and 11598 in Embase) were identified. After

title and abstract screening, 3623 duplicates were removed. Fifteen articles were considered for

full text review. Following full text review, eight studies were included in the overview. Screen-

ing references of the included reviews did not reveal additional citations for inclusion. A flow

chart of study selection is provided in Fig 1.

Fig 1. Flow chart of study selection.

https://doi.org/10.1371/journal.pone.0248899.g001
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Description of the included systematic reviews

Review characteristics are summarized in Tables 1 and 2. Eight author teams each conducted a

SR covering RPMs in a distinct setting: AKI after cardiac surgery [19], AKI after major non-

cardiac surgery [20], AKI in general hospital populations [21], contrast-associated AKI after a

diagnostic or interventional procedure with iodinated radiocontrast [22], contrast-associated

AKI after angiography or angioplasty [23], AKI in the context of rhabdomyolysis [24], AKI

Table 1. Review characteristics.

Author

Journal

Year

Population/setting Included

reports

Included

patients�
Number of acute

kidney injury

definitions��

Databases

searched

Dates search

started and

stopped

Risk of bias tool

Allen���

Canadian Journal

of Cardiology

2017 [23]

Coronary angiography or

angioplasty

75 1.272.712 24 MEDLINE

Embase

1950 until 31

March 2016

1980 until 31

March 2016

Checklist according to

CHARMS and TRIPOD

Caragata

Anaesth Intensive

Care

2016 [25]

Post liver transplantation 7 2.171 6 MEDLINE Prior to May

2015 until May

2015

No risk of bias assessment

Hodgson

BMJ Open

2017 [21]

Hospital acquired acute

kidney injury

13 349.825 9 MEDLINE

Embase

Web of Science

Inception until

November

2016

PROBAST

TRIPOD score

Huang

Revista Brasileira

de Terapia

Intensiva

2020 [26]

General ICU patients 5 38.071 5 MEDLINE 1 January 2012

until 5 June

2019

No risk of bias assessment

Huen

The Annals of

Thoracic Surgery

2012 [19]

Post cardiac surgery 15 701.761 5 MEDLINE

Web of

Science/

knowledge

Scopus

1950 until May

2011

Predefined questions to

assess the methodological

quality were developed by

the authors

Safari

Iranian Journal of

Kidney Diseases

2016 [24]

Rhabdomyolysis-induced

acute kidney injury

6 4.962 No statement MEDLINE

Embase

Cochrane

Library

Scopus

Google Scholar

“without any

time

limitation”

No risk of bias assessment

Silver

BMJ

2015 [22]

Diagnostic or interventional

procedure that used

conventional, iodinated

radiocontrast

16 119.461 9 MEDLINE

Embase

CINAHL

1946 until 9

March 2015

1947 until

week 10 2015

1993 until

March 2015

Risk of bias assessment

based on modified criteria

by Hayden [27]

Wilson

Nephrology

Dialysis

Transplantation

2016 [20]

Major non-cardiac surgery 6 78.331 5 MEDLINE

Embase

BIOSIS

Previews

Web of Science

Inception until

30 June 2014

Quality assessment based on

TRIPOD

Abbreviations: TRIPOD: Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis, CHARMS: Checklist for critical Appraisal

and data extraction for systematic Reviews of prediction Modelling Studies, PROBAST: Prediction model Risk of Bias Assessment Tool.

� Total number based on the numbers provided by the authors of the review, for further elaboration and reporting of potentially missing numbers see supplementary S3

Table.

�� For further elaboration on the AKI definitions used and the number of AKI events, see supplementary S3 Table.

��� For Allen et al. the provided number of included patients refers to the participants included in the 30 models that provided sufficient information to obtain

individual risk estimates. The number of participants for all 75 reports is not provided.

https://doi.org/10.1371/journal.pone.0248899.t001
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after liver transplantation [25], and AKI in a general intensive care unit (ICU) [26]. The num-

ber of included studies with internal validation varied from four [25] to 68 [23] covering five

to 70 RPMs in 2171 and 1.272.712��� study participants. (Tables 1 and 2, ���: see footnote

Table 1).

All reviews were published between 2012 and 2020. Only 3 of the SRs published a statement

on conflict of interest and on funding of the SR. None of the SRs reported if the included pri-

mary studies had a statement on conflict of interest or funding [20,22,23].

Risk of bias in the included systematic reviews—using the ROBIS tool

Figs 2 and 3 show the risk of bias judgment for each domain separately and across domains as

a proportion of the included reviews and number of patients. Individual ratings for underlying

signaling questions are detailed in Table 3 and S2 Table. All reviews were estimated to be at

high risk of bias overall.

Only two reviews mention a predesigned protocol but without providing a link to an acces-

sible version [20,23]. One review group elaborates on predefined eligibility criteria provided in

the supplementary material. All reviews were considered as having high risk of bias in the

study eligibility criteria (domain 1) because they lacked unambiguous eligibility criteria (all

except Hodgson et al. [21] and Huang et al. [26]), the study population was only vaguely

described, a language restriction was applied [22,23], an inappropriate restriction on the out-

come definition was applied [22], unpublished conference abstracts had been excluded

[19,21,22] or studies had been excluded based on sample size or quality [24].

All but two reviews were judged to be at ‘high risk of bias’ for the identification and selec-

tion of studies (domain 2) [19,23–26]. Some did not provide a reproducible full search strategy

[19,24–26], or applied inappropriate or ambiguous restrictions based on time [23,24], languag

e [25,26] or publication format [26].

Table 2. Number of reports and models with both internal and/or external validation, included in the systematic reviews.

Author Population/setting Included

reports

Included risk

prediction models

Internal

validation

reports

Risk prediction

models with

internal validation

External

validation

reports

Risk prediction

models with

external validation

Allen# Coronary angiography or

angioplasty

75 70 (of which 30

provided a risk score

and were discussed)

68 70 19 9

Caragata�� Post liver transplantation 7 9 4 5 0 0

Hodgson§
��

Hospital acquired AKI 13 11 9 9 6 5

Huang General ICU patients 5 8 5 8 1� 1�

Huen Post cardiac surgery 15 7 7 7 9 4

Safari Rhabdomyolysis-induced AKI 6 7 0 0 0 0

Silver# Diagnostic or interventional

procedure that used conventional,

iodinated radiocontrast

16 12 10 10 8 6

Wilson§ Major non-cardiac surgery 6 7 6 7 0 0

� Huang et al considered the risk prediction model by Flechet et al. as externally validated. However, the model was validated in an independent split sample of the

original data which should thus be considered as an internal validation report.

# There is an overlap in included risk prediction models between Silver et al. and Allen et al.

§There is an overlap in included risk prediction models between Hodgson et al. and Wilson et al.

�� There is an overlap in included risk prediction models between Hodgson et al. and Caragata et al.

https://doi.org/10.1371/journal.pone.0248899.t002
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Only one SR obtained a low risk of bias for data collection and study appraisal (domain 3)

[21]. Reviews judged at high risk of bias either provided incomplete information on character-

istics of the included primary studies [19,20,22–26] or did not provide a formal risk of bias

assessment [24–26]. Information on included variables was limited in the majority of reviews

Fig 2. Summary of ROBIS assessment. Percentages are based on number of included systematic reviews (100% = 8 included

systematic reviews).

https://doi.org/10.1371/journal.pone.0248899.g002

Fig 3. Summary of ROBIS assessment. Percentages are based on number of included patients in the different reviews (100%

= 2.567.474� ,�� included patients) � For Hodgson et al. the number of participants only relates to the development studies

since values for the number of patients included in the external validation studies are not provided in the systematic review.
�� For Allen et al. the number of included patients relates to the total number of patients included in the 30 models that

provided sufficient information to obtain individual risk estimates. The number of participants for all 75 reports is not

provided.

https://doi.org/10.1371/journal.pone.0248899.g003
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and only two mention the rationale behind the choice of predictor variables and the initial

number of variables considered [21,23]. None of the reviews report if the original studies cov-

ered the methods for assessment of the predictor variables and the timing of their assessment.

Several reviews do not mention the inclusion and exclusion criteria of the original studies [22–

24,26]. Only one clearly provided the in- and exclusion criteria of the included RPMs [21].

One only provided the exclusion criteria [25]. Both Huen et al. [19] and Wilson et al. [20]

checked whether the authors of the included RPMs provided clear in- and exclusion criteria

but did not provide the actual criteria in the text or as supplementary material. Only one

review explicitly mentioned that study selection, data extraction and risk of bias assessment

were done by two independent reviewers [21].

Several reviews omitted some studies and RPMs in their synthesis [19,21–23]. Three

reviews did not assess the risk of bias of the included external validation studies [19,21,22].

Most reviews opted for a qualitative synthesis because of important heterogeneity; two con-

ducted a partly quantitative analysis [23,25]. Overall, only one was scored as low risk of bias in

domain 4—synthesis and findings [20].

Description of the risk prediction models included in the systematic

reviews

Of the 75 included studies by Allen et al. [23] only 30 models provided an individual risk pre-

diction tool and are considered.

We identified 75 unique RPMs. Only 19 RPMs were externally validated. Of these, 11

RPMs were validated in a single validation study. One model was validated in 14 validation

reports (Mehran et al. 2004, contrast-associated AKI), one model in six (Thakar et al. 2005,

cardiac surgery, Cleveland Clinic Score), two models in five (Chertow et al.1997, cardiac

Table 3. Summary of ROBIS assessment.

Phase 2 Phase 3

1 Study eligibility criteria 2 Identification and selection

of studies

3 Data collection and study

appraisal

4 Synthesis and findings Risk of bias

1.1 1.2 1.3 1.4 1.5 2.1 2.2 2.3 2.4 2.5 3.1 3.2 3.3 3.4 3.5 4.1 4.2 4.3 4.4 4.5 4.6

Allen PY Y N Y N Y Y Y N Y Y N Y Y PY PN N PN N N N High

High High High High

Caragata N Y N N N N Y N N PN PN N Y N N Y NI PN N N N High

High High High High

Hodgson PY Y Y Y N Y Y Y Y Y Y Y Y Y Y N Y Y Y Y Y High

High Low Low High

Huang N Y Y PY Y N Y N N PN PN N Y N N Y NI Y Y N N High

High High High High

Huen N Y N N N Y Y N Y PN PN N Y PY PN N NI Y Y Y N High

High High High High

Safari N N N N PY Y PY N PY Y PY N N N PY Y NI PN Y N N High

High High High High

Silver N Y N PN N Y Y Y PY Y NI N Y Y Y N NI Y Y Y Y High

High Low High High

Wilson PY Y N Y Y Y Y Y Y Y Y N Y Y NI Y PY Y Y Y Y High

High Low High Low

Abbreviations: N = No; NI = no information; PN = probably no; PY = probably yes; Y = yes.

https://doi.org/10.1371/journal.pone.0248899.t003
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surgery, CICSS; Bartholomew et al. 2004, contrast associated-AKI), one model in four (Wijey-

sundera et al. 2007, cardiac surgery), two models in three (Mehta et al. 2006, cardiac surgery,

STS; Tziakas et al. 2013, contrast associated-AKI) and one model in two (Forman et al. 2004,

heart failure).

Description of the outcome being predicted: AKI

Although on a semantic level the same outcome definition (Acute Kidney Injury, AKI) was

seemingly used in all studies, its actual interpretation varied strongly across the originally

included papers and across the SRs. We identified five [19,20,26] to 24 [23] different AKI defi-

nitions for seven [19,20], eight [26] and 30 models [23] respectively (see Tables 1 and 2). All

AKI definitions that were applied in the original RPM studies and the AKI event rates are pro-

vided in the supplementary material (S3 Table), if reported by the authors of the SR. Of the 73

reports in which an AKI definition was provided, 53 different AKI definitions were found.

Most original studies defined AKI based on the serum creatinine (sCr) criterion only. Only

five original studies across all SRs included the urinary output criterion in their definition

(Nyman-2008, Chiofolo-2019, Deng-2017, Slankamenac-2009 and Slankamenac-2013). None

of the included reviews considered criteria for AKI other than based on sCr and/or urinary

output. The most frequently used AKI definition is based on a sCr increase of at least 0.5mg/dl

or an increase of 25% above baseline. However, even across studies using this definition, the

timing of assessment differs. For the majority of the included external validation studies, the

AKI definition and/or event rate is not or incompletely provided. The outcome definition in

the external validation studies is expected to be identical to the definition used in the original

development study. However, in those reviews that (partially) provide this information, the

outcome definition sometimes differs from the original definition. Allen et al. [23] found that

only five of the 19 external validation studies used the same definition as was used in the origi-

nal development study. Two external validation reports in Silver et al. [22] use a different defi-

nition to the development study (Tziakas et al.2013 validating Bartholomew et al. and Gao

et al. 2014 validating Mehran et al.). The external validation study by Wang et al. included in

Hodgson et al. [21], also used a different definition than the original development study.

Discussion

Currently, no effective interventions for reversing established AKI exist. Prevention is there-

fore key to improving patient outcome. Models that can reliably predict who is at risk for AKI,

could help identify those in need of specialized care, guide decision making and avoid addi-

tional renal insults. But RPMs can only improve patient outcome if their results are robust and

accurate.

A SR is considered the highest level of evidence. That can only be true if one can rely on its

findings. We conducted an overview of SRs of RPMs for predicting AKI and found eight

reviews covering eight distinct settings: AKI after cardiac surgery [19], AKI after major non-

cardiac surgery [20], AKI in general hospital populations [21], contrast-associated AKI after a

diagnostic or interventional procedure with iodinated radiocontrast [22], contrast-associated

AKI after angiography or angioplasty [23], AKI in the context of rhabdomyolysis [24], AKI

after liver transplantation [25], and AKI in a general intensive care unit (ICU) [26]. All reviews

were considered at high risk of bias. Although a formal critical appraisal of the included pri-

mary studies is an essential step in any SR process, this was not done in 3 of the 8 reviews [24–

26].

During the last two decades, many RPMs have been published. In the reviews identified by

this overview, 75 unique original AKI RPMs were presented. To the end-user, it would be
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nearly impossible to independently assess the reliability of every risk prediction modelling

study. Clinicians need to be able to rely on SRs, allowing them to select a RPM that is applica-

ble in the context of their individual patient. As in other populations, finding robust RPMs

that can be personalized according to the setting is a major challenge [28].

Even if a RPM performs well at predicting AKI, this will only lead to improved patient out-

come if the action taken based on that prediction actually makes a difference. Only three

reviews highlighted the importance of this topic and none identified a RPM assessing the

impact of its implementation in clinical practice, on patient outcome [20,21,25].

In recent years, emphasis on methodological rigor in systematic reviewing has increased

and several methodological tools have facilitated the adherence to predefined standards. In

2016, the ROBIS tool was developed to specifically assess the risk of bias in SRs [18]. Phase 2 of

the ROBIS tool covers four domains assessing study eligibility criteria (domain 1), identifica-

tion and selection of studies (domain 2), data collection and study appraisal (domain 3) and

synthesis and findings (domain 4).

All eight reviews included in this overview were scored at ‘high risk’ for bias when assessing

the study eligibility criteria [19–26]. These criteria must clearly identify the scope of the review.

The review question and eligibility criteria allow the user to judge if a SR is appropriate for risk

prediction in the setting and the patient population it is intended for.

Due to the heterogeneous nature of AKI with various underlying pathophysiological path-

ways, it is likely that the choice of a RPM will need to be adapted to the setting of

implementation.

Essential details in the eligibility criteria were often lacking. The choice and rationale of

which study design could represent the basis for RPM building is essential and yet hardly ever

discussed. RPMs developed based on information retrieved from prospective observational

cohorts are likely more reliable compared to models developed based on retrospective data.

To increase consistency and avoid errors while assessing the individual studies in a SR, all

steps of the review process, from study selection to data extraction and risk of bias assessment,

are best conducted by two reviewers independently of each other with rules on handling dis-

crepancies. Only one review unambiguously stated they had done so [21].

Incomplete reporting of primary study characteristics and results hamper valid contextuali-

zation and conclusions. Information on the exact setting, the number of participants, the out-

come definition and timing of assessment, the number of events, demographics and

comorbidities, how authors dealt with missing data was only sufficiently reported in one

review [21]. Information on how patients lost to follow-up were handled was lacking for all

SRs.

The performance of a model is subject to the methods that were used to build it. All but

three SRs [22,24,25] provided information on model building. Failing to report on the initial

number of considered predictor variables makes it impossible to calculate the event rate/pre-

dictor ratio. If the number of events in relation to the considered regression coefficients is

fewer than 10, the risk for overfitting increases substantially. However, only one review [21]

reported clearly on the initial number of variables that were considered in each development

model. The model performance of individual risk prediction models [28] can be assessed by

evaluating calibration or predicted vs observed probability e.g. by using calibration plot, cali-

bration slope, or Hosmer-Lemeshow test, and by evaluating discrimination or the ability to

distinguish patients with AKI from those who do not have AKI, which is usually done by pro-

viding the c statistic with a confidence interval. None of the SRs consistently provided these

measures of performance for all of the included internal and external validation reports.

External validation in a population different from that used to develop the model is

required to learn if a model can be implemented outside the population for which it was
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originally developed. It thus assesses the generalizability of the model [29]. All SRs included in

this review discuss if models were internally and externally validated but often lack crucial

information on whether the external validation models use the same regression coefficients

and number of predictors as in the development study. None of the reviews consistently pro-

vide information on the AKI definition used in all the included external validation studies or

whether this AKI definition differs from the original development study.

The wide range of AKI definitions is a substantial source of heterogeneity between the dif-

ferent RPMs. A staggering 53 different definitions for AKI were retrieved in the 73 reports that

provided an AKI definition. This is remarkable considering there is a clear incentive for the

standardization of the AKI definition since 2004 [15–17]. It underpins the problems clinicians

are facing when they want to implement a RPM but often are confronted with different inter-

pretations of the ‘AKI construct’ in the prediction algorithm. A model performing well pre-

dicting AKI defined based on the sCr criterion will not necessarily perform well if the AKI

construct is changed and AKI is defined based on both the sCr and UO criterion. As in other

settings, it also underlines the importance of joining forces within the nephrology community

[30], gathering data in large international databases, using a standardized AKI definition in

the prediction algorithm and involving different stakeholders in order to build reliable RPMs

across different settings and populations.

Until recently, there was no formal tool for risk of bias assessment in RPMs. In 2017 the

PROBAST (Prediction model Risk Of Bias Assessment Tool) tool was specifically developed

for that purpose [8]. Until the advent of PROBAST, authors had to adapt existing tools that

were originally developed for other study designs or use the TRIPOD (Transparent Reporting

of a multivariable prediction model for Individual Prognosis or Diagnosis) checklist to formu-

late important items for risk of bias assessment in RPMs. Only one review [21] used the PRO-

BAST tool (before its publication), six reviews were published before 2017 and did not have

this tool at their disposal. Finally, one review published in 2020 did not perform any risk of

bias assessment [26].

We recommend future SRs in the field to use the CHARMS (Critical Appraisal and Data

Extraction for Systematic Reviews of Prediction Modelling Studies) checklist [7] to ensure all

relevant data from the individual studies are extracted; apply the PROBAST tool for individual

risk of bias assessment for each development and external validation study; and follow

MOOSE (Meta-analyses of Observational Studies in Epidemiology) guidelines to ensure ade-

quate reporting [13]. We suggest authors developing RPMs consult the TRIPOD checklist [11]

beforehand so that all relevant items are considered in the development of the model and its

reporting.

Limitations and strengths

The strength of this review is that we performed an extensive literature search and that both

study selection, data extraction and risk of bias assessment were done by two reviewers inde-

pendently of one another. We uncovered several shortcomings that hinder progression in the

field of AKI prediction. Acknowledging and tackling these obstacles could help moving in the

right direction and improve patient outcome. Considering the expected large number of het-

erogeneous RPMs across different AKI settings, we decided to limit the search to studies pub-

lished from 2003 onwards. We chose this starting point because the RIFLE criteria were

published in 2004 and a more homogenous standardized AKI definition was expected from

then on. In addition, it is reasonable to assume that health care has changed substantially over

the last 20 years, and that RPMs developed before 2000 are in any case unlikely generalizable

to the current setting. We limited the search to papers published in English and did not search
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for unpublished studies or grey literature. However, by doing so it seems unlikely that we

would have missed additional reviews of high methodological quality or that the conclusion of

this review would have changed.

Conclusion

There has been a shift in focus towards prevention of AKI from trying to find treatments for

AKI or mitigating its course. The role of risk prediction modelling in prevention is potentially

crucial and the advent of performant electronic health records allowing automated prediction

of risk for AKI can mean a leap forward. However, its potential impact depends on the quality

and reliability of the RPM that is implemented. SRs of RPMs are considered the most reliable

source of evidence to make a well-founded choice on which RPM is most suited for a particu-

lar context. However, across different settings of AKI, SRs of RPMs show inconsistent quality.

Individual RPM studies and SRs of RPMs that adhere to good methodological standards have

the best opportunity to positively impact patient outcome, and benefit guideline development

and health policy.
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