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ABSTRACT A low initial contamination level of the meat surface is the sine qua non
to extend the subsequent shelf life of ground beef for as long as possible. Therefore,
the short- and long-term effects of a pregrinding treatment with electrolyzed water
(EW) on the microbiological and physicochemical features of Piedmontese steak tar-
tare were here assessed on site, by following two production runs through storage
under vacuum packaging conditions at 4°C. The immersion of muscle meat in EW
solution at 100 ppm of free active chlorine for 90 s produced an initial surface
decontamination with no side effects or compositional modifications, except for an
external color change that was subsequently masked by the grinding step. However,
the initially measured decontamination was no longer detectable in ground beef,
perhaps due to a quick recovery by bacteria during the grinding step from the tran-
sient oxidative stress induced by the EW. We observed different RNA-based meta-
taxonomic profiles and metabolomic biomarkers (volatile organic compounds [VOCs],
free amino acids [FAA], and biogenic amines [BA]) between production runs.
Interestingly, the potentially active microbiota of the meat from each production
run, investigated through operational taxonomic unit (OTU)-, oligotyping-, and
amplicon sequence variant (ASV)-based bioinformatic pipelines, differed as soon as
the early stages of storage, whereas microbial counts and biomarker dynamics were
significantly distinguishable only after the expiration date. Higher diversity, richness,
and abundance of Streptococcus organisms were identified as the main indicators of
the faster spoilage observed in one of the two production runs, while Lactococcus
piscium development was the main marker of shelf life end in both production runs.

IMPORTANCE Treatment with EW prior to grinding did not result in an effective inter-
vention to prolong the shelf life of Piedmontese steak tartare. Our RNA-based approach
clearly highlighted a microbiota that changed markedly between production runs but
little during the first shelf life stages. Under these conditions, an early metataxonomic
profiling might provide the best prediction of the microbiological fate of each batch of
the product.

KEYWORDS ground beef, electrolyzed water, spoilage microbiota, metataxonomy,
biomarkers

“Battuta al Coltello di Fassona Piemontese,” which literally means “meat of the
Piedmontese cattle breed beaten (ground) with a knife,” is an Italian variant of

the popular steak tartare: a raw beef dish freshly prepared in restaurants and immedi-
ately consumed with sauces and spices. In addition, its production as a ready-to-eat
(RTE) food at the industrial level has increased considerably in recent years, and it has
begun to populate the shelves of small- and large-scale retail trade outlets. Undoubtedly,
consumption of raw ground beef improves the dietary intake of B vitamins, vitamin D3,
phosphorus, zinc, and iron (1, 2), but it also raises strong concerns related to the intrinsic
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microbiological risks of this food, which are mainly represented by the potential presence
of Listeria monocytogenes and enterohemorrhagic strains of Escherichia coli, such as Shiga
toxin-producing E. coli (STEC) O157 (3–5). Besides being a favorable substrate for these
and other pathogens, steak tartare is a very perishable product with a short shelf life that
may span from 1 to a maximum of 2 weeks. Such perishability is mainly due to the ab-
sence of preservatives and thermal treatments, where the only hurdles available to mini-
mize microbial proliferation are refrigeration, the gaseous composition of the packages,
and the potential use of active packaging (6). However, it is noteworthy that nisin-coated
packaging films that were successfully tested on beef cuts (7, 8) showed a limited effec-
tiveness on ground beef (9). After all, the inner-contaminant microbiota of ground beef is
not directly in contact with the antimicrobial bound to the external envelope of the active
packaging.

The reduction of meat contamination before grinding seems therefore an alterna-
tive strategy to obtain shelf life prolongation (10–12). Undoubtedly, such a nonthermal
decontamination strategy must be integrated in a context of maximum environmental
hygiene to fully exert its effectiveness. Having in mind that all surfaces in contact with
meat may represent sources of recontamination and cross-contamination between dif-
ferent batches (13, 14), attention to the applicability of electrolyzed water (EW) in meat
decontamination has risen considerably in the last decade, in response to the indus-
try’s demand for new effective and ecosustainable approaches. The efficacy of EW as a
direct antimicrobial treatment has been intensively investigated and often proven dur-
ing the last decade in vitro and, to a lesser extent, in situ on pork (15, 16), chicken car-
casses (17, 18), cattle carcasses (19, 20), and beef cuts (21–25). In the majority of these
experiments, neutral electrolyzed water and slightly acidic electrolyzed water pro-
duced from single-chamber generators have been used because of their neutral or
nearly neutral pH values (26), while the chosen modes of use have substantially been
the spraying or immersion of the meat. Notably, these two approaches can lead to dif-
ferent results in term of decontamination effectiveness, and usually, higher concentra-
tions of free chlorine are used in the spraying methods to achieve satisfactory results
(20, 22, 27).

Regardless of the mode of use and type of meat treated, the main concern in using
a chlorine-based sanitizer like EW directly on a foodstuff is the potential increase in the
chlorate content in the final product (24), which has led to two diametrically opposite
positions in the European Union and U.S. food market regulations. In Europe, the only
nonthermal treatment allowed so far on fresh meat is lactic acid (28), while in the
United States, chlorinated water is approved and widely used in the poultry slaughter-
ing chain (29). The discoloring and the oxidation of lipidic fractions might also repre-
sent other potential hurdles for the application of EW in meat industries, although until
now, pilot-scale trials have highlighted negligible effects on such features (16, 30).
Always taking into account effectiveness and side effects, applied research has mostly
pointed out the instant antimicrobial effect of EW upon treatment of meat, while
minor attention has been paid to its long-term impact on microbiota evolution during
the shelf life (25, 31).

Here, we aim to define the feasibility of a pregrinding decontamination performed
by immerging meat trimmings in EW at 100 ppm of free chlorine for 90 s in the real
context of a steak tartare processing line. The effectiveness of EW and its impact on
the shelf life were monitored in two distinct production runs. The microbiological,
metataxonomic, and chemical profiles were comprehensively analyzed in order to
highlight in parallel the impact of the antimicrobial treatment and the autochthonous/
allochthonous microbiota of each production run on the microbiological fate of
Piedmontese steak tartare.

RESULTS
Short- and long-term impacts of the initial EW treatment. In a preliminary experi-

ment, we observed a maximum reduction of total viable counts (TVC) on meat
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trimming surfaces after 90 s of dipping in EW at 100 ppm of free chlorine content
(FCC), while treatment with lower FCC levels (25 and 50 ppm) was ineffective for the
same time frame (Fig. S1 in the supplemental material). This EW treatment was applied
in two industrial production runs of Piedmontese steak tartare, each constituted by
two replicates, by immerging the meat trimmings before grinding. Treated and control
lots of ground beef were then followed during vacuum package storage at 4°C for 21
days (Fig. S2).

The treatment confirmed in situ its ability to significantly (P , 0.05) reduce the TVC
on meat surfaces, with an average decrease of 1 Log CFU/cm2, as well as to reduce the
Brochothrix, Pseudomonas, lactic acid bacterium (LAB), and Enterobacteriaceae popula-
tions (Fig. 1A). The dipping procedure of the trimmed meat resulted in a decrease of
the initial FCC of EW (from 100 6 2 ppm [mean 6 standard deviation] to 3 6 1 ppm);
meanwhile, at the end of the treatment, the chlorate content of the meat was under
the detection limit (0.01 mg/kg) while its color changed visibly from red to gray (Fig.
S3). However, after the grinding process, the treated and untreated meat samples
showed the same count levels and external color (Fig. 1B and Fig. S3). It is noteworthy
that the TVC of the meat grinder and stainless-steel basket used for the EW treatment
showed significantly (P , 0.05) lower microbial loads than were detected on meat
surfaces, with average counts of 2.97 6 1.12 and 2.04 6 1.52 Log CFU/cm2 on the
meat grinder and basket, respectively.

The microbial counts during the shelf life differed in relation to the two production
runs (A and B) rather than the two lots (EW and untreated control); therefore, at each
sampling point of production runs A and B, the treated and control ground beef were
grouped together. The microbiological dynamics showed a time course increase of
TVC and LAB in both production runs, with significantly higher counts for these two
populations in production run A starting from the 14th day (Fig. 1C).

Aside from the metabolites potentially related to the impact of EW and the micro-
biological metabolism, the peroxide contents were also quantified, with significant dif-
ferences not observed between the EW treatment and control lots but only between
the two production runs (Table S3). As far as degradation of the myofibrillar protein
fractions, except for a slight proteolysis observed for troponin T after the 14th day, we
could not detect differences associated with the EW treatment or the two production
runs (data not shown). Finally, the data related to proximate composition and the fatty
acid methyl esters (FAMEs) in the lipidic fraction confirmed the differences between

FIG 1 Microbiological impact of EW and spoilage dynamics. Bar plots and graphs of dynamics showing the viable counts (mean 6 SD) of total bacteria
(TVC, total viable count) and four spoilage bacterium populations (LAB, lactic acid bacteria). (A) Superficial viable counts (Log CFU/cm2) of meat trimmings
before treatment (sampled before splitting the batch into treated and control lots; 10 cm2, n = 3 in each sampling) are compared to part of the same
trimmings that underwent EW immersion treatment (10 cm2, n = 3 in each sampling). (B) Viable counts (Log CFU/g) of treated ground beef are compared
to those of the control lot. (C) Spoilage dynamics of ground beef during the 21 days of vacuum storage; data from each sampling point are grouped by
production run. Asterisks highlight significant differences (Student’s t test; *, P , 0.05; **, P , 0.01; ***, P , 0.001).
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the meat from the two production runs (A and B), as evidenced by the principal-com-
ponent analysis (PCA) applied to these data (Fig. S4).

Dynamics of spoilagemetabolomic biomarkers. A total of 11 volatile organic com-
pounds (VOCs), selected taking into account a previous work on meat treated with EW
(25), were quantified in the headspace of vacuum-packaged steak tartare and showed
increasing concentrations during the storage period. Ethyl-hexanoate, hexanal, and 1-
hexanol represented the most abundant compounds (Table S1). No significant differ-
ences in VOC concentrations were observed between the two treatments or between
the two production runs.

Except for histidine, all free amino acid (FAA) concentrations decreased significantly
during the shelf life and differed at each sampling point between production runs A
and B but not in relation to the EW treatment with 100 ppm of FCC (Table S2). As for
biogenic amines (BAs), we observed after the 7th day of storage an increasing accumu-
lation of tyramine and, to a lesser extent, of tryptamine. In contrast, tyrosine and tryp-
tophan decreased progressively after the 7th day, and their concentrations were there-
fore negatively (false discovery rate-adjusted P value {P [FDR]} of ,0.001; Rho , 0.5)
correlated with the derived biogenic amines. Interestingly, this expectable inverse cor-
relation between an amino acid and its derived biogenic amine was not observed for
histidine and histamine, with no changes of histidine concentration during the storage
time. Finally, 2-phenylethylamine was not detected in the samples. Extending the cor-
relation analysis to microbiological dynamics and chemical compounds (VOCs, FAAs,
and BAs), we observed an overall positive correlation (P [FDR] , 0.001; Rho . 0.5)
between LAB/Enterobacteriaceae counts and the presence of tryptamine and tyramine.
Notably, only the LAB counts were positively correlated (P [FDR] , 0.001; Rho . 0.5)
with diacetyl, regardless of the production run or treatment lot (Fig. 2A).

A multivariate PCA of the VOC, FAA, and BA data was performed, and the results
are presented in Fig. 2B. Even with these parameters, a separation of the two series
along the principal-component 2 (PC2) axis is evident, while the storage time affects
the position of the samples along PC1.

Microbiota composition of steak tartare. Following the microbiological and chemi-
cal analyses, we explored the bacterial biodiversity of 46 samples collected during the
product shelf life by the parallel use of operational taxonomic units (OTUs) obtained
through de novo clustering at 97% and amplicon sequence variants (ASVs) (Fig. 3).
Totals of 2,377,251 and 2,516,054 sequences were obtained from the ASV- and OTU-
based pipelines, respectively. The sequences were aligned at 97 and 99% similarity to
reference databases for OTUs and ASVs, respectively; 60% of the ASVs reached the spe-
cies level, while only 40% of the OTUs were assigned to a defined species. In relation to
this difference in the taxonomic resolution, we initially explored the microbiota com-
position at the genus level, or the next level up if genus was not reached. In this
frame, the genera Shigella, Staphylococcus, and Burkholderia were ubiquitous and rep-
resented more than 10% of total average abundance in both the ASV- and OTU-based
taxonomies (Fig. 3A). The microbiota of steak tartare also encompassed Streptococcus,
Stenotrophomonas, Achromobacter, Lactococcus, Pseudomonas, Photobacterium, Luteibacter,
Lactobacillus, Abiotrophia, and Neisseria, which were all found in more than 10 samples. In
relation to the approach used, we observed a higher presence of Staphylococcus in the
ecology based on ASVs (Wilcoxon’s test, P [FDR] , 0.001) and a peculiar presence of
Propionibacterium and Bacilli/Bacillales in the OTU-clustering approach. This different taxo-
nomic assignment was minimally dependent on the database used and mostly related to
the pipeline, as demonstrated by aligning ASVs on the 97% database used for OTU taxon-
omy (Table S4).

Permutational analysis of variance (PERMANOVA) confirmed that the greatest por-
tion of compositional variability was determined by the two different production runs
considered, in both ASV-based (R2 = 0.106; P , 0.001) and OTU-based (R2 = 0.130;
P , 0.001) microbiota, while the EW treatment and storage time did not determine
marked changes of bacterial communities (Table 1). In particular, LAB of the genera
Lactococcus-Streptococcus and Gram-negative genera Luteibacter-Neisseria were
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FIG 2 Presence of spoilage biomarkers and their correlations with microbial populations. (A) Network displaying all significant
Spearman’s correlations (P [FDR] , 0.001) existing among viable counts, free amino acids (FAA), biogenic amines (BA), and volatile

(Continued on next page)
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significantly more abundant in production run A, which also showed higher richness
and diversity (Fig. 3B). On the other hand, we observed significantly greater abundan-
ces of Shigella and Burkholderia in production run B.

No significant variations of alpha-diversity parameters or relative abundances were
observed before and after the EW treatment or between meat trimmings and ground
beef in either the control or the treated lot.

As for the inferred metagenome functions, pathway enrichment analysis showed
that 23 metabolic pathways were differentially represented in the two production runs
(GAGE [generally applicable gene set enrichment] statistics, P , 0.001). In particular,
three predicted KEGG pathways for carbohydrate metabolism (map00562, map00040,
and map00500) and three for amino acid metabolism (map00270, map00260, and
map00280) were significantly overrepresented in production run A. Moreover, lipo-
polysaccharide biosynthesis was more highly represented in production run B, while
pathways responsible for peptidoglycan and glycan biosynthesis were more abundant
in production run A (data not shown).

Microdiversity within bacterial communities and links with spoilage biomarkers.
To overcome the resolution limits of the OTU approach, the within-genus microdiversity
of the most abundant OTUs (.1% of average abundance) was investigated at single-
nucleotide-based resolution by oligotyping 1,791,996 paired-end reads from the genera
Staphylococcus, Burkholderia, Shigella, Streptococcus, Lactococcus, Stenotrophomonas,
Photobacterium, Pseudomonas, and Luteibacter, the class Bacilli, and the order Bacillales.
A total of 181 oligotypes belonging to 29 different species were detected, with nine
genera identified that encompassed a maximum of nine species (Pseudomonas) and a
minimum of one species (Paraburkholderia, Stenotrophomonas, and Luteibacter). All oli-
gotypes from Burkholderia OTUs were identified as Paraburkholderia fungorum, whereas
sequences included in the Bacillales and Bacilli OTUs were assigned to different
Staphylococcus species (Table 2). For the genus Shigella and several Staphylococcus oli-
gotypes, it was not possible to reach an unequivocal identification at the species level,
but by investigating their distribution in the set of samples through a SparCC (sparse
correlations for compositional data) cooccurrence analysis, we noticed in the resulting
network graph a homogeneous clustering of their oligotypes (Fig. S5). Overall, the cooc-
currence network highlighted species-specific cooccurrence patterns in most of the oli-
gotyped genera: i.e., oligotypes tended to group in modules as a function of the species
to which they belonged. This is particularly evident for oligotypes assigned to
Lactococcus piscium, Luteibacter rhizovicinus, Paraburkholderia fungorum, Staphylococcus
sciuri, Streptococcus mitis, and Streptococcus sanguinis and, indeed, for two undefined
taxa belonging to the Shigella and Staphylococcus genera. Since oligotypes of the same
taxa distributed in the same samples likely indicate the presence of a homogeneous
ecotype, the oligotype frequencies were cumulated in each species-specific module by
considering them as single biological entities in the following analysis. Overall, all spe-
cies were present in both production runs, except for Lactococcus lactis oligotypes,
which were found only in production run A.

Noteworthy at the species level was the similarity between the relative abundance
profiles produced by the oligotyped OTUs and ASVs. Despite the pipelines used to gen-
erate the sequences and the alignments performed on different databases, we observed
similar sets of predominant species, namely, Lactococcus piscium, Staphylococcus
sciuri, Photobacterium phosphoreum, and Luteibacter rhizovicinus. For other taxa,
such as Streptococcus and Stenotrophomonas, the species assignments were more
discordant (Fig. S6).

FIG 2 Legend (Continued)
organic compounds (VOCs). For colors of nodes, refer to the key. Colors of the edges indicate positive (green, Rho . 0.5) and
negative (red, Rho , 20.5) correlations, and thickness is proportional to the absolute Rho value. Node dimension and edge lengths
have no specific meaning. (B) PCA obtained by using VOC, FAA, and BA data. PCA score scatterplots of data for meat samples (C,
control; EW, treated). The PCA model was obtained with the first two principal components, which explained 69 and 66% of the
total response variance.
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FIG 3 Compositional microbiota of steak tartare. (A) Taxonomic rank levels achieved by ASV- and OTU-based approaches, expressed as percentages of
sequences assigned to a given taxonomic rank compared to the total number of sequences. Stacked bar plots show microbiota compositions (relative

(Continued on next page)
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Lactococcus and Photobacterium were significantly, if not exclusively present after
the end of the product shelf life, regardless of the approach used (Fig. 4). Noticeably,
the OTU-based approach could not discriminate at the species level within the genus
Lactococcus, while ASVs and oligotyping highlighted the specific presence of
Lactococcus piscium only from the 14th day of storage and regardless of the produc-
tion run of origin.

Regarding links among bacteria and the metabolites potentially produced by their
anabolic and catabolic activities, we investigated the existing correlations between
FAA, BA, and VOC concentrations and the compositional microbiota of steak tartare
at the highest taxonomic ranks achievable, respectively by OTUs, oligotypes, and ASVs
(Fig. 5). Regardless of the approach used, the relative abundances of Shigella species and
Luteibacter rhizovicinus were positively and negatively correlated (P [FDR] , 0.001),
respectively, with the presence of histamine. On the other hand, only comparing oligo-
type and ASV abundances with FAA and BA abundances, we could appreciate a signifi-
cant correlation (P [FDR] , 0.001) between Lactococcus piscium and the reduction of
tryptophan/tyrosine, as well as the subsequent accumulation of tryptamine/tyramine.
Tyramine accumulation was positively correlated with Photobacterium phosphoreum
ASVs also and, to a lesser extent, with all oligotypes identified in the Photobacterium ge-
nus (P [FDR] , 0.05). In accordance with the high concentrations of hexanal shown in
the late stages of storage, this aldehyde showed the highest number of positive correla-
tions with dominant taxa in the final storage period. Taking into account the aforemen-
tioned correlation between diacetyl and LAB viable counts, it is remarkable that
Lactococcus piscium oligotypes were positively correlated (P [FDR] , 0.01) with the accu-
mulation of this ketone in the steak tartare.

DISCUSSION

This study aimed to provide a comprehensive scenario of the impact exerted by a
pregrinding treatment with EW on two different production runs of Piedmontese steak
tartare. For this purpose, the microbiota evolution was monitored during the shelf life
in vacuum packaging by using RNA-based metataxonomic analysis at the highest reso-
lution achievable and was matched to the spoilage biomarkers detected.

The antimicrobial activity of this treatment on meat trimmings has been preliminar-
ily proven in vitro and then confirmed in situ by an overall decrease of spoilage bacteria

FIG 3 Legend (Continued)
abundances of ASVs and OTUs in percentages) at the genus level, as shown in the color key; samples are sequentially grouped according to the sampling
points (BG, before grinding; GB, ground beef; and T, storage time [days]), lots (control and EW), and production runs (A and B). (B) Box plots of Log-
transformed abundances (ASVs and OTUs) of the core genera in the two production runs; P value of Wilcoxon’s test [FDR adjusted] is displayed.

TABLE 1 Variance in biological dissimilarity among bacterial communities explained by each
categorical variable (production run, time, and lot) or their interactionsa

Explanatory variable(s)b

ASVs OTUs

R2 P valuec R2 P value
Single variable
Production run (A, B) 0.106 0.001* 0.130 0.001*
Time (BG, GB, T0, T01, T06, T14, T21) 0.097 0.434 0.095 0.362
Treatment lot (control, EW) 0.045 0.009 0.053 0.005

Interaction
Treatment lot� production run 0.028 0.111 0.025 0.152
Treatment lot� time 0.092 0.594 0.099 0.284
Production run� time 0.087 0.255 0.103 0.054
Treatment lot� production run� time 0.081 0.375 0.062 0.696

aVariance explained (R2) and statistical significance (P value) quantified by permutational analysis of variance
(PERMANOVA) test of Bray-Curtis dissimilarity.

bBG, before grinding; GB, ground beef; T0, T01, T06, T14, T21, storage times (days); EW, electrolyzed water
treatment.

cSince P values result from a 999-permutation test, they are only reported as significant (*) down to 0.001.
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on meat surfaces. Unlike our previous survey, in which the same EW treatment applied
by spraying did not modify the beef color (25), here, the immersion of trimmings
caused a color modification that would discourage the use of such an approach when
the meat processing does not include a subsequent manipulation (grinding, cooking,
or mixing with ingredients) that could likely mask this side effect (32). With regard to

TABLE 2 Numbers of oligotypes and the species they belong to present in the selected core OTUsa

OTU identity
(no. of oligotypes)

No. of
sequences

No. of
taxa Oligotype identity (no.)

No. of
sequences

Cooccurrence module or
ungrouped oligotypes (no.)

% of sequences
represented

Lactococcus (14) 120,311 2 Lactococcus lactis (8) 18,415 M5 (1) 53.1
Ungrouped (7) 46.9

Lactococcus piscium (6) 101,896 M4 (6) 100.0

Luteibacter (10) 57,229 1 Luteibacter rhizovicinus (10) 57,229 M5 (8) 96.1
Ungrouped (2) 3.9

Burkholderia (26) 241,380 1 Paraburkholderia fungorum (26) 241,380 M1 (23) 99.9
Ungrouped (3) 0.1

Photobacterium (20) 132,246 3 Photobacterium carnosum (6) 57,529 M7 (2) 31.7
Ungrouped (4) 68.3

Photobacterium iliopiscarium (9) 32,702 M7 (5) 14.9
Ungrouped (4) 85.1

Photobacterium phosphoreum (5) 42,015 M7 (5) 100.0

Pseudomonas (16) 72,770 9 Pseudomonas asturiensis (1) 83 Ungrouped (1) 100.0
Pseudomonas caeni (1) 1,094 Ungrouped (1) 100.0
Pseudomonas chengduensis (1) 93 Ungrouped (1) 100.0
Pseudomonas fragi (1) 579 M9 (1) 100.0
Pseudomonas migulae (1) 819 Ungrouped (1) 100.0
Pseudomonas paralactis (1) 1,666 Ungrouped (1) 100.0
Pseudomonas psychrophila (2) 7,808 M9 (1) 42.3

Ungrouped (1) 57.7
Pseudomonas turukhanskensis (5) 27,223 M10 (4) 99.4

Ungrouped (1) 0.6
Pseudomonas veronii (3) 33,405 M8 (3) 100.0

Shigella (18) 299,714 1 Shigella sonnei/flexneri (18) 299,714 M11 (18) 100.0

Bacillales (12) 57,933 3 Staphylococcus cohnii (1) 163 Ungrouped (1) 100.0
Staphylococcus saprophyticus (10) 56,667 M2 (1) 0.2

Ungrouped (9) 99.8
Staphylococcus xylosus (1) 1,103 Ungrouped (1) 100.0

Bacilli (8) 312,322 2 Staphylococcus aureus/simiae (7) 311,291 M0 (1) 0.1
Ungrouped (6) 99.9

Staphylococcus capitis/caprae (1) 1,031 Ungrouped (1) 100.0

Staphylococcus (20) 277,571 5 Staphylococcus aureus/simiae (2) 12,380 M0 (1) 97.7
Ungrouped (1) 2.3

Staphylococcus cohnii (1) 882 M2 (1) 100.0
Staphylococcus saprophyticus (1) 10,998 Ungrouped (1) 100.0
Staphylococcus sciuri (15) 252,708 M12 (14) 99.9

Ungrouped (1) 0.1
Staphylococcus warneri (1) 603 Ungrouped (1) 100.0

Stenotrophomonas (18) 88,541 1 Stenotrophomonas pavanii (18) 88,541 M13 (8) 48.9
M14 (4) 30.3
M15 (4) 20.6
Ungrouped (2) 0.2

Streptococcus (19) 131,979 4 Streptococcus cristatus (1) 528 M17 (1) 100.0
Streptococcus mitis (10) 93,558 M16 (8) 98.3

Ungrouped (2) 1.7
Streptococcus salivarius (1) 1,473 Ungrouped (1) 100.0
Streptococcus sanguinis (7) 36,420 M17 (7) 100.0

aCore OTUs were those with.1% average abundance; OTUs were determined to the genus level or the next higher level. Highly cooccurring oligotypes were detected by
analyzing the SparCC network topology (Fig. 4) through the algorithm described in reference 84 and grouped in modules (Fig. S3).
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other potential side effects, the treatment did not increase peroxide formation or deg-
radation of the protein structure, confirming the positive outcomes previously
observed in chicken breasts and frozen beef treated with different types of EW (15, 24,
30, 33). The main safety risk in using chlorinated water on foods was excluded too,
since chlorate residues were not detectable and, thus, largely below the limit imposed
by the European Food Safety Authority (34).

In spite of this significant but slight decontamination prior to grinding, the even-
ness of the counts between treated and untreated ground beef highlighted the poor
suitability of this approach for overall improvement of the microbiological quality of
steak tartare and extension of its shelf life. Meat grinders are a well-recognized source
of contamination and biofilms (35–37); however, the low superficial counts on the
grinder used here before the production runs and the unaltered microbiota composi-
tion of the meat after grinding lead us to exclude the direct contribution of this proc-
essing step in the microbiological levelling between treatment lots. Moreover, these
results confirm the minimal or momentary impact of the grinding step in the final
ground beef microbiota composition and counts (38).

As far as the direct bactericidal effect of EW is concerned, chlorine-based disinfec-
tants have been proven to promote in several bacteria the viable but nonculturable
(VBNC) state, a stress condition that determines a reduced cultivability and may lead to
overestimation of the immediate impact of any disinfection treatment in terms of
microbiological counts (39–42). Moreover, a recent metadata analysis highlighted the
lower decontamination capability of EW treatments on muscle meat in comparison
with their effects on drier and more-smooth-surfaced foods (eggs and vegetables),
regardless of the FCC, time, and temperature of the treatments performed (43). A lower
effectiveness is likely due to the higher protein content of meat exudates, which can
act as a protective layer and limit the direct oxidation of surface microbiota (27). In this
frame, induction to VBNC status might have caused the transient effectiveness
observed on meat trimmings, since the resuscitation from this metabolic condition can
take place in the treated food when optimal conditions are quickly restored (44, 45).
Indeed, bacterial translocation from treated meat surfaces to ground beef can offer a
greater availability of space and nutrients, together with major protection from EW-
induced oxidation. It is important to underline that our results do not exclude a priori the

FIG 4 Distribution of OTUs, oligotypes, and ASVs assigned to Lactococcus and Photobacterium species in the first week
of shelf life and in the expired product. Log-transformed abundances of ASVs, OTUs and oligotypes (grouped in each
species by cooccurring modules) are shown. The P values of Wilcoxon’s test [FDR adjusted] are displayed and highlight
significant differences between days 0 and 6 and days 14 to 21, regardless of the production run of origin, which are
displayed with red (production run A) and cyan (production run B) box plots.
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FIG 5 Correlation between metataxonomic and chemical data. Tile plots showing existing correlation between chemical data (FAA, free
amino acids; BA, biogenic amines; VOCs, volatile organic compounds) and OTU, oligotype, and ASV abundances. Colors represent levels of
Spearman’s Rho correlation from 21 to 1 as shown in the key, and significant positive and negative correlations are highlighted with
asterisks (FDR-adjusted P values: *, P , 0.05; **, P , 0.01; ***, P , 0.001).
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potential efficacy of this and other similar oxidizing treatments toward specific pathogens
in highly contaminated or experimentally inoculated meats (10, 46). Nevertheless, tar-
geted pathogen inhibition and VBNC induction are aspects beyond the scope of this
untargeted observational study of the potentially active microbiota.

Likely due to the transitory, short-term effect, the spoilage dynamics of the steak
tartare were not significantly impacted by the initial EW immersion. The composition
of the potentially active microbiota differed significantly between the two production
runs from the first day, and minimal longitudinal changes were observed during the
time course. In parallel, viable counts and metabolite dynamics were distinct between
the production runs, but only after the first week of vacuum storage could we observe
an acceleration of spoilage dynamics in production run A, both in terms of LAB growth
and metabolite production. The high batch-to-batch microbiota diversity is not surpris-
ing for minimally processed food like ground beef (9, 25, 38), since it is strongly related
to different contaminations occurring on carcasses or primal cuts during the slaughter-
ing and dissection stages (47).

More intriguing is the limited temporal succession of taxa observed during the first
week of storage. Such temporal succession has largely been described in vacuum-
packaged meat and is characterized by the gradual shift from a highly diversified
microbiota with several aerobic and Gram-negative organisms toward a less miscella-
neous ecology dominated by a few Gram-positive organisms, mainly lactic acid bacte-
ria (47–49). Reduction of biodiversity and the establishment of an oligarchic microbiota
are clear starting signals of spoilage phenomena and form a prelude to the subsequent
increase of viable counts and perceptible organoleptic alterations (38, 50, 51). These
considerations, together with the microbiological counts and chemical data, high-
lighted that both production runs did not spoil within the shelf life and were substan-
tially acceptable beyond its end as well; for instance, among the VOCs, only ethyl-hexa-
noate was over the threshold of sensory perception on the 20th day (52).

However, the increase in Lactococcus piscium abundance at the end of the shelf life,
as well as its correlation with catabolism of two amino acids and diacetyl production,
pointed out an initiating spoilage phase led by this species. This psychrotrophic LAB is
the only member of the genus Lactococcus with recognized spoilage activity, exerted
in the late phases of cold storage by dominating the microbiota of vacuum-packaged
meats (53–55). In particular, it metabolizes acetoin and diacetyl from amino acids and
glycerol when glucose has already been consumed by other LAB species with faster-
growing phenotypes (51, 56). In relation to this slow-growing spoilage strategy, its lim-
ited detectability in plate counts with incubation over 30°C, and its presence in both
production runs, the development of Lactococcus piscium was not a determinant of
the different microbiological dynamics of spoilage populations observed in production
runs A and B. In particular, microbiological counts highlighted a faster spoilage
dynamic in production run A. Photobacterium phosphoreum was another endpoint indi-
cator of ground beef shelf life in both production runs. Its increasing presence was
observed in the late storage phases and was strongly correlated with biogenic amine
production, in agreement with the outcomes of targeted investigations of this biolumi-
nescent bacterium (57, 58). Therefore, the distinctive signals of faster spoilage in pro-
duction run A were present from the earliest shelf life stages, including the greater mi-
crobial complexity, the higher presence of Firmicutes, particularly Streptococcus, and
the overrepresentation of inferred pathways of carbohydrate metabolism (12, 38).

While taking into account its dimensional limitations, our applied investigation sug-
gests the relevance of production run-by-production run metataxonomic profiling as a
strategy to foresee the maximal storage period of each product batch, an untargeted
microbiota profiling that has to be performed at the highest taxonomic resolution to
be fully informative for microbial habitats like foodstuffs, in which a few phylogeneti-
cally close and recurring species are responsible for the spoilage dynamics (59). In this
frame, the parallel use of three bioinformatic pipelines has confirmed all taxonomic-
rank resolution limits of the traditional OTU clustering approach in comparison with

Botta et al.

Volume 9 Issue 3 e01751-21 MicrobiolSpectrum.asm.org 12

https://www.MicrobiolSpectrum.asm.org


paired-end assembling of ASVs (60, 61). Indeed, although the OTU and ASV approaches
showed a high degree of agreement in terms of the main taxon composition and alpha
diversity metrics (62, 63), going deeply into the microdiversity, a lack of resolution was
observed for the OTU approach, regardless of the final database used, and it was only
partially improved by the subsequent oligotyping.

Undoubtedly, our untargeted survey also showed limits of resolution as a whole,
mainly in terms of the detection of pathogens and their certain identification. For
instance, we could not depict the microdiversity within the Shigella genus, which can
potentially harbor pathogenic species, and this genus was highly abundant in all
ground beef samples. This is not surprising, since it is even difficult to discriminate
between Shigella and Escherichia at the genus level if only single genes are used as tax-
onomic keys (64, 65). However, the oligotype cooccurrence analysis has highlighted in
this product an Escherichia/Shigella population homogeneously distributed in all sam-
ples that likely encompasses a unique ecotype/species not identifiable on the basis of
the 16S gene (13, 66, 67). As far as the presence of other pathogens typically present in
ground beef, we did not detect Listeria spp., regardless of the bioinformatic pipeline
used, while we excluded the presence of the Burkholderia cepacia pathogen complex
through OTU-, oligotyping-, and ASV-based analysis (68).

In summary, with the main purpose being to investigate the microbiological impact
of this pregrinding decontamination treatment in the short and long term, we charac-
terized the potentially active microbiota of two Piedmontese steak tartare production
runs. Considering the different microbiota compositions of the two production runs
from the early storage stages and their distinct final conditions of spoilage as proof-of-
concept, we can reason that each production run might undergo faster or slower spoil-
age as a function of its initial metataxonomic profile. Therefore, more extensive investi-
gations on a wide set of production runs at the RNA and DNA levels are now needed,
in order to create a benchmark database of those profiles that can alternatively boost
or slow down the spoilage dynamic of each product batch. This kind of approach will
likely lead to the ability to predict and maximize the shelf life of highly perishable
foods like ground beef.

MATERIALS ANDMETHODS
Meat processing, EW preparation, and experimental treatments. The experiments were performed

in a local processing plant (Piedmont, Italy) in which Piedmontese steak tartare is produced from three
types of beef cuts (rump, thick flank, and sirloin) of adult females of the Piedmontese breed (Bos taurus;
.30 months of age and .15 days of beef carcass aging). Briefly, the beef cuts are dissected from the
carcass quarter, manually portioned into regular trimmings (;500-g pieces), mixed, roughly ground by a
single passage in a screw grinder (TCM grinder; Omet Foodtech srl, SI, Italy), and directly vacuum packed
(120 6 10 g each) in transparent linear low-density polyethylene bags (LLDPE) (oxygen transmission of
0.83 cm3�m22�h21 at 23°C, 30 cm by 30 cm) without operator handling or the addition of ingredients or
preservatives. The expiration date after 14 days of vacuum storage at 4°C was fixed by the producer.

In this frame, experimental decontaminations of the meat trimmings with EW were performed in situ
before the grinding step. The EW was freshly produced the day before the experiments in a nonmem-
brane generator (Eva system 100; De Nora S.P.A., Milan, Italy) by electrolysis of a 4-g/liter solution of KCl
and diluted in distilled water to reach the desired final available free chlorine concentration (FCC), which
was set to 100 6 2.10 ppm (pH 8.55 6 0.10, 11.5°C 6 1.0°C, oxidation reduction potential of 735 to 740)
after preliminary in vitro evaluation of decontamination efficiency on meat trimmings. The analyses of
FCC in EW and total chlorate residues in treated meat were performed by the Laemme Group (Tentamus
Company, Moncalieri, Italy) following ISO 7393-2:2017 and ISO 10304-4:1997.

In practice, two production runs were followed, in July (production run A) and August (production
run B) 2019, each constituted by two replicates (;5 kg each; different carcass quarter of origin), equally
divided into two parts, (i) a treated lot, in which meat trimmings were immerged in EW solution (wt/vol
ratio of 1:10) for 90 s in a stainless-steel basket with continuous stirring, air dried for 1 min, and then
ground, and (ii) an untreated control lot (Fig. S1). Surfaces in contact with meat trimmings (the inside of
the meat grinder and the basket for the immersion) were cleaned and sanitized before the treatment
and grinding of each lot by following the routine company procedures of an initial washing with high-
pressure water, washing in foaming alkaline-free chlorine detergent (pH 13, .350 ppm free chlorine, 30
min), and a final rinse. To assess the cleaning-sanitizing efficacy and quantify the environmental contam-
ination of meat contact surfaces, swabs were collected from the stainless-steel basket (n = 3) and from
inside the meat grinder (n = 5) before the treatment of each lot. Knives, chopping boards, and the opera-
tor’s gloves were not considered for swabs since the cutting of meat trimmings was prior to the start of
the experiment.
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Meat trimmings were sampled by swabbing the surface before grinding (BG) (n = 3; 10 cm2) and im-
mediately after grinding (ground beef [GB]) but before packaging. Around 40 vacuum packages were
produced and stored at 4.0 6 0.5°C without light exposure, and sampling was performed at 1, 7, 14, and
21 days. At each sampling point, two bags were sampled: one was immediately subjected to microbio-
logical analysis, and one stored at280°C for further physicochemical analysis.

Microbiological analysis. The swabs were supplemented with 5 ml of buffered peptone water
(BPW), manually mixed for 2 min, and squeezed, extracting approximately 10 ml of suspension. Serial
dilutions were set up from swab extracts and minced meat samples (10 g of meat in 90 ml of BPW), and
microbial counts were performed as follows: total viable counts (TVC) of mesophilic bacteria on plate
count agar incubated for 72 h at 30°C, Brochothrix spp. on STAA (streptomycin sulphate, thallous acetate,
and actidione [cycloheximide]) medium incubated at 25°C for 48 h, Pseudomonas spp. on Pseudomonas
agar base with cetrimide-fucidin-cephaloridine (CFC) selective supplement incubated at 25°C for 48 h,
lactic acid bacteria (LAB) on De Man-Rogosa-Sharpe (MRS) agar incubated for 72 h at 30°C, and
Enterobacteriaceae on violet red bile glucose agar (VRBGA) incubated for 24 h at 37°C. All media and sup-
plements were provided by Biolife s.p.a. (Milan, Italy) unless otherwise stated.

An aliquot of 5 ml from each sample was centrifuged, and the pellet was collected and stored with
RNAlater (Ambion; Thermo Scientific, Milan, Italy) at 280°C until RNA extraction and amplicon-based
sequencing analysis were performed.

Proximate composition, FAME pattern, and peroxide value. The moisture content was determined
using a Sartorius MA30 thermo-balance (Sartorius AG, Göttingen, Germany). The total nitrogen content
and total protein content (conversion factor, 6.25) were obtained according to the Kjeldahl method,
using Kjeltec system I (Foss Tecator AB, Höganäs, Sweden). The lipid fraction was determined on previ-
ously freeze-dried samples, using a semiautomatic Soxhlet Büchi extraction system B-811 (Büchi
Labortechnik AG, Flawil, Switzerland) for 12 h, employing dichloromethane as the solvent.

Fatty acid methyl esters (FAMEs) were obtained by transesterification of triglycerides (200 ml) as pre-
viously described (69). FAMEs were analyzed on a Thermo Trace 1300 gas chromatograph (GC) equipped
with a flame ionization detector (FID) and a split-splitless injector, using a DB23 column (30 m, inner di-
ameter of 0.25 mm, and film thickness of 0.25 mm; J&W Scientific). Hydrogen was used as the gas carrier,
with a flux of 1.5 ml/min. The injector and the detector were operated at 250°C and 350°C, respectively,
and the temperature ramp was 5°C/min. The identification was obtained by comparing the retention
times obtained from a mixture of 37 FAME standards (Supelco).

In order to determine the peroxide values of all the samples, a spectrophotometric method described
previously (70) was applied. An amount of lipid of between 0.01 g and 0.3 g was weighed in a 10-ml glass
tube, and 9.9 ml of chloroform-methanol mixture (7:3, vol/vol) and 50 ml of ammonium thiocyanate solu-
tion (30%, wt/vol) were added. The sample was vortexed for 5 s. Then, 50 ml of iron(II) chloride solution
(2 mg/ml acidified with 2ml of 10 M HCl) was added and the sample was vortexed for 5 s and incubated for
5 min at room temperature in the dark. Then, the absorbance was determined at 500 nm against a blank
containing all reagents except the sample using a spectrophotometer (Shimadzu UV-1900).

Analysis of VOCs. (i) SPME of VOCs. Fiber coated with divinylbenzene/carboxen/polydimethylsilox-
ane (Supelco solid-phase microextraction [SPME] fiber assembly 50/30 mm DVB/CAR/PDMS) was used
for the adsorption of volatile organic compounds. About 1.5 g of fresh sample was inserted into a 10-ml
vial, and 50 ml of a 1-mg/liter camphor solution was added as the internal standard. The vial was then
sealed with a cap fitted with a polytetrafluoroethylene (PTFE)/silicone pierceable septum. The prepared
sample was incubated in a water bath at a temperature of 40°C for 15 min, after which the fiber was
exposed in the headspace at a temperature of 40°C for 30 min.

(ii) Detection of volatile organic compounds using GC-FID. A Thermo TRACE 1300 gas chromato-
graph (GC) (Thermo Finningan, Rodano, Milan, Italy) equipped with a FID and a split-splitless injector
was used. A low-polarity DB-5 Agilent Technologies column (30 m by 0.25 mm by 0.25 mm) (J&W
Scientific, Folsom, CA) with a 95% dimethyl, 5% phenyl, polymethylsiloxane stationary phase was used.
The injector and the detector were operated at 250°C and 350°C, respectively. Thermal desorption of the
compounds from the SPME fiber was carried out in the splitless mode (split flow, 12.0 ml/min; splitless
time, 2 min). Hydrogen was the carrier gas, with a constant flow rate of 1.2 ml/min. The oven was held
at 50°C for 2 min and then heated to 220°C at a speed of 5°C/min and kept constant for 5 min. The over-
all timing of the analysis was 41 min. The VOC identification was obtained by comparison with the elution
times and retention indexes of 11 standards (ethyl lactate, ethyl acetate, ethyl butyrate, ethyl hexanoate,
benzaldehyde, hexanal, 1-pentanol, 1-hexanol, 2,3-butanedione, 3-methyl-1-butanol, and acetoin), chosen
on the basis of the evidence of their significant changes in meat matrices subjected to various methods of
conservation (25). The quantities of the volatiles were estimated by comparison of their peak areas with
that of the camphor internal standard using area normalization.

Amino acid and biogenic amine determination. (i) Preparations of samples and standards. Eighty-
five milliliters of ultrapure water (18.2 MX-cm at 25°C) was added to 10 g of lyophilized and defatted
meat sample and the mixture homogenized for 2 min with an Ultra-Turrax (Ultra-Turrax T25 basic; IKA).
Five milliliters of 100% trichloroacetic acid (TCA) (wt/vol) was added, and the mixture left to rest for 5
min. After filtration, an aliquot of 50 ml was extracted with ether (15 ml 3 times) in order to remove lipids
and excess TCA. The aqueous solution (after removing traces of ether in a Rotovapor) was adjusted to
50 ml with ultrapure water and filtered through a 0.45-mm MS mixed cellulose ester (MCE) syringe filter
before high-performance liquid chromatography (HPLC) analysis. The standard solutions of amines and
precursor amino acids were prepared by dissolving each compound in HPLC-grade water.

(ii) Chromatographic conditions. For the chromatographic analyses, a validated ion-pair HPLC
method was applied (71), with slight modifications. A C18 reverse-phase Spherisorb S5 ODS 2 column

Botta et al.

Volume 9 Issue 3 e01751-21 MicrobiolSpectrum.asm.org 14

https://www.MicrobiolSpectrum.asm.org


(Phase Separation, Inc., Deeside, Clwyd, United Kingdom) (250-mm by 4.6-mm inner diameter, particle
size 5 mm) was used. The ion pair reagent, heptanesulfonate/ortho-phosphate, was prepared by dissolv-
ing heptanesulfonate and phosphate (KH2PO4) in ultrapure water and adjusting the pH to 3.5 with
ortho-phosphoric acid; octylamine (another ion-pairing reagent) was used at a low concentration (20 ml/
liter solution) as a second ion-pairing reagent (eluant 1). Methanol was employed as an organic modifier
(eluant 2). Mobile phases were filtered and degassed before use. Conditions were as follows. Pump A,
eluant 1 (heptanesulfonate, 10 mM; phosphate, 10 mM). Pump B, HPLC-grade methanol. Gradients:
100% pump A for 1 min; pump B from 0% to 26% in 5.25 min; pump B from 26% to 35% in 9 min; pump
B from 35% to 42% in 1.5 min; pump B at 42% for 24 min; pump A at 100% for 10.40 min. Rate of flow,
1 ml/min. Detection (UV and diode-array detection [DAD]) at 215 nm. The column was kept at 27°C dur-
ing the analyses (71).

RNA extraction, cDNA synthesis, and amplicon-based sequencing. Total RNA was extracted using
the MasterPure complete DNA and RNA purification kit (Epicentre, Madison, WI, USA) according to the
manufacturer’s instructions. Three microliters of Turbo DNase (Ambion) were added to digest the DNA
in the RNA samples, with an incubation of 3 h at 37°C. The complete denaturation of genomic DNA
(gDNA) was confirmed by PCR amplification of the partial 16S rRNA gene, using forward primer FD1 and
reverse primer RD1 (72). The quality of the extracted RNA was evaluated and quantified using a
NanoDrop spectrophotometer (Thermo Scientific, Milan, Italy). Two samples of production run B were
excluded due to the low RNA quality and amount (from ground beef at 0 and 14 days). The cDNA was
synthesized from 2 mg of RNA with the Moloney murine leukemia virus (M-MLV) reverse transcriptase
system (Promega, Milan, Italy), and a library of the V3-V4 region was constructed from the 16S rRNA
gene region using previously described primers and conditions (25).

The PCR products were purified by means of an Agencourt AMPure kit (Beckman Coulter, Milan,
Italy), and the resulting products were tagged with sequencing adapters using the Nextera XT library
preparation kit (Illumina, Inc., San Diego, CA) according to the manufacturer’s instructions. Sequencing
was performed using a MiSeq Illumina instrument (Illumina) with V3 chemistry, which generated
2 � 250-bp paired-end reads. MiSeq Control Software version 2.3.0.3, RTA version 1.18.42.0, and
CASAVA version 1.8.2 were used for the base-calling and Illumina barcode demultiplexing processes.

Bioinformatic analysis. A total of 4,397,672 raw reads obtained from 46 samples were subsequently
processed through two bioinformatic pipelines to obtain, in parallel, amplicon sequence variants (ASVs)
with the divisive amplicon denoising algorithm (DADA2) and operational taxonomic units (OTUs)
through de novo clustering at 97%.

To obtain the ASVs, the reads in FASTQ format were analyzed through the DADA2 package in the R
environment (73). Briefly, 2,821,250 single-end reads passed the quality-filtering parameters applied
[truncLen=c(245,240); trimLeft = c(20); maxN = 0; maxEE=c(2); truncQ = 5; minLen = c(50)] with an aver-
age value of 61,332 reads/sample and thus were merged (minimum overlap of 20 bp) and subjected to
de novo chimera removal (per-sample method; 9.7% of merged sequences were detected as chimeras
and removed). OTU clustering was performed from paired-end reads assembled with FLASH software
(74) and further quality filtered (at Phred , Q20) with QIIME 1.9.0 soſtware (75). Chimeras were removed
through VSEARCH software (https://github.com/torognes/vsearch), and OTUs were picked at a 97% simi-
larity threshold by UCLUST algorithms (76). A total of 3,529,815 reads passed the filters applied by QIIME
(68,526 reads/sample).

ASV taxonomy was assigned at 99% sequence similarity through the Bayesian classifier method (77)
by using the 2019 release Silva reference database of 16S rRNA for bacterial ASVs (https://www.arb-silva
.de/documentation/release-138). To assign the OTU taxonomy, the centroid sequences of each cluster
were matched at 97% similarity to the 2013 version of the Greengenes 16S rRNA gene database (GG97;
https://drive5.com/usearch/manual/download_gg97.html), as suggested for this approach. ASVs were
also aligned to the GG97 database as a cross-check, while the alignment of representative OTUs against
the 99% Silva database was not performed due to the lower percentage of OTU clustering used (97%).
Both ASV and representative OTU sequences were aligned with PyNAST (78), and unrooted phylogenetic
trees were constructed with FastTree (79) to allow further phylogenetic analysis.

Within-OTU diversity was resolved by using an oligotyping procedure described previously (80). Briefly,
all reads assigned to the most abundant OTUs were extracted and shortened to 445 bp by two trimming
steps, as follows: (i) the length was shortened to 457 bases and (ii) the first 13 bases were removed from
the 39 end. Shannon’s entropy analysis was performed in order to identify positional variations at the sin-
gle-nucleotide level. The list of OTUs oligotyped (taxonomic assignment), initial number of reads, average
Shannon’s entropy values, high entropy positions chosen (-C option; Shannon’s entropy .0.2), and mini-
mum substantive abundances (-M option) are summarized in Table S5. Moreover, each oligotype was
required to appear in at least one sample at 1.0% of abundance (-a option) to reduce the noise generated
by low-abundance oligotypes. BLASTn (https://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to query the repre-
sentative oligotype sequences against the NCBI database, and the top hits (higher percent identities) were
considered for taxonomic assignment at the species level; when multiple assignments at the species level
were obtained, the oligotype taxonomy was assigned at the genus level.

Metagenome inference was performed with PICRUSt (81): gene family abundances were predicted,
and KEGG orthologs were then collapsed at level 3 of the hierarchy.

Statistics. Statistical analyses and data plotting were performed using R program for Statistical
Computing 4.1.0 (http://www.r-project.org).

Normality and homogeneity of the data (Log-transformed abundances, viable counts, and BA, FAA,
and VOC concentrations) were checked by means of Shapiro-Wilk’s W and Levene’s tests, respectively.
To assess the overall variation and differences between multiple groups, one-way analysis of variance
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(ANOVA) coupled with Tukey’s post hoc test was carried out for parametric data. For nonparametric
data, the Kruskal-Wallis test was used to assess the overall variation and differences between multiple
groups, whereas Wilcoxon’s test was used to compare individual groups. For the PCA, the data were
scaled to unit variance and the FactoMineR package was employed.

Alpha diversity metrics (observed species, abundance-based coverage estimator [ACE], Shannon,
Simpson, Fisher, and phylogenetic diversity [PD] whole tree) and weighted UniFrac beta-diversity dis-
tance were calculated with the phyloseq package (82) from rarefied OTU and ASV tables (the rarefaction
limit was determined by the sample containing the lowest number of sequences) and the respective
phylogenetic trees when needed. Permutational analysis of variance (PERMANOVA) was conducted on
the original ASV and OTU frequency tables to quantitatively evaluate the effects of time, production run,
and treatment (individually or interactively) on the variation of bacterial community composition (rela-
tive abundances) by using the ADONIS function based on 999 permutations and Bray-Curtis dissimilarity
distance.

To construct the oligotype cooccurrence network, the SparCC algorithm (83) was run with default pa-
rameters and 100 bootstraps using the R package SpiecEasi. Pseudo-P values were calculated as the propor-
tion of simulated bootstrapped datasets; only highly significant positive correlations were used to infer the
network (SparCC correlation of .0.6 and P values of ,0.001). The oligotype network was visualized using
the program Gephi 0.9.2-beta (https://gephi.org), and the presence of recurrent subnetwork modules
(groups of oligotypes that are covarying) was detected through the algorithm described in reference 84.

Metataxonomic data (OTU, ASV, and oligotype abundances) and viable counts were correlated with
chemical data (AB, FAA, and VOCs) by means of Pearson’s product-moment correlation and Spearman’s
rank correlation, respectively. An abundance table of predicted metagenomes was imported in the GAGE
Bioconductor package (85) to identify biological pathways significantly (P , 0.001) overrepresented or
underrepresented in the two treatment lots (control and EW treated) and production runs (A and B).

Data availability. Sequencing data were deposited at the Sequence Read Archive of the National
Center for Biotechnology Information under BioProject accession number PRJNA734136.
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