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Background: Point-of-care ultrasonography (POCUS) enables cardiac imaging at the bedside 

and in communities but is limited by abbreviated protocols and variation in quality. We 

aimed to develop and test artificial intelligence (AI) models to screen for under-diagnosed 

cardiomyopathies from cardiac POCUS.

Methods: In a development set of 290 245 transthoracic echocardiographic videos across the 

Yale–New Haven Health System (YNHHS), we used augmentation approaches, and a customised 

loss function weighted for view quality to derive a POCUS-adapted, multi-label, video-based 

convolutional neural network that discriminates hypertrophic cardiomyopathy and transthyretin 

amyloid cardiomyopathy from controls without known disease. We evaluated the model across 

independent, internal, and external, retrospective cohorts of individuals undergoing cardiac 

POCUS across YNHHS and the Mount Sinai Health System (MSHS) emergency departments 

(between 2012 and 2024) to prioritise key views and validate the diagnostic and prognostic 

performance of single-view screening protocols.

Findings: Between Nov 1, 2023, and March 28, 2024, we identified 33 127 patients (mean 

age 58·9 [SD 20·5] years, 17 276 [52·2%] were female, 14 923 [45·0%] were male, and for 928 

[2·8%] sex was recorded as unknown) at YNHHS and 5624 patients (mean age 56·0 [20·5] years, 

1953 [34·7%] were female, 2470 [43·9%] were male, and for 1201 [21·4%] sex was recorded 

as unknown) at MSHS with 78 054 and 13 796 eligible cardiac POCUS videos, respectively. AI 

deployed to single-view POCUS videos successfully discriminated hypertrophic cardiomyopathy 

(eg, area under the receiver operating characteristic curve 0·903 [95% CI 0·795–0·981] in 

YNHHS; 0·890 [0·839–0·938] in MSHS for apical-4-chamber acquisitions) and transthyretin 

amyloid cardiomyopathy (0·907 [0·874–0·932] in YNHHS; 0·972 [0·959–0·983] in MSHS for 

parasternal acquisitions). In YNHHS, 40 (58%) of 69 hypertrophic cardiomyopathy cases and 

22 (46%) of 48 transthyretin amyloid cardiomyopathy cases would have had a positive screen 

by AI-POCUS at a median of 2·1 (IQR 0·9–4·5) years and 1·9 (0·6–3·5) years before diagnosis. 

Moreover, among 25 261 participants without known cardiomyopathy followed up over a median 

of 2·8 (1·2–6·4) years, AI-POCUS probabilities in the highest (vs lowest) quintile for hypertrophic 

cardiomyopathy and transthyretin amyloid cardiomyopathy conferred a 17% (adjusted hazard 

ratio 1·17, 95% CI 1·06–1·29; p=0·0022) and 32% (1·39, 1·19–1·46; p<0·0001) higher adjusted 

mortality risk, respectively.

Interpretation: We developed and validated an AI framework that enables scalable, 

opportunistic screening of under-recognised cardiomyopathies through simple POCUS 

acquisitions.

Funding: National Heart, Lung, and Blood Institute, Doris Duke Charitable Foundation, and 

BridgeBio.

Introduction

Point-of-care ultrasonography (POCUS) enables focused cardiac evaluation across 

communities, outpatient clinics, emergency departments, and inpatient facilities.1 In contrast 

to standard transthoracic echocardiography, POCUS studies are acquired in busy clinical 

settings following abbreviated protocols. Consequently, image quality and the information 

yield are limited due to environmental factors (eg, equipment and time constraints), patient 

characteristics (eg, an inability to reposition themselves, distress, individual disease states, 
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and anatomy), and operator experience (eg, acquisition by novices or trainees).2 Therefore, 

POCUS videos are rarely used beyond addressing acute questions.

With the expanding use of handheld technology that can assist novice operators in acquiring 

cardiac views,3 POCUS imaging offers an opportunity for scalable cardiovascular screening. 

In particular, this ability of POCUS to facilitate accessible and efficient imaging could 

be of value in the screening of under-diagnosed cardiomyopathies, such as hypertrophic 

cardiomyopathy or transthyretin amyloid cardiomyopathy. Both conditions are associated 

with increased morbidity and mortality and benefit from early recognition4,5 and initiation of 

disease-modifying therapies.6–10 Unfortunately, their detection remains challenging due to a 

long pre-symptomatic course, overlapping clinical phenotypes, and the reliance on advanced 

multimodality imaging.4,5,11 Although hyper trophic cardiomyopathy is considered the 

most common cardiomyopathy with a prevalence of about one in 200 individuals,11 the 

reported estimates for transthyretin amyloid cardiomyopathy12 likely under estimate its true 

prevalence, with non-invasive imaging studies showing high prevalence among individuals 

with aortic stenosis, or heart failure with preserved ejection fraction, ranging from 1% 

to 13%.13–15 Despite that, only a minority (10–20%) of hypertrophic cardiomyopathy 

or transthyretin amyloid cardiomyopathy cases are identified clinically,16,17 whereas the 

need for multi-modality imaging could further exacerbate diagnostic disparities.18 Although 

transthoracic echocardiographic imaging has benefited substantially from advances in 

computer vision and medical artificial intelligence (AI),19–23 these algorithms are built for 

use with videos acquired by expert technicians. Furthermore, while access to transthoracic 

echocardiograms remains limited and prone to referral and selection bias,18 POCUS studies 

are increasingly done across high-resource and low-resource settings,24 and represent an 

untapped yet accessible resource for opportunistic screening.

Here, we propose and implement a framework for POCUS-adapted video-based AI models, 

showing their ability to efficiently detect under-diagnosed cardiomyopathies from real-world 

POCUS studies acquired over a decade across the emergency departments of two large 

and diverse health systems. Our approach incorporates a range of natural and synthetic 

augmentation methods to simulate off-axis acquisitions from variable views, thus enabling 

downstream inference from limited POCUS protocols. Building on this approach, we further 

aimed to assess the diagnostic and prognostic potential of AI-POCUS, offering insights into 

missed or delayed diagnosis.

Methods

Study overview and objectives

The overall objective was to develop and test video-based deep learning algorithms 

for the efficient diagnosis of hypertrophic cardiomyopathy and transthyretin amyloid 

cardiomyopathy on POCUS. First, we used a library of transthoracic echocardiographic 

studies performed across the Yale–New Haven Health System (YNHHS) to train deep 

learning algorithms accounting for variable views and image quality. Next, we deployed 

the models in retrospective cohorts of patients undergoing POCUS across the emergency 

departments of YNHHS (internal testing set from Jan 1, 2013, to Dec 31, 2023) and the 

Mount Sinai Health System (MSHS, external testing set from Jan 1, 2012, to Jan 31, 2024). 
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The primary aim was to develop and validate the performance of an AI-enabled POCUS-

adapted approach in identifying hypertrophic cardiomyopathy and transthyretin amyloid 

cardio myopathy among individuals undergoing real-world POCUS. Acknowledging 

the expected under-diagnosis of hypertrophic cardiomyopathy and transthyretin amyloid 

cardiomyopathy, we further addressed two key secondary objectives. First, among patients 

who had POCUS and were eventually diagnosed with hypertrophic cardio myopathy or 

transthyretin amyloid cardio myopathy, we examined the time difference between their first 

positive screen by AI-POCUS and their eventual clinical diagnosis. Second, to examine the 

prognostic implications of a positive screen among those who were never diagnosed with 

cardiomyopathy, we assessed the association between the label-specific probabilities at the 

time of POCUS and mortality (figure 1).

Key label definitions

For training in YNHHS, we used a composite of diagnostic elements to define 

disease labels (0=condition not known to be present and 1=condition present). We 

first identified all individuals in the YNHHS with at least one ICD code suggestive 

of cardiomyopathy or clinical heart failure (appendix p 5). We then narrowed down 

to those who had confirmatory cardiac imaging, including cardiac magnetic resonance 

evidence of hypertrophic cardiomyopathy,11 or abnormal nuclear cardiac amyloid testing 

(eg, Tc99m-pyrophosphate) for transthyretin amyloid cardiomyopathy (appendix p 2).25 

For hypertrophic cardiomyopathy, which often represents a genetic cardiomyopathy with 

causative variants identified in 40–60% of cases,11 we included all available transthoracic 

echocardiographic and POCUS studies regardless of their timing.26 For transthyretin 

amyloid cardiomyopathy, we defined the time of diagnosis as the time of the positive 

nuclear cardiac amyloid scan, and, to account for the expected delay between disease onset 

and diagnosis (reported median of about 12–13 months),27,28 we included transthoracic 

echocardiographic and POCUS studies that were performed up to 12 months before this date 

(or any time after).

Development (transthoracic echocardiographic) cohort in the YNHHS

The models were developed using a case–control sample drawn from transthoracic 

echocardiograms performed across all YNHHS sites (including all five hospitals and 

affiliated outpatient clinics across Connecticut and Rhode Island, USA; between Jan 

1, 2016, and Dec 31, 2022) after excluding any patients known to have had POCUS 

imaging to prevent subsequent data leakage. All videos during model development were 

derived from clinical transthoracic echocardiograms conducted by certified sonographers 

and interpreted by certified cardiologists,29 with augmentation of these images to develop 

models adapted for POCUS. During training, we enriched our sample for cases of severe 

aortic stenosis (including low-flow low-gradient cases).30 This was done to ensure that 

the model learned to identify it as a separate pathology given its frequent co-occurrence 

with the labels of interest.14 Controls were selected by randomly sampling transthoracic 

echocardiograms from the same period after excluding any cases of hypertrophic 

cardiomyopathy, transthyretin amyloid cardiomyopathy, or aortic stenosis, and those with 

equivocal cardiac magnetic resonance or nuclear imaging results. We used all possible views 

and randomly split our development cohort at the patient level into a derivation set (training 
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75% and validation 15%), and transthoracic echocardiogram testing set (10%). Of note, 

we chose a split sample approach over k-fold cross-validation to balance computational 

efficiency and due to the size of our training dataset. The validation set was used to track the 

model’s performance during training and select the best model, whereas the test set was used 

for final model evaluation. To ensure controls did not include missed cases during training, 

we excluded studies with a measured interventricular septal thickness of 1·3 cm or more 

from the controls of our training set. This was not done during validation or testing to ensure 

reliable model performance assessment.

Testing (POCUS) cohorts in the YNHHS and the MSHS

The models were tested in retrospective cohorts of individuals who underwent cardiac 

POCUS across the YNHHS (internal testing; between Jan 1, 2013, and Dec 31, 2023) 

and the MSHS (external testing; between Jan 1, 2012 and Jan 31, 2024). Studies were 

performed using compact mid-range ultrasonography systems (ie, Sparq Ultrasound system, 

Philips Healthcare, Andover, MA, USA in the YNHHS). Here, we excluded participants 

with end-stage renal disease, a transplanted heart, or prosthetic aortic valve, as well as 

POCUS studies that exclusively included non-cardiac imaging (ie, lung ultrasonography) 

with none of the major cardiac views typically captured in a cardiac POCUS (parasternal 

long-axis, parasternal short-axis at the papillary muscle level, or apical-4-chamber views). 

In the YNHHS, labels were adjudicated as in the original development cohort (for aortic 

stenosis, we required a transthoracic echocardiograph showing severe aortic stenosis up 

to 12 months after the scan), and patient outcomes were extracted through linkage to the 

Connecticut Death Index (until June 4, 2024). In the MSHS, hypertrophic cardiomyopathy, 

transthyretin amyloid cardiomyopathy, and aortic stenosis were defined using ICD-10 codes 

(appendix p 5).

Automated view characterisation and alignment assessment

Across transthoracic echocardiograph and POCUS studies, we implemented a pipeline 

that pre-processes echocardiographic videos (appendix pp 2–3).22 We applied a validated 

convolutional neural network that enables video-level classification of 18 standard 

echocardiographic views by assigning a probability that a given video corresponds to a 

standard anatomical view.31 The highest probability (0–1) defined the most likely view, and 

was used as a surrogate metric of confidence in the anatomical alignment, with probabilities 

of 0·5 or higher suggesting high confidence.

Designing a view-agnostic training pipeline adapted for low-quality acquisitions

We designed a training framework that integrated multiple views (ie, apical, parasternal 

long, parasternal short, and subcostal views) without annotations and a customised training 

loss to assign higher weights to low-quality, off-axis videos. We first initialised a 3D-

ResNet18 convolutional neural network by using pretrained weights from the Kinetics-400 

dataset,32 and further modified the output layer of the label to enable multi-label 

classification for hypertrophic cardiomyopathy, transthyretin amyloid cardiomyopathy, and 

severe aortic stenosis. To reflect the unique challenges of POCUS, we implemented a range 

of customisations.
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For natural and synthetic data augmentation methods, we trained separate view-specific 

models for each key view, namely parasternal long-axis, parasternal short-axis, and apical-4-

chamber, and all-inclusive, view-naive models trained in pooled datasets that included all 

parasternal (long and short) and apical views with the classifier blinded to the input view. 

This method enabled a head-to-head comparison of how view-specific versus view-agnostic 

approaches generalise to POCUS. We further applied augmentations for variable orientation 

and off-axis views, including random horizontal flipping and rotation (appendix p 3).

For quality-adjusted weights and loss function, we customised our loss function to favour 

inference from acquisitions for which the view classifier had lower confidence in assigning 

a standard view. For this, the sigmoid binary cross entropy loss function was adapted to 

incorporate label-specific weights to account for rare labels and inverse weighting based on 

the view alignment probabilities (appendix pp 3–4).31

Model training and inference

All models were trained for a maximum of 30 epochs with early stopping, such that if 

the mean validation area under the receiver operating characteristic (AUROC) curve in the 

validation set did not improve for five epochs, training was terminated and the weights from 

the epoch with maximum validation AUROC curves were used for final evaluation. At the 

time of inference, we averaged four 16-frame-clip-level predictions to obtain video-level 

predictions. We analysed the performance of video-level and study-level predictions by 

averaging label-specific probabilities (between 0 and 1, with higher values suggesting higher 

confidence that the label is present) from all videos in a study (appendix pp 3–4).

Model explainability

To assist with explainability, we generated sample saliency maps for the most confident 

cases using gradient-weighted class activation mapping.33 We present examples for each 

label using the pixel-wise maximum along the temporal axis to capture the most salient 

spatial regions as a heatmap.

Statistical analysis

Continuous variables are presented as mean (SD) and median (25th–75th percentile) 

and compared using Student’s unpaired t test or Mann–Whitney U test, as appropriate. 

Categorical variables are summarised as counts (and percentages) and compared across 

groups using the χ2 test. Label-specific thresholds were computed based on the cutoff values 

that correspond to: the maximal Youden’s J (ie, the sum of the sensitivity and specificity 

minus one), and 90% sensitivity in the transthoracic echocardiographic test set. Across 

groups and key subgroups (ie, females vs males, individuals without known hypertension, 

and individuals without known heart failure), metrics of discrimination (ie, AUROC curve) 

for each label and their difference across models (δ[AUROC]) are provided with 95% CIs 

from bootstrapping with 1000 replications. We also report sensitivity, specificity, positive 

predictive value, negative predictive value, the number needed to test (ie, 1 divided by 

the positive predictive value), and the diagnostic odds ratios (ORs) at 3% prevalence for 

transthyretin amyloid cardiomyopathy or aortic stenosis, and 1% prevalence for hypertrophic 

cardiomyopathy, based on their estimated true prevalence in similar cohorts.4,34 Based on 
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post hoc calculations, a minimum sample of 5000 observations, with a minimum label 

prevalence of 0·2%, α of 0·05, and an estimated AUROC curve of ≥0·80, would provide 

92·8% power to discriminate cases from controls.35

Survival analyses were performed using multivariable Cox regression models for all-cause 

mortality with each label-specific probability as the independent variable of interest and 

adjustment for baseline age, sex, hypertension, diabetes, ischaemic heart disease, peripheral 

arterial disease, and chronic kidney disease. The proportional hazards assumption was 

assessed and found to be valid based on the weighted (Schoenfeld) residuals method.36 

For each label, we present two analyses: an analysis of quintiles, and an analysis of the 

continuous probability using a restricted cubic spline with k=3 knots. We also visualise the 

unadjusted Kaplan–Meier survival curves compared by the log-rank test. The origin of the 

analysis is the first POCUS visit for each participant plus a 30-day blanking period, with 

censoring at the time of death, or the last day with available outcomes data.

All tests were two-sided with a significance level of 0·05 unless specified otherwise. 

Reporting stands consistent with the TRIPOD-AI statement.37 All analyses were performed 

using Python (version 3.11.2) and R (version 4.2.3). The study was approved by the Yale 

Institutional Review Board and local Institutional Review Boards, which waived the need for 

informed consent in the setting of retrospective medical record review.

Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report.

Results

The development cohort included 10 702 transthoracic echocardiographic studies with 290 

245 videos for 8460 patients across training and validation sets (7621 patients with 9667 

studies, mean age was 68·8 [SD 15·3] years, 3694 [48·5%] patients were female, and 3927 

[51·5%] were male) and the testing set (839 patients with 1035 studies, mean age of 69·0 

[15·7] years, 413 [49·2%] patients were female, and 426 [50·8%] were male; table 1). 

Across both sets, 46 398 (16·0%) videos corresponded to hypertrophic cardiomyopathy, 

8842 (3·0%) to transthyretin amyloid cardiomyopathy, 41 465 (14·3%) to severe aortic 

stenosis, and 193 952 (66·8%) were used as controls.

The YNHHS POCUS cohort included 39 546 studies from 33 127 patients (mean age 58·9 

[SD 20·5] years, 17 276 [52·2%] patients were female, 14 923 [45·0%] were male, and 

928 [2·8%] were recorded as unknown) with 78 054 key echocardiographic views (15 751 

[20·2%] parasternal long-axis, 52 477 [67·2%] parasternal short-axis, and 9826 [12·6%] 

apical-4-chamber). Compared with the transthoracic echocardiographic subset, there were 

relatively more individuals self-identifying as Hispanic (5073 [15·3%] of 33 127 vs 539 

[6·4%] of 8460, p<0·0001) or Black (8040 [24·3%] vs 587 [6·9%], p<0·0001). Reflecting 

the prevalence of known diagnoses, 279 (0·4%) of these videos were in patients with hyper 

trophic cardiomyopathy, 172 (0·2%) in patients with transthyretin amyloid cardiomyopathy, 

and 1130 (1·4%) in patients with severe aortic stenosis.
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The MSHS POCUS cohort included 5906 studies from 5624 patients (mean age 56·0 [SD 

20·5] years, 1953 [34·7%] patients were female, 2470 [43·9%] were male, and 1201 [21·4%] 

were recorded as unknown) with 13 796 clips corresponding to key echocardiographic 

views (5876 parasternal long-axis, 5237 parasternal short-axis, and 2683 apical-4-chamber). 

Among these, 74 (0·5%) videos were in patients with hypertrophic cardiomyopathy, 32 

(0·2%) with transthyretin amyloid cardiomyopathy, and 584 (4·2%) with aortic stenosis.

In a study-level analysis of the held-out testing transthoracic echocardiographic set, our 

multi-label view-agnostic classifier successfully discriminated hypertrophic cardiomyopathy 

(AUROC curve 0·95, 95% CI 0·94–0·96) and transthyretin amyloid cardiomyopathy (0·98, 

95% CI 0·96–0·99; appendix p 9). Of note, the ability of the classifier to detect hypertrophic 

cardiomyopathy and transthyretin amyloid cardiomyopathy was independent of the presence 

of moderate or severe left ventricular hypertrophy (described in the official report of 89 

[8·6%] studies with the respective probabilities reaching an AUROC curve of 0·68 [95% 

CI 0·57–0·67] and 0·61 [0·57–0·65] for discriminating moderate or severe left ventricular 

hypertrophy from mild or no left ventricular hypertrophy. On video-level comparisons 

across three key views (parasternal long-axis, parasternal short-axis, and apical-4-chamber), 

the view-agnostic model outperformed view-specific models (δ[AUROC] of 0·05 [95% 

CI 0·03–0·07] for hypertrophic cardiomyopathy and 0·03 [0·01–0·06] for transthyretin 

amyloid cardiomyopathy; appendix p 10). Optimal video-level thresholds for each label 

based on Youden’s J and 90% sensitivity are presented in the appendix (p 6). Compared 

with true negatives, false positives had significantly greater left ventricular thickness (for 

both labels of hypertrophic cardiomyopathy and transthyretin amyloid cardiomyopathy) and 

worse parameters of diastolic function (for the transthyretin amyloid cardiomyopathy label; 

appendix p 7).

Compared with the standard transthoracic echocardiographic videos in the YNHHS, the 

POCUS videos were characterised by significantly lower confidence in view quality and 

anatomical alignment (median probability for most likely view class of 0·66 [IQR 0·45–

0·90] vs 0·93 [0·69–1·00]; p <0·0001). On a video-level analysis of the YNHHS emergency 

department POCUS cohort, the view-agnostic model reached higher discrimination 

compared with view-specific models for hypertrophic cardiomyopathy (δ[AUROC] of 0·03 

[95% CI 0·00–0·06]) and transthyretin amyloid cardiomyopathy (0·15 [0·10–0·21]). Of note, 

the view-agnostic model’s probabilities showed relative specificity across the different labels 

(hypertrophic cardiomyopathy, transthyretin amyloid cardiomyopathy, and aortic stenosis) 

despite their overlapping phenotypes (appendix p 11).

The diagnostic performance of the AI classifier varied according to the input view, the 

confidence of the view classifier, and the target population, as summarised in figure 2 and 

the appendix (p 11), with detailed metrics for selected thresholds summarised in table 2 

and the appendix (p 11). For instance, when screening for hypertrophic cardiomyopathy 

using a single-view apical-4-chamber protocol, the performance of the classifier ranged from 

0·800 (95% CI 0·735–0·864) among all patients to 0·903 (0·795–0·981) among those without 

known heart failure (figure 2), and 0·928 (0·820–0·994) among those without hypertension 

(appendix p 13). For transthyretin amyloid cardiomyopathy screening using single-view 

parasternal acquisitions, the classifier achieved an AUROC curve of 0·919 (95% CI 0·863–
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0·958 for the parasternal long-axis) and 0·907 (0·874–0·932 for the parasternal short axis). 

Across labels, performance was consistent across males and females (appendix p 14). These 

findings were replicated in the MSHS cohort, for which our model achieved an AUROC 

curve of up to 0·890 (95% CI 0·839–0·938) for hypertrophic cardiomyopathy (apical-4-

chamber), and 0·994 (0·992–0·996) and 0·972 (0·959–0·983) for parasternal long-axis and 

parasternal short-axis-based screening of transthyretin amyloid cardiomyopathy, respectively 

(table 2; appendix p 8).

Representative Gradient-weighted Class Activation Mapping saliency maps for the most 

confident true positive predictions for each label in the YNHHS POCUS dataset are shown 

in figure 3. In the examples shown for hypertrophic cardiomyopathy, the signal localised to 

the left ventricle, whereas for transthyretin amyloid cardiomyopathy, the signal extended to 

the left atrium. For the reference label of severe aortic stenosis, the focus was on the left 

ventricle and the aortic valve (when in plane).

We provide sample frames from studies corresponding to the highest and lowest predictions 

for both cases and controls across all three key views (parasternal long-axis, parasternal 

short-axis, apical-4-chamber; appendix pp 15–16). These examples showcase the variation 

in acquisition quality, probe orientation, and presence of noise artifacts.

To explore the potential of timely screening using AI-assisted POCUS inference, we 

estimated that among all patients with hypertrophic cardiomyopathy (n=69) or transthyretin 

amyloid cardiomyopathy (n=48) who had at least one emergency department POCUS 

study in the YNHHS (before or after their diagnosis), 40 (58%) and 22 (46%) had a 

positive screen by POCUS any time before their eventual confirmatory imaging at the 90% 

sensitivity thresholds, respectively. Among these participants, the median time between the 

first positive AI-POCUS and cardiac magnetic resonance or cardiac scintigraphy was 2·1 

(IQR 0·9–4·5) and 1·9 (0·6–3·5) years for hypertrophic cardiomyopathy and transthyretin 

amyloid cardiomyopathy, respectively (figure 4).

To address the prognostic implications of the AI-POCUS phenotypes, we explored the 

association between AI-POCUS-derived probabilities and all-cause mortality. Of the 33 127 

individuals, 31 860 (96·2%) records were linked to the state death index. Among 25 261 

participants (mean age 57·1 [SD 20·2] years; 14 011 [55·5%] females and 11 250 [44·5%] 

males) without cardiomyopathy followed up over 2 ·8 (IQR 1·2–6·4) years there were 4219 

(16·7%) deaths. A hypertrophic cardiomyopathy or transthyretin amyloid cardiomyopathy-

like phenotype in the highest (vs lowest) respective quintile conferred a 17% (adjusted 

hazard ratio 1·17, 95% CI 1·06–1·29; p=0·0022 for hypertrophic cardiomyopathy) and 32% 

higher adjusted risk of mortality (1·32, 95% CI 1·19–1·46]; p<0·0001 for transthyretin 

amyloid cardiomyopathy), respectively (figure 5, appendix p 17).

Discussion

We show that an AI algorithm adapted for low-quality cardiac POCUS acquisitions and 

off-axis views can reliably identify under-diagnosed cardiomyopathies. Our findings suggest 

a novel role for AI-augmented POCUS interpretation in the opportunistic screening of 

Oikonomou et al. Page 9

Lancet Digit Health. Author manuscript; available in PMC 2025 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cardiomyopathies, expanding the scope of a common and accessible imaging modality that 

is increasingly available across primary care, emergency medicine, and resource-limited 

health-care settings.24 To achieve this, our approach prompts video-based models to adjust 

to the unique challenges of handheld cardiac ultrasonography. We show the generalisability 

and scalability of this method across video-level analyses of more than 90 000 distinct 

POCUS videos acquired across the emergency departments of two large health systems 

by evaluating their ability to discriminate between hypertrophic cardiomyopathy and 

transthyretin amyloid cardiomyopathy. We further provide evidence suggesting that AI-

POCUS could enable early diagnosis and that these AI-defined phenotypes have prognostic 

implications, flagging groups without known cardiomyopathy at high risk of adverse 

outcomes.

Overall, our work is both methodologically and clinically innovative. On the methodological 

front, we describe a scheme that boosts the performance of AI tools when deployed to 

real-world POCUS studies by explicitly addressing POCUS-specific challenges as part of 

the model development process. We show that by incorporating differential weights based on 

view confidence, along with view-naive and synthetic augmentation techniques, our models 

generalise to off-axis POCUS acquisitions of varying quality. On the clinical front, our 

work could promote equitable access at the first point of care.18 In our study, we found 

that the proportion of Black and Hispanic individuals was nearly three times higher in 

the POCUS cohort than in the transthoracic echocardiographic cohort. This highlights the 

potential to leverage clinical workflows, particularly for conditions such as hypertrophic 

cardiomyopathy and transthyretin amyloid cardiomyopathy that benefit from early detection 

and risk stratification, yet remain under-diagnosed.16,17,26 Moreover, our work suggests 

a path towards efficient and scalable targeted screening for communities at high-risk 

that could be performed using low-cost equipment and abbreviated protocols by novice 

operators.3,24 Notably, positive signatures might exist several years before clinical diagnosis, 

and even among those who are never diagnosed with cardiomyopathy, high AI-defined 

probabilities are associated with worse long-term outcomes. Together, these highlight the 

potential for reducing the time from first contact to clinical diagnosis, while also reducing 

the rates of mis-diagnosis or under-diagnosis of treatable cardiomyopathies.

Moving forward, we envision that AI-guided POCUS screening could expand our ability 

to identify individuals missed through traditional care pathways. This approach could be 

implemented both retrospectively through systematic screening of imaging repositories, 

or through prospective integration at the point of care. Systems could choose to flexibly 

calibrate the approach and tune probability thresholds to optimise sensitivity or specificity 

depending on their local patient population demographics and proposed clinical or research 

use (ie, eligibility screening for inclusion in clinical trials). The approach is vendor-agnostic, 

and offers an interoperable, end-to-end pipeline that automates the processing of raw data 

types (ie, Digital Imaging and Communications in Medicine [more commonly referred to 

as DICOM]) and all required inference steps, including multi-label classification for all 

conditions of interest.

Certain limitations merit consideration. First, our study was a retrospective analysis of 

clinically indicated scans across two large health systems. However, these represent 
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an appropriate setting for opportunistic screening. Second, our evaluation of model 

performance is challenged by the known under-diagnosis of hyper trophic cardiomyopathy 

and transthyretin amyloid cardiomyopathy, with several cases likely flagged as false 

positives, a hypothesis supported by the observed lead time of diagnosis seen through 

AI-POCUS and the high rate of adverse outcomes of false positives. However, the diagnostic 

performance and lead time need to be investigated in prospectively planned studies. Third, 

POCUS studies were not directly used for model training, and the challenges of point-of-

care acquisition were introduced through natural and synthetic augmentations. This enabled 

the use of a large well annotated dataset of clinical echocardiograms. Future studies will 

leverage expanding POCUS libraries for in-domain finetuning of these models. Fourth, our 

model is not intended to inform acute management in the emergency department, but rather 

to provide an additional layer of support for the opportunistic screening and timely risk 

stratification of individuals at risk of hypertrophic cardiomyopathy or transthyretin amyloid 

cardiomyopathy. Fifth, saliency maps only describe isolated cases and are known to perform 

poorly for complex phenotypes.38 Sixth, the outcomes analysis is limited to the YNHHS 

set given access to the local state death, with about 4% of the eligible individuals excluded 

due to insufficient information. Moreover, we cannot exclude unintended confounding given 

the retrospective and observational nature of these associations. Finally, we did not query 

myocardial biopsy reports, which, along with our strict definitions, could have resulted in 

low prevalence for our labels. However, diagnoses in the MSHS were defined based on ICD 

codes, thus supporting the generalisability of the model.

We show that AI models adapted for use with POCUS can reliably identify hypertrophic 

cardiomyopathy and transthyretin amyloid cardiomyopathy at the point of care. Our results 

support a scalable and inexpensive screening approach that uses automated AI-based 

inference on an accessible and portable modality to identify conditions that typically require 

advanced multimodality imaging, with the potential for early diagnosis, risk stratification, 

and improved outcomes.
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Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study

Point-of-care ultrasonography (POCUS) can support clinical decision making at the 

point of care as a direct extension of the physical examination. POCUS has benefited 

from the increasing availability of portable and smartphone-adapted probes and even 

artificial intelligence (AI) solutions that can assist novices in acquiring basic views. 

However, the diagnostic and prognostic inference from POCUS acquisitions is often 

limited by the short acquisition duration, suboptimal scanning conditions, and limited 

experience in identifying subtle pathology that goes beyond the acute indication 

for the study. Solutions have shown the potential of AI-augmented phenotyping in 

identifying traditionally under-diagnosed cardiomyopathies on standard transthoracic 

echocardiograms performed by expert operators with strict protocols. However, these 

are not optimised for opportunistic screening using videos derived from typically lower-

quality POCUS studies. Given the widespread use of POCUS across communities, 

ambulatory clinics, emergency departments, and inpatient settings, there is an opportunity 

to leverage this technology for diagnostic and prognostic inference, especially for 

traditionally under-recognised cardiomyopathies, such as hypertrophic cardiomyopathy 

or transthyretin amyloid cardiomyopathy, which could benefit from timely referral for 

specialised care.

Added value of this study

We present a multi-label, view-agnostic, video-based deep learning algorithm adapted 

for POCUS use, which can reliably discriminate cases of transthyretin amyloid 

cardiomyopathy and hypertrophic cardiomyopathy versus controls. The model’s 

performance was examined across more than 90 000 unique POCUS videos acquired 

over a decade across emergency departments affiliated with two large and diverse 

health systems. The model benefits from customised training that emphasises low-

quality acquisitions as well as off-axis, nontraditional views, outperforming view-specific 

algorithms and approaching the performance of standard transthoracic echocardiographic 

algorithms using single POCUS videos as the sole input. We further provide evidence 

that, among reported controls who were never diagnosed with cardiomyopathy, higher 

probabilities for hypertrophic cardiomyopathy or transthyretin amyloid cardiomyopathy-

like phenotypes are associated with worse long-term survival, suggesting possible under-

diagnosis with prognostic implications. Finally, among confirmed cases with previously 

available POCUS imaging, positive AI-POCUS screens were seen at a median of 2 

years before eventual confirmatory testing, highlighting an untapped potential for timely 

diagnosis through opportunistic screening.

Implications of all the available evidence

We define an AI framework with excellent performance in the automated detection 

of under-diagnosed yet treatable cardiomyopathies. This strategy could enable scalable 

screening, detecting these disorders years before their clinical recognition, thus 
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improving the diagnostic and prognostic inference of POCUS imaging in clinical 

practice.

Oikonomou et al. Page 16

Lancet Digit Health. Author manuscript; available in PMC 2025 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Study overview
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Figure 2: Video-level performance of a view-agnostic multi-label POCUS classifier in the Yale–
New Haven Health System
Video-level performance (AUROC curve with 95% CIs) for discrimination of hypertrophic 

cardiomyopathy, transthyretin amyloid cardiomyopathy, and severe aortic stenosis, by 

deploying a POCUS-adapted model to different echocardiographic views obtained across 

the emergency departments of the Yale–New Haven Health System. Results for all patients 

(A, B) and for those without known heart failure at the time of their assessment (C, 

D) are presented, further stratified by the confidence of the automatic view classifier in 

detecting the corresponding view (all videos [A, C] vs view confidence probability of 

≥0·5 [B, D]). The numbers at the bottom of each bar denote the counts of cases out of 

all eligible video counts in this group. All 95% CIs are derived from bootstrapping with 

1000 replications. AUROC=area under the receiver operating characteristic. POCUS=point-

of-care ultrasonography.
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Figure 3: Saliency maps
Activation maps for hypertrophic cardiomyopathy (A, B), transthyretin amyloid 

cardiomyopathy (C, D), and severe aortic stenosis (E, F) across parasternal long-axis and 

apical-4-chamber views obtained at the point of care in the emergency department. The 

colour scale denotes the relative importance of different areas, averaged across time, for each 

individual label.
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Figure 4: Density plot of time between positive artificial intelligence-POCUS screen and eventual 
confirmatory testing
Density plot summarising the time difference between a positive POCUS screen and 

confirmatory testing by cardiac magnetic resonance or nuclear cardiac amyloid testing for 

40 patients and 23 patients with an eventual diagnosis of hypertrophic cardiomyopathy or 

transthyretin amyloid cardiomyopathy, respectively. POCUS=point-of-care ultrasonography.
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Figure 5: Hypertrophic cardiomyopathy and transthyretin amyloid cardiomyopathy-specific 
probabilities and overall survival among individuals without documented cardiomyopathy in 
the YNHHS
Kaplan–Meier survival curves across quintiles (Q1–5) of the probabilities for hypertrophic 

cardiomyopathy (A) and transthyretin amyloid cardiomyopathy (B) on point-of-care 

ultrasonography in the YNHHS. Results are presented for n=25 261 eligible individuals who 

were never diagnosed with cardiomyopathy during the follow-up period (median of 2·8 [IQR 

1·2–6·4] years). We report the p values for comparison of the Kaplan–Meier curves, and 

also Cox regression-derived HRs (95% CIs) adjusted for age, sex, hypertension, diabetes, 

ischaemic heart disease, chronic kidney disease, and peripheral arterial disease. HR=hazard 

ratio. Q=quintile. YNHHS=Yale–New Haven Health System.
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Table 1:
Summary of cohort characteristics

Development (transthoracic 
echocardiographic) cohort

Testing emergency department cohorts (point-
of-care ultrasonography)

Training and 
validation set 
(n=7621)

Testing set 
(n=839)

Yale–New Haven 
Health System (n=33 
127)

Mount Sinai Health 
System* (n=5624)

Number of unique studies 9667 1035 39 546 5906

Number of unique videos 261 756 28 489 78 054 13 796

 Parasternal long-axis view 30 556 (11·7) 3283 (11·5) 15 751 (20·2) 5876 (42·6)

 Parasternal short-axis view (papillary 
muscle level)

31 779 (12·2) 3313 (11·6) 52 477 (67·2) 5237 (38·0)

 Apical 4-chamber view 25 528 (9·8) 2649 (9·3) 9826 (12·6) 2683 (19·4)

Participant-level demographics

 Age at the time of scan, years 68·8 (15·3) 69·0 (15·7) 58·9 (20·5) 56·0 (20·5)

 Sex

  Female 3694 (48·5%) 413 (49·2%) 17 276 (52·2%) 1953 (34·7%)

  Male 3927 (51·5%) 426 (50·8%) 14 923 (45·0%) 2470 (43·9%)

  Unknown ·· ·· 928 (2·8%) 1201 (21·4%)

 Hispanic ethnicity

  Hispanic 489 (6·4%) 50 (6·0%) 5073 (15·3%) 1094 (19·5%)

  Non-Hispanic 6806 (89·3%) 762 (90·8%) 26 796 (80·9%) 2656 (47·2%)

  Unknown 326 (4·3%) 27 (3·2%) 1258 (3·8%) 1874 (33·3%)

 Race

  Asian 102 (1·3%) 14 (1·7%) 616 (1·9%) 189 (3·4%)

  Black or African American 527 (6·9%) 60 (7·2%) 8040 (24·3%) 1385 (24·6%)

  White 6353 (83·4%) 701 (83·6%) 19 535 (59·0%) 1215 (21·6%)

  Other or unknown 639 (8·4%) 64 (7·6%) 4936 (14·9%) 2835 (50·4%)

Video-level labels

 Hypertrophic cardiomyopathy 41 602 (15·9%) 4796 (16·8%) 279 (0·4%) 74 (0·5%)

 Transthyretin amyloid 
cardiomyopathy

7920 (3·0%) 922 (3·2%) 172 (0·2%) 32 (0·2%)

 Aortic stenosis† 37 270 (14·%2) 4195 (14·7%) 1130 (1·4%) 584 (4·2%)

Data are n, n (%) or mean (SD).

*
Diagnoses in the Mount Sinai Health System cohort were defined based on ICD codes.

†
Severe aortic stenosis by echocardiography in the Yale–New Haven Health System dataset, or any aortic stenosis by diagnosis codes in the Mount 

Sinai Health System.
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