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PERSPECTIVES

Like injured neurons in the brain or spinal cord, neurons in the 
retina are incapable to regenerate following injury and ultimately 
would lead to irreversible neuronal loss and vision impairment. 
Over decades, extensive effort has been made to develop strategies 
to protect retinal neurons from death; however, the outcome is 
limited (Pettmann and Henderson, 1998; Bahr, 2000; Lagali and 
Picketts, 2011). Replacing the degenerated retinal neurons by newly 
generated and functional neurons would be an ideal scenario. The 
rapid development of stem cell biology has recently demonstrated 
that stem cells could be a potential source of cells for cell replace-
ment therapy because these cells have the self-renewal capacity and 
could be differentiated into many cell types. This review will dis-
cuss the therapeutic potential of stem cell-based therapy to retinal 
degenerative diseases.

Introduction
Retinal degeneration has been known to be caused by genetic muta-
tion (Sullivan and Daiger, 1996; Sohocki et al., 2001; Lee and Flan-
nery, 2007), trauma (Chang et al., 1995; Sebag and Sadun, 1996) or 
infection (John et al., 1987; Miller et al., 2004; Robman et al., 2005) 
that will lead to irreversible neuronal loss and even blindness. Other 
than these factors, environmental influences such as ultraviolet ra-
diation (Taylor et al., 1992) and oxidative stress (Venza et al., 2012) 
could also bring forth retinal degeneration. Retinal ganglion cells 
and photoreceptors are the two major retinal cell types subjected to 
degeneration in retinal diseases. Age-related macular degeneration, 
cone dystrophy and retinitis pigmentosa are the common photo-
receptor degenerative diseases that are the major leading cause of 
blindness worldwide (Hageman et al., 1995; Sohocki et al., 2001; 
Congdon et al., 2003; Huang et al., 2011). Glaucoma, optic neuritis 
and post-traumatic optic injury are the common retinal diseases 
leading to degeneration of retinal ganglion cells (RGCs) and their 
axons (Quigley et al., 1989; Quigley et al., 1995; Kerrigan-Baum-
rind et al., 2000). To achieve the goal of stem cell-based therapy, 
the survival and integration of transplanted cells are critical. To 
evaluate the potential of stem cell therapy for neurodegenerative 
disease in central nervous system, retina may be a good choice to be 
considered because it is an easily accessible organ. In addition, the 
cornea clarity makes possible for longitudinal imaging the trans-
planted cells and measuring the retinal function by non-invasive 
approaches. In contrast to the complex retinal structure, analyzing 
the integration and functional connection of transplanted cells to 
the host cells in the spinal cord could be simpler. In this regard, spi-
nal cord may be more feasible in terms of simplicity of the cellular 
system. 

In the clinic, non-invasive tools monitoring retinal changes and 
retinal activity such as optical coherence tomography and elect-
roretinography, have been well established and commonly used. 
Accumulating studies showed that some success of stem cell-based 
therapy for replacing retinal pigment epithelium (RPE) (Idelson 
et al., 2009; Lu et al., 2009) or photoreceptors (Kicic et al., 2003; 
MacLaren and Pearson, 2007; Lamba et al., 2009; Wang et al., 2010) 
in animal models of retinal degeneration that prompt the design 
of early clinical trials (A service of the U.S. National Institutes of 
Health; Martell et al., 2010; Trounson et al., 2011; Schwartz et al., 
2012). To replace the degenerated retinal cells, delivering cells via 
subretinal injection is a straight forward and logical approach. In 
this review, the potential of stem cell-based therapy using embry-
onic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and 
retinal progenitor cells on photoreceptor degeneration diseases will 
be described.

Potential use of stem or progenitor cells in the treatment of 
retinal degenerative diseases
Embryonic stem cells (ESCs)
ESCs are pluripotent cells that are derived from the undifferentiat-
ed mass of cells in blastocyst at pre-implantation stage. The ESCs 
have self-renewal ability and could be differentiated into all cell 
derivatives from ectoderm, mesoderm and endoderm. Thus ESCs 
could generate any cell types that could be used for cell replacement 
therapy. Human embryonic stem cells (hESCs) can be obtained 
from 5-day-old blastocyst stage from extra in vitro fertilized eggs 
called surplus in vitro-producing embryos, that were originally 
generated for in vitro fertilization purpose (Thomson et al., 1998). 
In 1998, successful isolation and generation of hESCs line was 
first accomplished by James Thompson. Following that, the next 
question is how to differentiate these cells into specific cell type for 
therapeutic purpose. Significant progress has recently been made to 
uncover the developmental stimuli that drive pluripotent stem cells 
to differentiate into various neurons including retinal neurons (Jin 
and Takahashi, 2012) and retinal pigment epithelium (RPE) in vitro 
(Lamba et al., 2009; Amirpour et al., 2012). With these information 
and techniques, hESCs could be a promising source of cells for 
replacement therapy in patients with retinal degenerative diseases 
(Rowland et al., 2012). 

Nevertheless, cautions should be taken that the hES cell lines and 
the hESCs derived cells should be fully characterized for the safety 
purpose. It has been reporties that individual ES cell line may has 
different abilities or properties of differentiation (Osafune et al., 
2008). In addition, accumulating evidence showed that chromo-
somal errors such as aneuploidy (Hassold and Hunt, 2001; Munne 
et al., 2002) and mitochondrion DNA defects (Keefe et al., 1995) 
were found in ES cell lines. It may be because most ES cell lines 
were derived from surplus in vitro-producing embryos of infer-
tile patients. Maintaining ES cell lines in vitro may affect stability. 
Extended culture of ES cell lines may lead to karyotype instability 
(Amit et al., 2000; Amit et al., 2003; Draper et al., 2004a). For exam-
ple, chromosomal abnormality were revealed in three independent 
ES cell lines that showed gain of chromosome 17q and presence of 
isochromosome 12p (Draper et al., 2004b). Overall, the selection 
and maintaining of ES cell lines could play a very critical role to the 
health and differentiation property to specific cell type for thera-
peutic purpose.

 The safety and tolerability study from the first clinical study of 
subretinal transplantation of hESCs-derived retinal pigment epi-
thelium (hESCs-RPE) into patients with advanced stage Stargardt’s 
macular dystrophy and dry age-related macular degeneration 
(AMD) was reported in 2012 (Schwartz et al., 2012). The hESCs 
line used in this trial was produced with Good Manufacturing Prac-
tice and the derived RPE cells were thoroughly examined in vitro. 
The hESCs-RPE cells were characterized to have normal karyotype, 
free of pathogens and contaminating ESCs or pluripotent cells. 
Briefly, the cells were injected into the submacular space following 
a vitrectomy procedure. The clinical observation showed the trans-
planted cells survived for at least four weeks. No sign of ocular tu-
mor or teratoma formation and clinically significant inflammation 
were observed. Improved visual performance was even observed in 
these patients. The best-corrected visual acuity was improved from 
hand motions to 20/800 (and improved from 0 to 5 letters on the 
Early Treatment Diabetic Retinopathy Study [ETDRS] visual acuity 
chart) in the patient with Stargardt’s macular dystrophy, and vision 
also seemed to improve in the patient with dry age-related macular 
degeneration (from 21 ETDRS letters to 28). It suggested that the 
hESCs derived RPE cells might be safe to patients, and may even 
improve their vision. Now, the multicenter Phase I/II clinical trial is 
ongoing and more results are eagerly awaited (A service of the U.S. 
National Institutes of Health).

To mimic the natural structure of RPE cell layer, hESCs-RPE cells 
were shown to grow into monolayer on a thin sheet of polymer 
(Carr et al., 2013). This approach aims to overcome the disorga-
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nized fashion in which RPE cells adhere to Bruch’s membrane when 
injected as a cell suspension. The polymer is also designed to act as 
a replacement for the aged and thickened Bruch’s membrane usual-
ly occur in macular degeneration diseases, and thus provides an an-
chor for the RPE cells as well as aiding in cell delivery. It was shown 
in animal studies that polarized monolayers of hESCs-RPE could 
have better survival than cell suspensions following transplantation. 
No teratoma or any ectopic tissue formation was detected in the 
implanted rats. It suggests that animal studies may provide insights 
of the safety outcome before transplanting the hESCs-RPE cells to 
patients (Diniz et al., 2013). A clinical trial of transplanting hESCs-
RPE along with polymer to AMD patients is currently on going 
(Carr et al., 2013; Ramsden et al., 2013).

iPSCs
Use of hESCs in animal models or patients may raise ethical and reli-
gious concern because it requires destroy human embryos. Recently, 
a new type of pluripotent cells was generated by reprogramming 
somatic cells, called iPSCs. Like hESCs, hiPSCs also have self-renewal 
capacity and are able to differentiate into any cell types including 
retinal neurons (Koch et al., 2009). Reprogramming somatic cells to 
iPSCs could generate patient specific iPSCs; thus, no immune rejec-
tion is anticipated. In addition, generation of iPSCs does not involve 
embryos. 

In 2006, a milestone study by Yamanaka’s group in Japan, iPSCs 
were first generated by introducing four stem cell factors (Oct3/4, 
Sox2, c-Myc and Klf4) into mouse somatic cells by retrovirus (Taka-
hashi and Yamanaka, 2006). One year later, two independent groups 
of Yamanaka (Takahashi and Yamanaka, 2006; Takahashi et al., 2007) 
and Thomson (Yu et al., 2007) successfully generated human iPSCs 
by introducing similar kind of stem cell factors into human fibro-
blast. Generally, the rate of iPSCs production is low (< 1%). There 
is also a risk of tumor formation because during reprogramming, 
the stem cell factors will integrate into the genome of somatic cells 
via retroviral system (Selvaraj et al., 2014). In addition, comparing 
mouse iPSCs generated from various origins, Miura et al. (2009) 
showed that iPSCs derived from tail-tip fibroblasts showed residual 
pluripotent cells after 3 weeks of in vitro differentiation and later 
form teratoma following transplantation of the differentiated cells 
into immune-deficient mouse. It suggests that the properties and 
safety of human iPSCs from various origins should also be carefully 
examined. 

To improve the rate and safety of iPSCs production, other alterna-
tive approaches have been recently developed using small molecule 
(Jung et al., 2014) and non-viral methods (Kaji et al., 2009; Lieu 
et al., 2013; Phang et al., 2013). In general, plasmid-induced iPSCs 
generation has about 1,000 fold less efficient than the viral approach 
(Okita and Yamanaka, 2011). Recently, it was reported that the dos-
age of specific reprogramming factor could affect the induction of 
iPSCs. Papapetrou et al. (2009) showed increased 3 fold expression 
of OCT3/4 in human fibroblast could enhance the iPSCs generation 
by 2 fold. Interestingly, excess addition of OCT3/4 would have oppo-
site effect. On the other hand, overexpressing other reprogramming 
factors such as Nanog, c-Myc and Klf4 could inhibit the induction of 
iPSCs (Mitsui et al., 2003). It suggests that the balance on the expres-
sion of reprogramming factors is important for induction of iPSCs.

Although iPSCs appear as a promising source of cells for thera-
peutic use, it still needs to be further characterized with regard to 
some critical issues including the cellular effect of reactivation of 
intrinsic pluripotency and possible alterations in target cells, before 
moving forward for clinical use. In particular, iPSCs appear to have 
a greater propensity for genomic instability than ESCs and with a 
higher rate of point mutations (Gore et al., 2011). A global epigen-
etic study showed higher DNA methylation was detected in iPSCs 
than its origin (Deng et al., 2009; Doi et al., 2009). The abnormal 
methylation pattern (hypo- or hyper-methylation) may affect the 
differentiation property of iPSCs. Other than genomic instability 
and epigenetic changes, parental source of iPSCs could also affect 

the differentiation property. For example, iPSCs generated from 
peripheral blood cells could differentiate into hematopoietic lin-
eage with high efficiency but differentiate into neurons with low 
efficiency (Kim et al., 2010). It suggests that iPSCs may retain some 
memories from their parental source. Since the process of repro-
gramming affects only the nuclear genome, leaving the mitochon-
dria unaltered, the extent to which an aged or altered mitochondrial 
genome will influence the properties of iPSCs and their derivatives 
that remains to be evaluated (Koch et al., 2009). 

Nevertheless, accumulating studies in animal models suggested 
that use of iPSCs is a feasible approach to treat neurodegenerative 
diseases. The first clinical trial of transplanting sheets of RPE cells 
derived from hiPSCs to age-related macular degeneration patient has 
recently been approved and will be led by Masayo Takahashi at Riken 
Institute (Song et al., 2013). The study is planned for 2014 (http://
www.riken.jp/en/pr/press/2013/20130730_1/). It is an important 
step; at least, to investigate if it is safe to use iPSCs-derived RPE cells 
in patients.

Retinal progenitor cells (RPCs)
RPCs are stem-like cells found in immature retina including human. 
RPCs are comprised of an immature cell population that is respon-
sible for the generation of all retinal cell types during development 
(Reh, 2006) and also retinal supporter cells such as Müller cells in 
vitro (Chow et al., 1998; Tropepe et al., 2000). Note RPCs are not a 
single cell type but rather a variety of cells at different stages along 
with incompletely characterized differentiation pathways (Mayer et 
al., 2005). Similar to neural stem cells, RPCs have the self-renewal 
ability in vitro but with a restricted ability of differentiation into 
retinal neurons (Das et al., 2005). It suggests that successful isolation 
and expansion of RPCs could be a potential source of cells to treat 
retinal degenerative diseases. 

Animal studies showed that following subretinal transplantation, 
the RPCs could migrate and integrate into mouse (Pearson et al., 
2012; Barber et al., 2013) and swine retina (Wang et al., 2014) to cer-
tain extent. The age of donor cells in mouse may play a role in the ef-
ficacy of survival and integration of transplanted cells in the host ret-
ina (Kinouchi et al., 2003; West et al., 2012). Instead of transplanting 
cell suspension, transplanting cells with a scaffold, may improve the 
survival and differentiation of transplanted cells (Tomita et al., 2005; 
Hynes and Lavik, 2010). Recently, packaging RPCs with scaffold or 
biodegradable polymer was demonstrated to promote integration 
(Yao et al., 2011) and differentiation of RPCs to photoreceptors in 
vivo. It suggests that transplantation of RPCs via an appropriate scaf-
fold may improve the outcome of transplantation. Recently, an early 
clinical study of transplanting human PRCs into retinitis pigmentosa 
patients led by Henry Klassen, is anticipated to begin in late 2014 
(www.cirm.ca.goc). We are looking forward to the outcome of the 
study.

Conclusions and future perspectives
Overall, the results of transplanting progenitor cells or cells derived 
from stem cells into retina of animal models and patients undergoing 
photoreceptor degeneration are encouraging. These results highlight 
the potential of stem cell-based therapy. Nevertheless, there are still 
challenges to overcome. Before evaluating any beneficial effects of 
stem cell-based therapy in patients, we still need substantial data from 
long term survival studies to show the safety of the transplanted cells. 
The cells derived from ESCs or iPSCs should be thoroughly charac-
terized without contaminants such as animal derivatives and residual 
pluripotent cells that could potentially harm the patients. In addition, 
enhancing the integration and survival of transplanted cells are also 
critical. It may be improved by packaging cells with appropriate scaf-
fold such as synthetic polymer, for transplantation. 

Other retinal degenerative diseases targeting at retinal ganglion 
cells (RGCs) will be the next goal of stem cell-based therapy. Recent-
ly, iPSCs dervied retinal ganglion cells were shown to be generated 
(Parameswaran et al., 2010; Alshamekh et al., 2012). To achieve a 
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successful transplantation of stem cells-derived RGCs to patients un-
dergoing degeneration of RGCs such as glaucoma, the stem cells-de-
rived RGCs need to have a capacity to form precise connections to 
specific neurons in host retinal neurons and are also able to extend 
long axons along the visual pathway and ultimately, establish precise 
functional connection to visual targets and finally, lead to vision 
restoration. It is an extremely challenging task to be achieved in the 
future. 

With regard to the rapid development of stem cell biology, it is an-
ticipated to develop a revolutionized approach for the treatment of 
retinal degenerative diseases and probably, other neurodegenerative 
diseases in central nervous system.
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