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With the rapid development of machine learning techniques, multivariate pattern
analysis (MVPA) is becoming increasingly popular in the field of neuroimaging data
analysis. Several software packages have been developed to facilitate its application in
neuroimaging studies. As most of these software packages are based on command
lines, researchers are required to learn how to program, which has greatly limited
the use of MVPA for researchers without programming skills. Moreover, lacking a
graphical user interface (GUI) also hinders the standardization of the application of
MVPA in neuroimaging studies and, consequently, the replication of previous studies
or comparisons of results between different studies. Therefore, we developed a GUI-
based toolkit for MVPA of neuroimaging data: MVPANI (MVPA for Neuroimaging).
Compared with other existing software packages, MVPANI has several advantages.
First, MVPANI has a GUI and is, thus, more friendly for non-programmers. Second,
MVPANI offers a variety of machine learning algorithms with the flexibility of parameter
modification so that researchers can test different algorithms and tune parameters to
identify the most suitable algorithms and parameters for their own data. Third, MVPANI
also offers the function of data fusion at two levels (feature level or decision level)
to utilize complementary information contained in different measures obtained from
multimodal neuroimaging techniques. In this paper, we introduce this toolkit and provide
four examples to demonstrate its usage, including (1) classification between patients
and controls, (2) identification of brain areas containing discriminating information, (3)
prediction of clinical scores, and (4) multimodal data fusion.

Keywords: machine learning, multivariate pattern analysis, multivoxel pattern analysis, neuroimaging, graphical
user interface, data fusion, classification, regression

INTRODUCTION

Multivariate pattern analysis (MVPA), a machine learning technique used in neuroimaging data
analysis, has rapidly grown in popularity in recent years (Liang et al., 1993; Dosenbach et al., 2010;
Wager et al., 2013; Liu et al., 2015, 2017; Moradi et al., 2015; Meng et al., 2016; Hazlett et al., 2017;
Chung et al., 2018; Camacho et al., 2019). Compared with traditional univariate analyses, such
as the general linear model (GLM), MVPA has been shown to be more powerful in information
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detection as well as in clinical applications for several reasons.
First, MVPA examines the spatial pattern of signals sampled
from multiple voxels rather than the signal of a single voxel at
a time; thus differences in signal spatial distribution within a
brain area between two experimental conditions can be detected
even when the overall average signal amplitude of this area does
not differ between the two conditions. Second, MVPA naturally
avoids or reduces the statistical problem of multiple comparisons
(Durnez et al., 2014; Chen et al., 2018) by examining multiple
voxels at once and, thus, is statistically more powerful. Third,
MVPA can be used directly for diagnosis or prognosis for a new
patient based on pre-trained models and is, thus, more relevant
for clinical applications, such as personalized medicine. Some
detailed explanations for why MVPA is more powerful can be
found in several review papers (Mur et al., 2009; Mahmoudi et al.,
2012; Haxby et al., 2014; Haynes, 2015; Kragel et al., 2018).

To facilitate the application of MVPA technique in
neuroimaging studies, several specialized open-source software
packages have been developed based on some popular
programming platforms, such as MATLAB, Python, or Java
(LaConte et al., 2005; Hanke et al., 2009; Pyka et al., 2012;
Schrouff et al., 2013; Grotegerd et al., 2014; Hebart et al., 2014;
Oosterhof et al., 2016; Bode et al., 2019). Although these existing
software packages are excellent and have made significant
contributions to facilitating the application of MVPA technique
in the neuroimaging field, most of them are based on command
lines rather than graphical user interfaces (GUIs). Lacking a
user-friendly GUI obviously limits the use of MVPA technique
with neuroscientists or clinicians who do not have experience
in programming. For those who only have basic programming
skills, although simple MVPA analyses may be manageable, it is
still difficult to perform relatively more complex analyses and
makes full use of this technique. Moreover, without a standard
user interface, every study designs its own parameters and
programming scripts, which are often unavailable to others,
and thus, it is relatively difficult to compare or replicate results
from different studies without programming another script that
should be identical to the script used in other studies. Therefore,
an MVPA software toolkit specialized for neuroimaging data
analysis with a user-friendly GUI is in urgent need in the field.
To our knowledge, the existing free software toolkits (MANAS,
Rana et al., 2013; PRoNTo, Schrouff et al., 2013; and MANIA,
Grotegerd et al., 2014) have developed GUIs. However, choices
of machine learning algorithms or formats of input data files
are limited in these toolkits. For example, only NIFTI (e.g., files
with the extension “.nii”) and ANALYZE (e.g., files with the
extension “.hdr/img”) file formats are allowed in these software
packages (MANIA additionally allows SPM.mat from the SPM
software as input files), and thus, brain connectivity, behavioral,
or clinical measures cannot be easily analyzed using these
software packages.

Another growing interest in the neuroimaging field is to
combine MVPA with data fusion, such as fusing different types
of imaging measures (e.g., fusing structural and functional
measures, or fusing activation and connectivity measures)
or fusing imaging with non-imaging measures (e.g., genetic,
behavioral, or clinical measures). Indeed, it has been shown that

complementary information contained in different types of data
can be fused to improve classification or predication performance
(Walhovd et al., 2010; Zhang and Shen, 2012; Liu et al., 2014;
Cabral et al., 2016; Qureshi et al., 2017; Tong et al., 2017; Tulder
and Bruijne, 2018). Currently, only PRoNTo offers the function
of data fusion using multiple kernel learning, and no other data
fusion methods are available (Schrouff et al., 2018).

Therefore, we developed a new GUI-based software toolkit
(MVPANI) for neuroimaging data analysis using MVPA with
more options of machine learning algorithms and data formats
as well as the function of data fusion. As with many other
neuroimaging data analysis toolkits, such as statistical parametric
mapping (SPM1) and DPABI (Yan et al., 2016), MVPANI is
developed based on the MATLAB platform, which is familiar
to most neuroimaging researchers. It also utilizes functions of
other existing software packages such as libsvm (Chang and Lin,
2011), the decoding toolbox (Hebart et al., 2014), and SPM.
MVPANI includes a comprehensive range of functionalities,
such as feature preprocessing, data fusion, classification, and
regression with a range of machine-learning algorithms and
statistical testing and can output a range of results files. A detailed
comparison between the existing software packages and the
MVPANI presented in this paper is provided in Table 1. In
this paper, we introduce this software package and also provide
four examples to demonstrate the usage of MVPANI in different
situations, including (1) classification between patients and
healthy controls, (2) identification of brain areas containing
discriminating information, (3) prediction of clinical scores of
patients, and (4) multimodal data fusion.

SOFTWARE STRUCTURE OF MVPANI

The current version of MVPANI requires MATLAB R2015b.
The software can be launched by entering “MVPANI” in the
command window of MATLAB after adding its path. Both
classification and regression are implemented in MVPANI and
use a common main GUI, which is composed of five modules:
data input, model configuration, statistical testing, results output,
and data fusion. The main GUI and an overview of the basic
structure of the toolbox are shown in Figures 1, 2, respectively.
We describe the structure and the key functions of every module
in the following sections.

“Input” Module
This module specifies the data files of all samples and their label
information that are used in the subsequent MVPA. MVPANI
allows inputs of several different file formats, including NIFTI
files, GIFTI files (i.e., with the extension “.gii”), ANALYZE
files, Text files (i.e., with the extension “.txt”), and MATLAB
data files (i.e., with the extension “.mat”). These formats can
accommodate all neuroimaging-related data—all image-type
data can be represented using .nii, .gii, or .hdr/img file formats,
such as structural or functional brain maps, and all non-image-
type data can be represented using a .txt or .mat file format,

1https://www.fil.ion.ucl.ac.uk/spm/
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TABLE 1 | Updated comparison of existing free software packages for multivariate pattern analysis of neuroimaging data, based on Schrouff et al. (2013) and Grotegerd et al. (2014).

Software Author Inputs Multiclass Classifiers Regression Feature
selection

Data fusion Primary
language

Interfaces GUI for
results

3dsvm LaConte
et al. (2005)

AFNI images:
fMRI data

Yes SVM No Masking No C Basic
GUI/Command

line

No

PyMVPA Hanke et al.
(2009)

NumPy
arrays, text,
NIfTI images,
EEP binary
file

Yes KNN, SVM, SMLR,
GP, PLR, GLM, RR,
RF, ExtraTrees,
Searchlight

GP, LARS,
PLR, RR,
SMLR,
ExtraTrees,
GLM, RF

Masking, Filters,
Wrappers; PCA

No Python Command
line

No

Weka
Interface

Pyka et al.
(2012)

NIfTI images Yes SVM, GP, NB, DT,
KNN

SVM, GP Filters, Wrappers No Java GUI Yes

PRoNTO Schrouff et al.
(2013)

NIfTI images Yes Binary SVM, binary
and multiclass GP

GP, RVR,
KRR

Masking L1-Multiple
Kernel

Learning

Matlab GUI/Command
line

Yes

MANAS Rana et al.
(2013)

NIfTI images No SVM, Searchlight No Masking No Matlab GUI Yes

MANIA Grotegerd
et al. (2014)

NIfTI images,
SPM.mat file

Yes SVM, GP, KNN,
LDA, NB, ensemble
methods

No Masking, Filters,
Wrappers,
Embedded

No Matlab GUI Yes

The
Decoding
Toolbox

Hebart et al.
(2014)

NIfTI images,
mat file

Yes SVM, LR,
correlation classifier

SVM, LDA Masking, Filters,
Embedded; PCA

No Matlab Command
line

No

CoSMoMVPA Oosterhof
et al. (2016)

NIfTI or GIFTI
images,
M/EEG

Yes LDA, SVM, KNN,
GNB, Searchlight

No Masking No Matlab/GNU
Octave

Command
line

No

MVPANI In this paper NIfTI or GIFTI
images, mat
or txt files

No SVM, KNN, LR,
LDA, NB, DT, RF,
Searchlight

SVM, KNN,
LR, NB, DT,
RF

Masking, Filters,
Wrappers,
Embedded; PCA

Yes Matlab GUI Yes

LDA, linear discriminant analysis; LR, logistic regression; KNN, K-nearest neighbors; (G)NB, (Gaussian) naive Bayes; DT, decision tree; RF, random forest; GUI, graphical user interface; GLM, general linear model; SVM,
support vector machine; GP, Gaussian processes; LARS, least angle regression; (K)RR, (Kernel) ridge regression; RVR, relevance vector regression; PLR, penalized logistic regression; SMLR, sparse multinomial logistic
regression; LASSO, least absolute shrinkage and selection operator; RFE, recursive feature selection. Note that Weka Interface (http://www.unimarburg.de/fb12/kebi/research/software/nifti_importer) is not available for
download any more.
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FIGURE 1 | The GUI of MVPANI. It consists of five main modules: input, model configuration, output, statistical testing, and data fusion.

including connectivity matrices, network topological measures,
genetic data, or even behavioral or clinical measures. If .txt or
.mat files are used, the data should be stored as a two-dimensional
matrix of which rows indicate samples and columns indicate
features. If only a subset of features are to be used in the
subsequent MVPA, a binary mask file in any of the above formats
can be specified to indicate the features of interest.

The label information of all samples can be arranged as a
column vector (each row represents a sample) and stored in a .txt,
.mat, or .xls/xlsx file. For classification, the label indicates the true
class of each sample. If you have two classes, the labels can be
set as 1 or –1 (or 1 or 0). For regression, the label file contains
continuous values corresponding to the actual score obtained
from each sample.

As MVPA typically adopts a training–testing procedure, the
training and test datasets need to be defined before running
machine learning algorithms. For example, to run a ten-
fold leave-one-out cross-validation, all samples need to be
divided into 10 folds (i.e., 10 groups); every fold is used
as a test dataset once (that is, in each cross-validation step,
one fold is used as the test dataset, and the remaining
nine folds are used as the training dataset). There are two

ways to specify the “fold” information in MVPANI: (1) Users
can simply enter the number of folds, and the software
automatically and evenly divides all samples into different
folds in a random manner; (2) alternatively, a user-defined
“fold” file (of a format of .txt, .mat, or .xls/xlsx) can also be
entered. Similar to the label file, the fold file also contains a
column vector of which each row represents to which fold the
corresponding sample belongs.

“Model Configuration” Module
This module includes specification of machine learning
algorithms and feature preprocessing methods.

Machine Learning Algorithms
Seven algorithms have been implemented in the current version
of MVPANI; all can be used for solving classification problems,
and four of them can be used for solving regression problems.

Support Vector Machine (SVM)
Support vector machine (SVM) (Cortes and Vapnik, 1995) is
one of the most commonly used machine learning algorithms
in neuroimaging data analysis. SVM has been proven to
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FIGURE 2 | Structure of MVPANI. Different types of data with different file formats are allowed in MVPANI. The categories or continuous scores of all samples can be
specified in the label file. The samples are further divided into a training dataset and test dataset according to the fold file. The raw data can be preprocessed, such
as feature transformation, dimension reduction, and feature selection, before being fed into classification or regression models. Multiple machine learning algorithms
are available for performing classification or regression tasks. Results can be obtained in a variety of formats, including classification accuracies (or prediction
precisions) along with their statistical significance, the ROC curve, and weight maps. In addition, searchlight MVPA is also implemented in MVPANI. Particularly,
different types of data can be combined to improve MVPA performance using two data fusion strategies; data can be fused at the feature level or at the decision
level. Acc, classification accuracy. R, correlation coefficient between the predicted values and the actual values, as a measure of prediction precision, when
performing regression tasks.
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work well in situations in which the number of samples
is far less than the number of features and is, thus, very
suitable for typical neuroimaging data; there are usually tens
or hundreds of subjects (i.e., samples) and tens of thousands
of brain voxels or connectivities (i.e., features). SVM can be
used for both classification (i.e., support vector classification,
SVC) and regression (i.e., support vector regression, SVR). For
classification, SVM looks for a hyperplane that separates the two
classes of training data with a maximal distance between the
hyperplane and the training samples closest to the hyperplane
(i.e., the support vectors), represented by the following equations:

ωTx+ b = 0

max
ω,b

2
||ω||

s.t. yi

(
ωT
+ b

)
≥ 1, i = 1, 2, · · · , m

where x is the feature vector; ω is the weight vector that
determines the direction of the hyperplane; and b is the
displacement term that determines the distance between the
hyperplane and the origin. In this way, the interval between the
samples of the two classes is the largest so that the two classes are
most separable by this hyperplane. The class membership of a test
sample is determined by the hyperplane obtained during training.
In the case of linearly inseparable data, SVM maps the input
space to a high-dimensional feature space by kernel functions to
improve the separability of the data. For regression, it is also to
find an optimal regression plane that best fits all training data
samples. In MVPANI, SVM is implemented using the libsvm
toolbox (Chang and Lin, 2011). With a GUI, different types of
SVM along with their key parameters (e.g., C-SVC or v-SVC,
e-SVR, v-SVR) and different kernels (e.g., linear vs. several non-
linear kernels) can be flexibly specified by users. By default,
C-SVC with a linear kernel is used for classification, and e-SVR
with a linear kernel is used for regression. Default values are
also set for common SVM parameters (penalty coefficient c = 1,
gamma g = 0.1, degree d = 3, coefficient r = 0, nu n = 0.5, the
epsilon in loss function p = 0.1), which should be suitable for most
situations. Alternatively, values of SVM parameters can also be
specified by users through GUI.

K-Nearest Neighbors (KNN)
K-nearest neighbors (KNN) (Cover and Hart, 1967) is a
classic machine learning algorithm and can be used for
both classification and regression. For classification, the class
membership of a test sample is determined by the class
memberships of its k nearest neighbors: the given test sample is
assigned to the class to which most of its nearest neighbors from
the training dataset belong. For regression, the predicted value of
a test sample is determined by averaging the values of its k nearest
neighbors from the training dataset. The nearest neighbors are
defined by the Euclidian distance between samples in the feature
space. The number of nearest neighbors is set to 11 by default or
can be defined by users through the GUI in MVPANI.

Logistic Regression (LR)
Logistic regression (LR) (Theil, 1992) is also widely used in
solving classification problems. This method fits the training data
to a sigmoid function, which describes the probability of the
occurrence of an event:

hω (x) =
1

1+ eωT x

where x is the feature vector and ω is the weight vector.
A test sample’s class membership is determined by applying a
threshold to the estimated probability: the given test sample is
classified as category A if the probability is greater than 0.5 or as
category B otherwise.

Naïve Bayesian Classification (NBC)
Naïve Bayesian classification (NBC) (Domingos and Pazzani,
1997) is a classification method based on Bayes’ theorem. In
NBC, the posterior probability function describing how likely a
sample belonging to each class is first estimated using the training
datasets. The class membership of a test sample is determined
by the posterior probability of the test sample belonging to a
certain class given the observed data: the test sample is assigned to
class A if the posterior probability corresponding to class A is the
greatest compared with those corresponding to other classes. As
with LR, NBC can also provide a probability measure of a sample
belonging to a particular class.

Linear Discriminant Analysis (LDA)
Linear discriminant analysis (LDA) (Belhumeur et al., 1997),
also known as Fisher’s linear discriminant (FLD), is for solving
classification problems. It linearly projects the training data from
the feature space to an optimally discriminating space where
there are minimal within-class variance and maximal between-
class variance so that an optimal classification hyperplane
can be defined. The class membership of the test samples
can then be determined by this trained hyperplane in the
discriminating space.

The Decision Tree (DT)
The method of decision tree (Breiman et al., 1984) is for solving
both classification and regression problems. A decision tree
consists of three main components, namely root nodes, internal
nodes, and leaf nodes. The decision-making process starts from
the root node and ends at the leaf nodes. The key in constructing
a decision tree is to select the best feature as the node to
split samples into two groups with the highest purity in each
step, which is based on the Gini index for solving classification
problems or the mean-square error (MSE) for solving regression
problems (Breiman et al., 1984) in MVPANI.

Random Forest (RF)
Random forest (Breiman, 2001) can be considered as a collection
of multiple decision trees and can be used for solving both
classification and regression problems. Each decision tree is
created by using only a subset of original samples and features
selected by random sampling with replacement. Each decision
tree can provide a decision for a test sample. For classification,
the final decision is determined as the majority of the decisions
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of all decision trees. For regression, the final predicted value is
determined as the average value of all decision trees. In MVPANI,
the number of decision trees is set to 500 by default or can be
specified by users.

Feature Preprocessing
Before data are entered into a selected machine learning
algorithm, the data can be preprocessed as needed. MVPANI
provides three types of feature preprocessing: feature
transformation, dimension reduction, and feature selection.

Feature Transformation
Feature values can be normalized to Z score (i.e., zero mean and
unit variance) using the following formula:

Z =
x−m

σ

where m and σ are the mean and the standard deviation,
respectively, of the training dataset only, which are used
for normalization of both the training and test datasets.
This transformation can be performed across rows (i.e.,
across samples) or across columns (i.e., across features) as
specified by users.

Dimension Reduction
Neuroimaging data typically have very high dimensions and it
is often beneficial to reduce the dimensionality by mapping the
original high-dimensional feature space to a low-dimensional
space before running MVPA. Indeed, the original high-
dimensional feature space usually contains more irrelevant or
redundant information, which can be reduced after reducing
the dimension and, thus, can potentially improve the MVPA
performance. MVPANI currently provides principal component
analysis (PCA) for dimension reduction. PCA (Jolliffe, 1986)
is a method that decomposes the original data into several
principal components (PCs) orthogonal to each other. Each PC is
a linear combination of the original dimensions and captures the
direction in which the original data has maximal variance. Using
PCA, the dimension is reduced by keeping only the PCs with large
variances and discarding the directions with small variances.
Therefore, PCA reduces the dimension while preserving as much
variance of the original data as possible. By default, the number
of PCs (n) that are kept is determined as such: Top n PCs explain
≥95% total variance, and top n − 1 PCs explain <95% total
variance. Alternatively, the number of PCs that are kept can also
be specified arbitrarily by users. Note that, PCA is only performed
using the training dataset, and the resultant principal component
load coefficient matrix is further applied to the test samples to
reduce the dimension of the test dataset.

Feature Selection
The purpose of the feature selection procedure is to select only
“useful” features and to remove irrelevant or redundant features
from the original feature space. Therefore, similar to dimension
reduction, feature selection can also reduce data dimension with
the effect of removing noise and redundant information and
also reducing computational load. However, unlike dimension
reduction, in which the resulting features (e.g., the PCs) do

not correspond to original features, but a transformation of
all original features, the remaining features selected by the
feature selection procedure are still original features without
any transformation. MVPANI provides two ways to select useful
features: (1) least absolute shrinkage and selection operator
(LASSO), and (2) a predefined number of selected features based
on F scores or feature weights.

LASSO performs the L1 regularization to obtain a sparse
model with the goal of minimizing the MSE of the predicted
values, such as the following objective function:

min
ω0,ω

1
2N

N∑
i=1

(
yi − ω0 − xT

i ω
)2
+ λ

p∑
j=1

∣∣ωj
∣∣

where the parameter λ is determined by a ten-fold
cross-validation within the training dataset resulting in a
minimal MSE in MVPANI.

Users can also predefine the number of selected features
based on the discriminative power of each feature measured by
F scores or weights. The F score of a feature measures how
discriminative between two classes this given feature is: the
higher the F score, the more discriminative the given feature.
It is calculated as the F value of an F test comparing training
samples between two classes. Feature weights are obtained by
training a classification or regression model using the training
dataset. The weight of a feature reflects the contribution of this
given feature to classification or regression: the higher the weight,
the more important the given feature to the classification or
regression. After ranking all features according to their F scores
or weights, a predefined number of features with the highest F
scores or weights can be selected and entered into the subsequent
MVPA. The amount of selected features can be specified by users
either as an exact number of features to be selected or as a
percentage of the total number of features. Note that, feature
selection (i.e., the calculation of F scores or feature weights)
is based only on the training dataset. As it is often difficult to
predefine a suitable number of selected features, users are allowed
to enter a series of predefined numbers of selected features in
MVPANI for convenience. This generates a series of selected
feature sets, and multiple independent MVPA are automatically
performed for every feature set. However, to avoid “cheating,”
users should not simply report the best classification accuracy
among those obtained from all selected feature sets; instead, this
procedure should be considered as multiple independent MVPA
analyses, and thus, all obtained classification accuracies should be
reported, and the corresponding statistical significance (i.e., the P
values) should be corrected for multiple comparisons (e.g., using
Bonferroni correction).

ROI-Based MVPA vs. Searchlight MVPA
Both ROI-based and searchlight MVPA are implemented in
MVPANI. ROI-based MVPA refers to the MVPA procedure that
is performed using all features in a specified ROI (defined using
a mask file) and only one classification accuracy or prediction
precision is obtained for the whole ROI. In contrast, searchlight
MVPA is a “voxel-wise” MVPA procedure in which MVPA is
performed for a small sphere centered at one voxel each time
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using this given voxel and all its neighboring voxels (i.e., a
searchlight sphere) and then repeated for every voxel included
in a predefined mask (Kriegeskorte et al., 2006). In this way,
every voxel is assigned a classification accuracy or prediction
precision, resulting in a brain map of classification accuracies
or prediction precisions. The radius of the searchlight sphere
may have effects on the amount of information contained in a
searchlight sphere and also on the actual spatial resolution of
the resultant classification accuracy map. A searchlight sphere
with a larger radius contains more voxels and, thus, is more
likely to contain more information that can be utilized in MVPA;
meanwhile, the spatial resolution of the resultant accuracy
map is lower because a bigger sphere covers a larger area,
and thus, the information cannot be precisely localized in
space. The radius of the searchlight sphere can be specified by
users in MVPANI.

“Output” Module
For classification, MVPANI automatically outputs the basic
MVPA results, including the average classification accuracy,
specificity, and sensitivity for classifications across all folds
defined as follows:

Accuracy =
TP + TN

TP + FN + TN + FP

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

where TP is the number of true positives (e.g., the number
of patients correctly classified as patients), TN is the number
of true negatives (e.g., the number of normal controls
correctly classified as non-patients), FP is the number of false
positives (e.g., the number of normal controls classified as
patients), and FN is the number of false negatives (e.g., the
number of patients classified as non-patients). For regression,
the correlation coefficient of the predicted scores and the
true scores (referred to as prediction precision here) is
calculated as an output for a measure of performance (i.e.,
prediction precision). MVPANI also provides options to output
the MVPA results for each fold, the average weight map
across all folds, the weight map of each fold, the receiver
operating characteristic (ROC) curve, and the area under ROC
curve (AUC).

“Statistical Testing” Module
Statistical testing is needed to test whether the obtained MVPA
result (i.e., classification accuracy or prediction precision) is
significantly higher than chance level. In MVPANI, the statistical
significance of MVPA results is evaluated using a non-parametric
permutation test (Golland and Fischl, 2003). For classification,
a null distribution corresponding to classification accuracies
obtained at chance level can be generated using a permutation
test in the following steps: (1) the original labels of all training
samples are randomly shuffled so that the newly assigned labels

no longer contain the true class information of the training
samples; (2) a classifier is trained using the same training
samples but with random class labels; (3) the above trained
classifier is used to predict the classes of test samples, and thus,
a chance-level classification accuracy can be obtained; (4) this
procedure is repeated N times to obtain a null distribution
based on the N chance-level classification accuracies; (5) the
true classification accuracy obtained using the true labels is
compared with this null distribution to calculate the percentage
of the chance-level accuracies that are equal to or greater than
the true classification accuracy as the P value. For regression,
a similar procedure is adopted with only one difference:
The scores of all training samples are randomly permutated
to generate a null distribution of predication precision, and
consequently, the P value is calculated as the percentage of
chance-level predication precisions that are equal to or greater
than the true prediction precision. Note that, if none out of
N permutations reached the actual classification accuracy (or
prediction precision) obtained from the true labels (or scores),
the P value should be denoted as P < 1/N instead of P = 0 because
the precision of the calculated P values is dependent on the
number of permutations. Usually, thousands or even more than
10 thousands of permutations are recommended for obtaining
a more accurate P value, which might take a very long time
to compute and sometimes becomes infeasible. Therefore, the
number of permutations and the computation time need to be
balanced in practice.

Importantly, we also provided an option for multiple
comparison correction of the P values for searchlight MVPA.
Indeed, for searchlight MVPA, classification or regression
analysis is performed for each searchlight sphere, and thus,
a large number of statistical tests need to be performed. To
correct for this multiple testing problem, we use the following
procedure based on permutation: (1) for each permutation
step, MVPA is performed for every searchlight sphere using
the same set of randomly assigned labels (or scores); (2) only
the maximal classification accuracy (or prediction precision)
across all searchlight spheres is kept for each permutation step;
(3) after repeating this procedure for N times, N maximal
classification accuracies (or prediction precisions) are obtained
to build the null distribution for all searchlight spheres;
(4) the true classification accuracy (or prediction precision)
of every searchlight sphere is compared with this common
null distribution to calculate the corrected P values for each
searchlight sphere. This correction procedure corresponds to
family-wise-error (FWE) correction.

“Data Fusion” Module
When different types of data are available, MVPA can fuse
different types of data containing complementary information
to improve classification or regression performance. MVPANI
offers two strategies for data fusion as shown in Figure 3.
The first strategy is to fuse data at the feature level before
MVPA by first building a fused feature vector by concatenating
the feature vectors obtained from different data types and,
second, feeding the fused feature vector to machine learning
algorithms for classification or regression. Therefore, the final
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FIGURE 3 | Two data fusion strategies implemented in MVPANI. The upper panel shows the feature concatenation strategy, where data are fused at the feature level
by concatenating all different types of features into a single feature vector before feeding them into a classification or regression model. The lower panel shows the
voting strategy, where data are fused at the decision level by building a classification or regression model for each type of data and then all models vote for the final
decision (for classification, taking the majority of all models’ decisions; for regression, averaging the predicated values of all models).
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result is obtained using integrated data of different types. The
functions of Load features and Concatenate features in the Data
Fusion module allow users to enter all features and generate
a single concatenated feature vector (saved as a .mat file in
the current directory) for subsequent MVPA. Note that, as
different types of data often have very different ranges, it is
recommended that the data of each type should be normalized
using, for example, Z-transformation, to a similar range before
concatenating them into a single feature vector. In addition,
as the fused feature vector is usually very large, dimension
reduction or feature selection is recommended either before
or after concatenation to reduce the feature dimension and
computational load. We refer this strategy as Concatenate in
MVPANI. The second strategy is to fuse data at the decision level.
In this strategy, individual classification or regression models
are built for each type of data separately, resulting in multiple
classifiers or regression models. Each classifier or regression
model makes its own decision for each test sample. Then all
classifiers or regression models “vote” for the final decision
using the Vote function in the Data Fusion module. That is, for
classification, the final decision is determined by the majority of
the decisions of all individual classifiers, and for regression, the
final predicted value is determined by averaging the predicted
values across all individual models. When voting or averaging,
the weights of the decisions obtained from different types of data
(usually the absolute decision value or the decision probability
generated from the machine learning algorithms) are considered
to assign more weight on the decisions that are made with
more confidence.

For users’ convenience, we also provide the Load and Save
function in MVPANI. The Save function allows users to save
all specified configurations used in a particular MVPA task as a
MATLAB data file (i.e., .mat format) for future use. The Load
function allows users to load an existing configuration file (i.e.,
a .mat file) without having to go through every configuration step
to configure their own MVPA analysis. This Save/Load function
is particularly useful if users want to keep a record of what exact
configurations they specified for a particular MVPA task or if
they want to perform similar MVPA analysis many times (e.g.,
for different datasets each time or changing just one or two
parameters each time).

APPLICATIONS OF MVPANI

In this section, we use four examples to describe the
usage of MVPANI in four different situations based on the
following dataset.

Dataset information: The data are a part of the data used
in a study that was approved by the Ethics Committee of
Tianjin Medical University General Hospital. Twenty patients
with subcortical infarcts (three females, 55 ± 9 years old) and
20 healthy controls (10 females, 59 ± 7 years old) participated
in this study, and written informed consent was obtained from
each participant before data collection. Note that we used
a small sample size just for the purpose of demonstration.
A large sample size usually gives more reliable results and is

encouraged in real practice. Structural (T1 weighted, TR = 7.8 ms,
voxel size = 1 × 1 × 1 mm) and resting-state functional
MRI (rs-fMRI, TR = 2 s, voxel size = 3 × 3 × 3 mm,
duration = 6 min) data were collected from all participants.
The rs-fMRI data of each participant were preprocessed using
the software package SPM82 in the following steps: removing
the first 10 volumes, slice timing, image realignment for head
motion correction, regressing out nuisance covariates (six head
motion parameters, the global signal, the white matter signal,
and the cerebrospinal fluid signal), band-pass filtering (0.01–
0.08 Hz), and spatial normalization to standard MNI space.
Then three functional imaging metrics, including regional
homogeneity (ReHo), fractional amplitude of low-frequency
fluctuations (fALFF), and whole-brain functional connectivity
(FC), were calculated from the preprocessed fMRI data for
each participant using the software package REST (Song et al.,
2011). After MRI scanning, all participants also performed
a Flanker task during which participants were required to
respond to the direction of a central arrow (target) and to
ignore adjacent congruent or incongruent distracting arrows
by pressing a button on the computer with their non-paretic
hand (all patients suffered from hemiparesis at the acute stage
of stroke). A total of 60 trials were presented, and response
accuracy and reaction time (RT) of correct responses to the target
were recorded. The T1 structural MRI data of each participant
were analyzed using the software package VBM83 to calculate
the voxel-wise gray matter volume (GMV) and white matter
volume (WMV). More detailed information can be found in
our previous papers (Zhang et al., 2014; Diao et al., 2017;
Liu et al., 2018).

Example 1: Classification Between
Patients and Controls
In this example, we used SVC to classify patients from controls
based on whole-brain ReHo maps.

Input
Forty image files (.nii) corresponding to the ReHo maps of
all participants were entered as input data. According to the
alphabetic order of the file names of these image files, the
first 20 files corresponded to patients, and the second 20 files
corresponded to controls. We then created a label file (.xlsx)
containing a column with “1” in the first 20 entries and “−1”
in the second 20 entries (i.e., label “1” corresponding to patients
and label “−1” corresponding to controls). To perform a leave-
one-pair-out cross-validation, all participants were divided into
20 folds with one fold containing one patient and one control.
The corresponding fold file (.xlsx) contained a column with 1, 2,
3, up to 20 in the first 20 entries and exactly the same numbers in
the second 20 entries (i.e., the first patient and the first control
were paired in the first fold). A whole-brain mask (a binary
image containing only zeros and ones) was also specified using
an image file (.nii).

2https://www.fil.ion.ucl.ac.uk/spm/
3http://dbm.neuro.uni-jena.de/vbm8/
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Model Configuration
The ReHo images were used for the subsequent MVPA without
any further feature preprocessing. Here, we used all voxels
included in the whole-brain mask without feature selection.
For the classification algorithm, we selected C-SVC with default
parameter settings (linear kernel; penalty coefficient c = 1).

Output
The outputs include the classification accuracy (also with
specificity and sensitivity), the ROC curve, and the mean weight
map. We achieved a classification accuracy of 85% (indicated by
the red vertical line in Figure 4A with a specificity of 75% and
sensitivity of 95%. The corresponding ROC curve is shown in
Figure 4B. Figure 4C shows the mean weight map obtained using
the whole-brain mask (only the voxels with the absolute value of
weight greater than 0.0002 were shown in the figure).

Statistical Testing
To test whether the obtained classification accuracy 85% was
significantly higher than chance level, we also performed a
permutation test (n = 1,000) to build up a null distribution of
random classification accuracies. The comparison between the
actual classification accuracy obtained from the true labels and
the null distribution is shown in Figure 4A. We can see that none
of the 1,000 permutations generated a classification accuracy
equal to or greater than the actual accuracy, resulting in a
P < 0.001 (i.e., P < 1/1000), indicating that the spatial patterns of
ReHo images were distinguishable between patients and controls.

Example 2: Information Mapping Using
Searchlight MVPA
To localize the brain areas that contain sufficient information
(i.e., distinct spatial patterns of activity) that can distinguish
between patients and healthy controls based on ReHo maps, we
performed a searchlight MVPA using SVC. The data used in this
analysis is the same as the data used in Example 1.

Input
The image files (i.e., ReHo maps), the label and fold files, and the
whole-brain mask file were the same as used in Example 1.

Model Configuration
The Searchlight option was checked to perform searchlight
MVPA, and the size of the searchlight was defined as a sphere with
a 4-voxel radius. The C-SVC with default parameter settings was
used as the classification algorithm. No feature transformation or
feature selection was applied.

Output
The main output was the classification accuracy map averaged
across all cross-validation steps; that is, the value of each voxel
indicates the average classification accuracy obtained using all
voxels included in the predefined searchlight sphere centered at
this given voxel.

Statistical Testing
To identify the voxels with significantly higher than chance
level classification accuracies, we performed a permutation test

(n = 500). Figure 5 shows the voxels surviving the threshold
of P < 0.005 (uncorrected, cluster >30 voxels). Note that,
just for the purpose of demonstration, we only performed 500
permutations, and the result was not corrected for multiple
comparisons as no voxels survived the correction. However,
in real practice, a larger number of permutations (n ≥ 5000
is recommended) should be performed to ensure a reliable
P value estimation; furthermore, uncorrected P values are
not recommended.

Example 3: Prediction of Reaction Time
Using Brain Imaging Data
In this example, we demonstrate how to predict continuous
values based on brain imaging data using regression in MVPANI.
More specifically, we used fALFF maps obtained from rs-fMRI
data to predict RTs to test whether resting-state brain activity can
predict task performance.

Input
Only healthy subjects were included in this analysis. The RTs
were averaged across all trials to indicate the task performance
of a given participant. Therefore, 20 fALFF maps of healthy
participants were entered as input data. We then created a
label file containing the averaged RTs obtained from the 20
participants as a column. The order of participants in the label
file corresponded to the participant order of the entered fALFF
maps. To perform a leave-one-participant-out cross-validation,
we also created a fold file containing a column with 1, 2, 3 up to
20 with each entry indicating a participant. A binary whole-brain
gray matter mask was also specified.

Model Configuration
The fALFF images were used for the subsequent prediction
analysis after data normalization for each sample using
Z-transformation; that is, each sample (i.e., the data in each row
of the data matrix) was normalized to have a mean of zero and
a variance of one after normalization. We tested how feature
selection could affect the prediction precision by selecting only
the top voxels with highest F scores; the percentage of selected
voxels ranged from 10% to 100% with a step of 20%. For the
regression algorithm, we selected e-SVR with default parameter
settings (linear kernel; penalty coefficient c = 1; the epsilon in loss
function p = 0.1).

Output
The output results for each percentage of selected voxels included
the predicted RTs and the correlation coefficient between the
predicted RTs and the actual RTs. The change of correlation
coefficients as a function of the percentage of selected voxels is
shown in Figure 6A. We found that the prediction precision
decreased drastically when the percentage of selected voxels
increased and the highest prediction precision (R = 0.589) was
obtained when only the top 10% of voxels were selected.

Statistical Testing
To test whether the obtained highest prediction precision
(R = 0.589) was significantly higher than chance level, we
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FIGURE 4 | Results of the classification between patients and controls. (A) The classification accuracy (Acc, indicated by the red vertical line) and the P value
obtained from the corresponding null distribution generated by 1000 permutations (indicated by the blue bell shape centered around chance level accuracy of 50%).
(B) The ROC curve and the corresponding AUC. (C) The weight map (only voxels with the absolute value of weight over 0.0002 are shown). The color of each voxel
indicates the weight (cold color indicates negative weights and warm color indicates positive weights).

FIGURE 5 | Classification accuracy map of the searchlight MVPA discriminating between patients and controls using ReHo maps. Colored voxels indicate centers of
searchlight spheres where significantly higher-than-chance-level accuracies were obtained under the threshold of P < 0.005 (uncorrected, cluster >30 voxels).
Values of colored voxels indicate the classification accuracies.
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FIGURE 6 | Regression results for predicting reaction times (RTs). (A) The change of correlation coefficients (along with their corresponding P values) with the
number of selected features. (B) The correlation coefficient (R = 0.589, P = 0.006) between the predicted RTs and the actual RTs of a Flanker task (indicated by the
red vertical line) and the corresponding null distribution generated by 1000 permutations (indicated by the blue bell shape centered around chance level correlation
coefficient of 0).

performed a permutation test (n = 1000) to build a null
distribution of correlation coefficients. The comparison between
the actual correlation coefficient obtained from the true RTs
and the corresponding null distribution is shown in Figure 6B.
We found that six of 1000 permutations generated prediction
precisions equal to or greater than the actual correlation
coefficient (0.589), resulting in a P = 0.006. Because five
different percentages for feature selection were tested (resulting
in five independent SVR analyses), the above P value should be
corrected for multiple comparisons to determine its statistical
significant. Using Bonferroni correction, that is, P = 0.006
(< 0.05/5), the result can be considered as significantly higher
than chance level, indicating that the spatial patterns of resting-
state fALFF maps were predictive of the RTs of the flanker task in
healthy participants.

Example 4: Using Data Fusion to Improve
Classification Performance
In this example, we demonstrate how to combine different
measures extracted from multimodal neuroimaging data
to improve performance of classification between patients
and normal controls. We tested two data fusion strategies
implemented in MVPANI; data fusion at the feature level
using the feature concatenation strategy and data fusion at the
decision level using the voting strategy and showed that the two
data fusion strategies improved the classification performance
in two examples.

Feature Concatenation Strategy
In this example, we combined fALFF maps (.nii files) and FC
matrices (.mat files) from 20 patients and 20 controls. The
two types of features, obtained from rs-fMRI data, represent
different functional measures with different file formats. Using
the Load and Concatenate functions in the Data Fusion module,
a concatenated feature vector was generated and stored as a

new file for each participant. These generated files were then
entered as the input data files in the Input module. The
label file, the fold file, and the mask file as used in Example
1 were also entered. For model configuration, C-SVC with
default parameter settings as used in Example 1 were selected
as the classification algorithm, and no feature transformation
and feature selection was performed. Note that, here we did
not perform data normalization before concatenation because
the values of both fALFF and FC are within the range
of -1 and 1. The classification accuracy obtained using the
concatenated features was 82.25%, which was higher than the
accuracies obtained from each type of features alone (80%
accuracy when using fALFF maps and 70% accuracy when
using FC matrices).

Voting Strategy
In this example, we combined ReHo maps, GMV maps,
and WMV maps (the first was obtained from rs-fMRI data
and the last two were obtained from structural data) to
classify patients from healthy controls. Model configuration
was identical to what was used in the example of the
Feature concatenation strategy. We obtained a classification
accuracy of 92.5% using the voting strategy, which was higher
than the accuracies obtained from each type of features
alone (85% accuracy when using ReHo maps, 87.5% accuracy
when using GMV maps, and 90.0% accuracy when using
WMV maps).

DISCUSSION

Here, we introduced a software package, named MVPANI,
specifically designed for performing MVPA of neuroimaging
data. MVPANI is featured with a number of advantages that make
it a useful tool for neuroscientists and clinicians to take advantage
of machine learning techniques in their research.
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First, MVPANI has a GUI and, thus, is more friendly
for researchers who are not experienced programmers.
As previously noted, having a GUI also helps standardize
the MVPA pipeline for neuroimaging data analysis and
consequently makes it easier to replicate previous studies
and compare results between different studies. MVPANI also
offers the Save and Load functions in the GUI: With the
Save function, researchers can easily save all configurations of
their analysis pipeline so that they can log the exact settings
for their analysis pipeline for future reference; with the load
function, researchers can easily make modifications based
on their previously used analysis pipelines and parameters
and, thus, make it very convenient to compare results when
changing a given parameter while maintaining all other
parameters unchanged.

Second, MVPANI offers a Data fusion function so that
researchers can combine different types of data when performing
MVPA. Different types of data are often available in one study:
(1) Multi-modal imaging data are usually collected in one study
(e.g., structural T1 images and functional images); (2) even
when only one imaging modality is used, different measures
can be extracted (e.g., GMV, WMV, and cortical thickness can
be extracted from the structural T1 images; ReHo, fALFF, FC,
and effective connectivity can be extracted from the functional
images; fractional anisotropy (FA), mean diffusivity (MD), and
anatomical brain network can be extracted from diffusion data);
(3) besides neuroimaging data, cognitive, behavioral, or even
genetic data are often collected in neuroimaging studies as
well. It is becoming a trend to integrate different types of
data in neuroimaging studies as the information contained in a
single type of data is always limited. Also, the two Data fusion
methods (Feature Concatenation strategy and Vote strategy)
currently implemented in MVPANI are also simple and easily
understood and accepted in neuroimaging society. Therefore,
the function of Data Fusion is very useful for researchers to
utilize complementary information contained in different types
of data to maximally exploit all available data in their research.
Moreover, allowing the most universal file formats (.txt, .xlsx,
and .mat) as input data formats makes MVPANI not limited in
neuroimaging studies but is also suitable for applying machine
learning techniques in other non-imaging (such as genetic)
studies as well.

Third, MVPANI contains a variety of commonly used
machine learning algorithms, currently including support vector
machines, linear discriminant analysis, logistic regression,
k-nearest neighbors, naive Bayes classifier, decision tree, and
random forest, so that researchers can test different algorithms
and identify the most suitable one for their own data.
Furthermore, key parameters of each algorithm can be easily
modified through GUI by users if needed.

Fourth, in addition to feature selection with a binary mask,
MVPANI also offers several feature preprocessing steps including
normalization, dimension reduction, and feature selection based
on their discriminating ability, which have often been shown to
be beneficial to MVPA performance.

Fifth, MVPANI is developed using MATLAB platform,
which is already familiar to most neuroimaging researchers

as many other popular software packages for neuroimaging
data analyses, such as SPM, GIFT (Group ICA of fMRI
Toolbox), DPABI, and so on, are also based on MATLAB
platform. Importantly, sharing the same platform also
makes it convenient to share codes between these software
packages and perform integrated analyses using multiple
software packages.

Sixth, MVPA results can be obtained in a variety of output
formats, including classification accuracies, specificity, and
sensitivity (for classification analysis) or prediction precisions
(for regression analysis), the actual classification outcome or
predicted values of each sample, the ROC curves with AUC, and
the weight maps. For most of these result formats, MVPANI
can output the overall results averaged across all cross-validation
steps as well as the results of each cross-validation step so
that researchers with limited programming skills can also
examine the MVPA results in much more details just using
the GUI.

Seventh, MVPANI offers the function of Statistical
Testing of MVPA results. Without a convenient tool for
statistical testing of MVPA results, previous studies often use
T-tests to assess the statistical significance of the obtained
classification accuracies or do not test statistical significance
at all especially for searchlight analysis. As classification
accuracies are not Gaussian distributed, traditional parametric
statistical testing (e.g., one-sample T-test) is inappropriate
in determining the statistical significance of MVPA results.
The most commonly accepted statistical testing method is
a non-parametric permutation test. Unlike T-tests, which
has a known null distribution, a permutation test has to
estimate the null distribution based on the real data with
randomly shuffled labels of training samples and repeat
the classification analysis many times with exactly the
same model configurations. Therefore, common statistical
software, such as SPSS cannot be used in this situation.
Another issue with performing a permutation test is that it
requires a large number of repetitions to build a reliable null
distribution, which is computationally highly costly and time
consuming. To make a large number of permutations feasible,
parallel computing is adopted when running permutation
test in MVPANI. Importantly, statistical significance can
also be corrected for multiple comparisons to make the
statistical testing more valid when multiple MVPA analyses
are performed, e.g., in searchlight MVPA analysis. The
permutation test with multiple comparisons correction
implemented in MVPANI help make statistical testing of
MVPA results a standard procedure in neuroimaging studies
using machine learning.

Last, MVPANI is a free and open-source software package.
It utilizes other existing software packages, and importantly,
it is also readily to be utilized by other software developers.
More advanced users can also use the functions implemented in
MVPANI to create their own analysis pipelines to best fit their
own research purpose.

Having mentioned all these advantages, it should be noted
that the current version of MVPANI also has limitations and will
be updated during its ongoing development. For example, only
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two-way classifications are implemented in the current version,
and multi-class classifications will be implemented in the next
version. Also, more complicated methods for data fusion with
higher efficiency of information fusion from different types of
data will be tested and implemented in MVPANI in the future.
In addition, considering the facts that MVPA of neuroimaging
data is computationally very expensive in general and GPU
computing is becoming popular, we will also exploit GPU to
boost the computation speed in the future, which is particularly
useful for performing searchlight analysis with a large number
of permutations. Furthermore, with its rapid development, deep
learning is extracting more and more attention in neuroimaging
field. We will also consider implementing some deep learning
framework in future versions of MVPANI.

CONCLUSION

MVPANI is a free and open source software toolkit for MVPA of
neuroimaging-related data with a user-friendly GUI. It is easy to
use and has a number of advantages compared with other existing
software packages. Therefore, the development of MVPANI will
encourage neuroimaging researchers to adopt machine learning
techniques to complement traditional univariate analyses and
fully exploit their data.

INFORMATION SHARING STATEMENT

The MVPANI software code is open source and can be
downloaded from http://funi.tmu.edu.cn. The data for the
examples can be accessed at http://funi.tmu.edu.cn. The
MVPANI software comes with third party software (libsvm
https://www.csie.ntu.edu.tw/~cjlin/libsvm/; TDT http://www.
bccn-berlin.de/tdt; SPM http://www.fil.ion.ucl.ac.uk/spm/).
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