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Abstract: A simple, sensitive and effective magnetic solid-phase extraction (MSPE) technique was
developed for the extraction of pyrethroid pesticides from environmental water samples, followed by
gas chromatography tandem triple quadrupole mass spectrometry determination. An adsorbent of
magnetic zeolitic imidazolate framework-8@deep eutectic solvent (M-ZIF-8@DES) was prepared using
deep eutectic solvent coated on the surface of M-ZIF-8. The features of M-ZIF-8@DES were confirmed
by material characterizations, and the results indicated that M-ZIF-8@DES has a good magnetism
(61.3 emu g−1), a decent surface area (96.83 m2 g−1) and pore volume (0.292 mL g−1). Single factor
experiments were carried out to investigate the effect of different conditions on the performance of
MSPE. Under the optimal conditions, the developed method performs good linearity (R2

≥ 0.9916) in
the concentration range of 1–500 µg L−1. The limits of detection were in the range of 0.05–0.21 µg L−1

(signal/noise = 3/1). The intraday relative standard deviation (RSD) and interday RSD were less than
9.40%. Finally, the proposed technique was applied for the determination of pyrethroid pesticides
in environmental water samples. This work shows the potential of DES-modified metal-organic
frameworks for different sample pretreatment techniques.

Keywords: magnetic solid-phase extraction; zeolitic imidazolate framework; deep eutectic solvents;
pyrethroids; environmental water

1. Introduction

Pyrethroids are a class of synthetic lipid insecticides which have similar structure to the
pyrethrins. In virtue of the high activity, low toxicity and low level of residues in the environment,
pyrethroids were regarded as an alternative to the traditional high toxicity pesticides of organochlorine
or organophosphorus pesticides in agricultural production [1]. However, the residue of pyrethroids
can pollute the environment surroundings and inevitably are harmful to human health or the ecological
system because of the excessive application and overtime accumulation of it [2,3]. Therefore, developing
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an effective and sensitive determination technology for monitoring of pyrethroids in environmental
water is imperative. As is well known, sample pretreatment is a key procedure for the analysis of
pesticides residue [4]. In recent years, varieties of pretreatment methods, such as solid-phase extraction
(SPE), solid-phase microextraction and matrix dispersion SPE, have been developed for the enrichment
of pyrethroids in aqueous solutions [5–7]. Among them, magnetic SPE (MSPE) is a new type of SPE
technique which is based on the magnetic adsorbent, and has gained huge attention in bioseparation
and chemical analysis [8]. The typical process of MSPE was as follows: magnetic adsorbents were
usually dispersed in the sample solution followed by sonication, shocking or votexing to accomplish
the extraction process, and thereafter were retrieved by use of a magnet. Owing to the convenience
and high efficiency of magnetic separation process, MSPE can get over the shortage of tedious or
time consuming column packing and phase separation of traditional SPE [2]. Recently, some efforts
have been made to prepare magnetic adsorbents, such as surface-modified magnetic nanoparticles
and magnetic composites composed of magnetic nanoparticles combining carbon nanomaterials,
molecularly imprinted polymers or metal-organic frameworks (MOFs) [9,10].

Zeolitic imidazolate frameworks (ZIFs) is a rising porous polymer, which was constructed by
assembling two parts, namely the transition metal ion with imidazole-type organic ligands in a
proper solvent [11]. Due to their unique performance of high surface area, excellent chemical stability
and abundant structural diversity, ZIFs have drawn dramatic attention in gas storage, catalysis,
adsorption and separation of pesticides [12–14]. To date, ZIF-67, ZIF-7 and ZIF-8 have been reported in
preparing of magnetic sorbents for MSPE purpose. As reported, ZIF-8 exhibits remarkable performance
for extraction of chemical pollutants from environmental samples, and it possesses the merits of
low-cost and easy preparation [4]. Furthermore, ZIF composites composed of ZIFs and other functional
materials such as carbon nanomaterials, ionic liquids or deep eutectic solvents could promote the
stability and the adsorption capacity for target analytes of them [15].

Deep eutectic solvents (DESs) are considered to be promising ionic liquids analogues, and were
firstly proposed in 2003 [16]. Compared with ionic liquids, DESs are cheaper, easier to prepare,
more biodegradable and non-toxic, and herein are in accordance with the requirements of green
chemistry [17–19]. As a new kind of green solvent, DESs are usually formed by melting two or three
cheap and safe components, and appear liquid form ascribe to the hydrogen bonding between hydrogen
bond acceptor (HBA) and hydrogen bond donor (HBD). According to literatures, quaternary ammonium
salts could be selected as HBAs, and the HBDs are always contain carboxyl and hydroxyl group [20–22].
Due to the large number of hydrogen bonding system, DESs have attracted widespread attention in
sample pretreatments [23]. In recent years, DESs have been gradually applied to functionalize solid
materials such as graphene oxide (GO), carbon nano tubes (CNTs) and magnetic silica due to their
unique physicochemical properties and the ease of further modification [24–26].

In this study, we aimed to fabricate a composite using DESs modified magnetic ZIF-8
(M-ZIF-8@DES), and applied as an adsorbent for MSPE of pyrethroid pesticides from environmental
water samples. After preparation, characterization experiments were operated to investigate
its morphology, structure and property. Furthermore, some parameters affecting the extraction
performance were optimized through single factor experiments. Finally, the developed analytical
method was employed to analyze four pyrethroid pesticides in real environmental water samples.

2. Materials and Methods

2.1. Materials

2.1.1. Reagents

Liquid standards of the pyrethroid pesticides, including cyhalothrin, cyfluthrin, cypermethrin and
flucythrinate, were at a concentration of 1000 mg L−1, and were purchased from the Agro-Environmental
Protection Institute, Ministry of Agriculture and Rural Affairs of China (Tianjin, China). A 100 mg L−1

standard mixture of the four pyrethroid pesticides was prepared in methanol and then stored at −20 ◦C
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in the dark. High-performance liquid chromatography grade of ethyl acetate, acetonitrile, methanol,
acetone, and n-hexane were obtained from Sigma-Aldrich (St. Louis, MO, USA). 1-methyl-3-octyl
imidazolium chloride, 1-undecanol and Mercaptoacetic acid were supplied by Beijing Baiweiling
Science and Technology Co., Ltd. (Beijing, China).

Analytical grade of ferric chloride hexahydrate (FeCl3·6H2O), ferrous chloride tetrahydrate
(FeCl2·6H2O), zinc sulfate heptahydrate (ZnSO4·7H2O), 2-methylimidazole (2-MeIm), and ammonium
hydroxide (mass fraction 28%) were acquired from Aladdin Co. (Shanghai, China). Analytical grade
of ethanol and all of the other reagents were acquired from the Beijing Chemical Reagents Co.
(Beijing, China).

2.1.2. Apparatus

The morphological characteristics of the synthesized materials was measured by Transmission
electron microscope (TEM, JEM-200CX, JEOL, Tokyo, Japan) and Scanning electron microscope (SEM,
JSM-6300, JEOL, Tokyo, Japan) equipped with energy dispersive spectrometry (EDS). The crystal
structure of the compositions was performed according to the X-ray diffractometer (XRD, D8 Advance,
Bruker, Karlsruhe, Germany). To determine the magnetic properties of all the materials, vibrating sample
magnetometry (VSM, Columbus, USA) was performed with a Lake Shore 7410 magnetometer.
The Fourier transform infrared (FT-IR) was carried out using FT-IR-8400 spectroscopy (Shimadzu, Kyoto,
Japan). The nitrogen adsorption and desorption isotherms were recorded at 300 K using an ASAP2460
surface area and porosity analyzer (Micromeritics, Norcross, USA). The Brunauer-Emmett-Teller (BET)
surface of all the synthesized materials was performed using an ASAP2020 porosimeter (Micromeritics,
Norcross, USA).

Gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis was operated by a
Shimadzu GC-2010 plus gas chromatograph combined with an AOC-20s auto sampler and a Shimadzu
TQ8040 triple-quadrupole mass spectrometer (Shimadzu, Kyoto, Japan). A Rtx-5Ms capillary column
(0.25 mm (id) × 30 m, 0.25 µm film thickness, Restek, Belle-fonte, PA, USA) used to separate the
pesticides. Helium (99.999% purity) was used as the carrier gas at a constant flow rate of 1 mL min−1.
The column temperature was initially held at 40 ◦C for 4 min, then increased to 125 ◦C at 25 ◦C
min−1, ramped to 300 ◦C at 10 ◦C min−1, and held at 300 ◦C for 6 min. The total run time was 21 min.
The injection volume was 1.0 µL in splitless mode. The specific multiple reaction monitoring (MRM)
transitions for the four pyrethroid pesticides are shown in Table 1.

Table 1. Acquisition and chromatographic parameters for the four pytethroids.

Pyrethroids tR (min) MRM1 (m/z) CE1 (eV) MRM2(m/z) CE2 (eV)

Cyhalothrin-1 18.785 197.00 > 161.00 8 197.00 > 141.00 12
Cyhalothrin-2 18.962 197.00 > 161.00 8 197.00 > 141.00 12
Cyfluthrin-1 20.304 226.10 > 206.10 14 226.10 > 199.10 6
Cyfluthrin-2 20.398 226.10 > 206.10 14 226.10 > 199.10 6
Cyfluthrin-3 20.461 226.10 > 206.10 14 226.10 > 199.10 6
Cyfluthrin-4 20.501 226.10 > 206.10 14 226.10 > 199.10 6

Cypermethrin-1 20.630 163.10 > 127.10 6 163.10 > 91.00 14
Cypermethrin-2 20.733 163.10 > 127.10 6 163.10 > 91.00 14
Cypermethrin-3 20.793 163.10 > 127.10 6 163.10 > 91.00 14
Cypermethrin-4 20.831 163.10 > 127.10 6 163.10 > 91.00 14
Flucythrinate-1 20.794 199.10 > 157.10 10 199.10 > 107.10 22
Flucythrinate-2 20.985 199.10 > 157.10 10 199.10 > 107.10 22
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2.2. Methods

2.2.1. Synthesis of M-ZIF-8

The M-ZIF-8 composite were synthesized according to a chemical coprecipitation method reported
previously with a slight modification [27]. First of all, it is the synthesis of Fe3O4. FeCl3·6H2O (1.8 g)
and FeCl2·6H2O (0.8 g) were mixed with ultrapure water (240 mL) and then transferred to a three
necked flask, followed by a vigorously mechanical stirring at 80 ◦C for 30 min. Afterwards, ammonium
hydroxide (25%, 10 mL) was added into the solution dropwise, and then the mixture was continuously
stirred for another 30 min. Finally, the Fe3O4 nanoparticles were collected with an external magnet
and wash three times with ultrapure water and ethanol by turns.

The synthesis process of M-ZIF-8 was as below: first, 230 µL mercaptoacetic acid was dissolved in
140 mL ethanol. The Fe3O4 nanoparticles above was dissolved in the mixture solution with stirring
mechanically for 1 h at room temperature. Then the mixture was separated by a magnet and washed
three times with ultrapure water and ethanol, respectively. Secondly, ZnSO4·7H2O (0.26 g) was
dissolved in 240 mL of ultrapure water/ethanol (1:1, v/v) and then the obtained black precipitation
above was dispersed in the mixed solution with a mechanically stirring for 1.5 h. After that, 20 mL
of ethanol contained 0.84 g of 2-MeIm was transferred to the above mixture, and with a continuous
stirring for 8 h. Finally, the synthesized materials were separated with an external magnet and washed
three times with ultrapure water and ethanol, respectively. The final procedure was dried at 60 ◦C in a
vacuum drying oven for 24 h.

2.2.2. Synthesis of M-ZIF-8@DES

The preparation of DES was followed by previously reported methods with a slight
modification [16–18]. In brief, 1-methy-3-octyl imidazolium chloride and 1-undecanol were mixed at a
molar ratio of 1:2 and keeping magnetic stirring until a homogeneous transparent liquid was formed
at 40 ◦C [28,29].

The M-ZIF-8@DES was synthesized as follows: Firstly, DES (0.53 g) was dissolved with
methanol (4 mL) and then the synthesized M-ZIF-8 material (0.8 g) was added into it. After that,
the mixture solution was ultrasonicated for 1 h with a replacement of water in every 20 min.
Afterwards, the M-ZIF-8@DES composite was collected by an external magnet and washed three times
with ethanol. Finally, the M-ZIF-8@DES was dried at 60 ◦C in a vacuum drying oven for 24 h.

2.2.3. The Process of MSPE

The typical workflow of the MSPE process was shown in Figure 1. Firstly, the adsorbent (8 mg)
was added to sample solution (5 mL) in a 10 mL centrifuge tube and shaken for 15 min. Then the
mixture was separated by an external magnet, and the supernatant was removed. Subsequently, ethyl
acetate (2 mL) was added to the tube with a vortex mixing for 3 min. After desorption, the eluent
was separated under external magnetic field, and transferred to another tube. Finally, the eluent was
evaporated to dryness with a steady nitrogen flow at 40 ◦C. The residue was redissolved with acetone
(0.5 mL) and a 1.0 µL of this solution was analyzed by GC-MS/MS [30,31].
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Figure 1. Schematic procedure for the preparation of magnetic zeolitic imidazolate framework-8@deep
eutectic solvent (M-ZIF-8@DES) and the steps for the proposed magnetic solid-phase extraction
(MSPE) method.

2.2.4. Preparation of Real Environmental Water Samples

Ground water, well water and river water were selected as real environmental water samples
for this study. Among them, the ground water was collected from the Langfang City, Hebei Province,
the well water was acquired from the Yanqing District of Beijing and river water was obtained from the
Liangshui River in Beijing. All of three samples were filtered through a 0.45 µm polytetrafluoroethylene
membrane filter and stored in brown glass bottle at 4 ◦C.

3. Results and Discussion

3.1. Characterization of M-ZIF-8@DES

TEM and SEM were used to examine the morphologies of the prepared materials, and the
results are shown in Figure 2. From Figure 2a, we can see that the M-ZIF-8@DES nanoparticles are
slightly aggregated. Figure 2b shows that M-ZIF-8@DES possessed a highly dense porous structure,
which suggests that the prepared material has good potential in adsorption property.

1 

 

 

a b 

Figure 2. (a) Transmission electron microscope (TEM) image and (b) Scanning electron microscope
(SEM) image of M-ZIF-8@DES.

The crystalline structure of Fe3O4, M-ZIF-8 and M-ZIF-8@DES were confirmed by XRD. As shown
in Figure 3, several characteristic peaks at 21.3◦, 35.2◦, 41.5◦, 63.2◦, 67.4◦ and 74.5◦ for M-ZIF-8 and
M-ZIF-8@DES were in accordance with Fe3O4. These results suggested that Fe3O4 nanoparticles were
still retained in M-ZIF-8 and M-ZIF-8@DES during the formation of the composite materials [32].
According to the literature, the formation of M-ZIF-8@DES was confirmed by XRD with diffraction
peaks in the range of 10–25◦ [13,18].
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Figure 3. X-ray diffraction patterns of (a) Fe3O4; (b) M-ZIF-8 and (c) M-ZIF-8@DES.

The FT-IR spectra of Fe3O4, M-ZIF-8 and M-ZIF-8@DES are shown in Figure 4. The existence
of Fe3O4 can be confirmed by the characteristic stretching vibration peak of Fe–O at 564 cm−1.
The adsorption bands at 432, 1418 and 811–1360 cm−1 can be attributed to the Zn–N stretching
vibration, and the band at 891 cm−1 can be corresponded to the stretching vibration of C–N from
imidazole ring. Compared to M-ZIF-8, the peak at 1145 cm−1 was ascribed to C–N stretch of DES, and the
peak at 1456 cm−1 was ascribed to the asymmetric –CH3 stretch of DES [33,34]. The above-mentioned
results indicated that the Fe3O4, ZIF-8 and DES were successfully retained in M-ZIF-8@DES composites.
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Figure 4. Fourier transform infrared (FT-IR) spectra of the synthetic materials.

The favorable magnetic properties of the prepared materials are necessary to be applied to
magnetic solid-phase extraction. The VSM was used to investigate the obtained materials at ambient
temperature. As can be seen from Figure 5, the magnetic hysteresis loops of the three prepared
materials show that both the remanence and coercivity values are zero. The results indicated that a
typical superparamagnetism feature of the prepared materials and can be rapidly separated with an
external magnet. The saturation magnetization values of Fe3O4, M-ZIF-8 and M-ZIF-8@DES were 75.9,
67.5 and 61.3 emu g−1, respectively. All of these results suggest that the M-ZIF-8@DES composites
possess good potential as an adsorbent for MSPE.

The N2 adsorption-desorption isotherms were used to study the pore properties of the
M-ZIF-8@DES and the results were shown in Figure 6a. The shapes of N2 adsorption-desorption
isotherms were slightly increased at low relative pressures (P/P0 < 0.8) and sharply increased at
high relative pressure (0.8 < P/P0 < 1.0), indicating the coexistence of meso- and macro-pores [4].
The Brunauer-Emmett-Teller (BET) surface area and pore volume of M-ZIF-8@DES were 96.83 m2 g−1,
and 0.292 mL g−1, respectively. In addition, the distribution of pore sizes is also presented in Figure 6b.
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The results indicated that M-ZIF-8@DES has an adequate surface area and total pore volume, which were
both favorable for adsorption of pyrethroid pesticides.
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3.2. Optimization of MSPE Precedure

To identify the optimal conditions of the MSPE procedure, several parameters including the types
and amount of adsorbent, adsorption time, types and volume of desorption solvent, desorption time
and the pH value of sample solution were investigated by single factor designed experiments [29,35].

3.2.1. Effect of Different Adsorbents

To evaluate the adsorption capacity of M-ZIF-8 and M-ZIF-8@DES, extraction experiments were
performed under the same conditions. From Figure 7a, we can see that both materials possess high
adsorption capacity and this might be because of the interactions, including physisorption of ZIF-8 and
hydrogen bond formation between target pesticides and adsorbent [36–40]. Furthermore, it is obvious
that M-ZIF-8 performed a higher extraction ability when it was modified with DES than M-ZIF-8.
This result can be attributed to the probable fresh adsorption sites by coating of DES on the surface of
M-ZIF-8. Therefore, coating DES on the surface of M-ZIF-8 based on the “physisorption” mechanism
could enhance the extraction ability for the four pyrethoid pesticides [29].
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3.2.2. Effect of the Amount of Adsorbent

Considering that the amount of adsorbent has an important impact on the extraction efficiency,
2–15 mg of adsorbent were added to the spiked blank sample solutions (5 mL). As shown in Figure 7b,
the extraction efficiencies consistent rise as the mass of adsorbent was ranging from 2 to 8 mg,
and then keep relatively constant with the further increasing of the amount of adsorbent. The result
demonstrated that 8 mg was the optimal dosage for the MSPE of pyrethroid pesticides and was chosen
as the optimal amount of adsorbent for the following experiments.

3.2.3. Effect of the Adsorption Time

The influence of adsorption time on the extraction efficiency was also investigated by the setting
of shaking time from 2 to 20 min. As illustrated in Figure 8a, the extraction efficiency increased as
the adsorption time increasing from 2 to 15 min, and then kept relatively constant from 15 to 20 min.
To take full account of the efficiency of experiment, 15 min was chosen as the optimal adsorption time.Molecules 2019, 24, x FOR PEER REVIEW 9 of 13 

 

 
Figure 8. Effect of (a) adsorption time and (b) different desorption solvent on the extraction efficiency. 

3.2.5. Effect of the Volume of Desorption Solvent 

In order to investigate the effect of desorption solvent volume on the desorption efficiency, 
MSPE experiments were carried out with different elution volumes of 0.5 to 3.0 mL. The results of 
experiment are shown in Figure 9a, the desorption efficiency increased obviously when the 
desorption solvent volumes ranged from 0.8 to 2.0 mL and then slightly decreased from 2.0 to 3.0 mL. 
Thus, the optimal desorption solvent volume was set at 2.0 mL. 

3.2.6. Effect of the Desorption Time 

To study the relationship between desorption time and desorption efficiency, experiments were 
conducted by setting vortex mixing time from 1–5 min. As shown in Figure 9b, 3 min gives the best 
desorption efficiency for target analytes. Therefore, 3 min was selected as the desorption time for the 
following experiments. 

3.2.7. Effect of the pH Value of Sample Solution 

An appropriate pH of sample solution can probably promote the extraction efficiency for the 
sample pretreatment. To study the effect of pH on the extraction efficiency of MSPE, the pH value of 
sample solution was adjusted from 2.0 to 12.0 with NaOH or HCl solution. As shown in Figure 10, 
the extraction efficiency constantly increased as the pH value increased from 2.0 to 6.0, and then 
decreased when the pH value increased to 12.0. This could be caused by instability of the pyrethroids 
under strong alkaline conditions. Hence, the pH value of sample solution was set to 6.0 for the next 
experiments. 

 
Figure 9. Effect of (a) desorption solvent volume and (b) desorption time on the extraction efficiency. 

Figure 8. Effect of (a) adsorption time and (b) different desorption solvent on the extraction efficiency.

3.2.4. Effect of the Types of Desorption Solvent

The desorption solvent played a vital role in the MSPE procedure. To study the influence of
different types of desorption solvent on the desorption efficiency, several organic solvents (methonal,
acetate, ethyl acetate, acetonitrile and n-hexane) were selected as potential desorption solvent. As shown
in Figure 8b, ethyl acetate gives the best desorption efficiency for MSPE. Thereby, ethyl acetate was
selected as the desorption solvent for the following experiments.
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3.2.5. Effect of the Volume of Desorption Solvent

In order to investigate the effect of desorption solvent volume on the desorption efficiency,
MSPE experiments were carried out with different elution volumes of 0.5 to 3.0 mL. The results
of experiment are shown in Figure 9a, the desorption efficiency increased obviously when the
desorption solvent volumes ranged from 0.8 to 2.0 mL and then slightly decreased from 2.0 to 3.0 mL.
Thus, the optimal desorption solvent volume was set at 2.0 mL.
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3.2.6. Effect of the Desorption Time

To study the relationship between desorption time and desorption efficiency, experiments were
conducted by setting vortex mixing time from 1–5 min. As shown in Figure 9b, 3 min gives the best
desorption efficiency for target analytes. Therefore, 3 min was selected as the desorption time for the
following experiments.

3.2.7. Effect of the pH Value of Sample Solution

An appropriate pH of sample solution can probably promote the extraction efficiency for the
sample pretreatment. To study the effect of pH on the extraction efficiency of MSPE, the pH value of
sample solution was adjusted from 2.0 to 12.0 with NaOH or HCl solution. As shown in Figure 10,
the extraction efficiency constantly increased as the pH value increased from 2.0 to 6.0, and then
decreased when the pH value increased to 12.0. This could be caused by instability of the pyrethroids
under strong alkaline conditions. Hence, the pH value of sample solution was set to 6.0 for the
next experiments.Molecules 2019, 24, x FOR PEER REVIEW 10 of 13 
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3.3. Methodological Study

The validation of the established method was mainly based on the linearity, limit of detection (LOD),
and precision by MSPE followed by GC-MS/MS and the results are listed in Table 2. Calibration curves
were prepared by analyzing working solutions containing four pyrethiods at concentrations ranging
from 1 to 500 µg L−1. As can be seen from the table, good linearities were obtained with determination
coefficients (R2) more than 0.9916. The LOD for the four pyrethroids were calculated with a signal/noise
(S/N) ratio of 3, and the result shows that LOD values of the analytes were ranged from 0.05 to
0.21 µg L−1. The precision of the proposed method was evaluated by the intra-day and inter-day
relative standard deviation (RSD). The results show that RSDs were less than 9.40%. All of these
validation results indicate that the proposed method based on MSPE technique has good linearity,
low LODs and high precision.

Table 2. Validation of M-ZIF-8@DES as an adsorbent for MSPE of the four pyrethroids.

Pyrethroids Calibration Linear Range (µg L−1) R2 Intraday RSD (%) Interday RSD (%) LOD (µg L−1)

cyhalothrin y = 18526x − 246635 1–500 0.9916 5.52 5.65 0.06
cyfluthrin y = 16854x − 200703 1–500 0.9946 4.99 5.97 0.21

cypermethrin y = 38872x − 506601 1–500 0.9940 7.93 9.40 0.17
flucythrinate y = 56590x − 585207 1–500 0.9934 7.56 7.93 0.05

LOD means Limit of detection.

3.4. Analysis of the Environmental Water Samples

The developed M-ZIF-8@DES-MSPE-GC-MS/MS-based method was successfully applied to the
analysis of four pyrethroid pesticides in three environmental water samples. As shown in Table 3,
no pyrethroid pesticides were found in the three real water samples. The recoveries for target analytes
from the analysis of spiked real water samples were from 81.1%–97.6%, with the RSDs were in the
range of 0.8%–8.2%. Recoveries of the fortified samples indicate that the proposed method can be
applied to determination of the four pyrethroids in real water samples.

Table 3. Analytical results for determination of pyrethroids in real environmental water samples.

Matrix Analyte

Spiked Concentration (µg L−1, n = 3)

0 10 100

Found Recovery (%) RSD (%) Recovery (%) RSD (%)

Well water

cyhalothrin ND 91.6 5.4 96.9 1.5
cyfluthrin ND 88.1 4.8 93.9 4.2

cypermethrin ND 82.1 8.2 92.7 2.0
flucythrinate ND 86.6 3.5 96.0 1.9

River water

cyhalothrin ND 81.1 2.4 90.8 2.2
cyfluthrin ND 90.2 5.2 94.5 2.9

cypermethrin ND 84.1 6.3 97.6 3.4
flucythrinate ND 85.9 5.5 93.5 3.8

Ground water

cyhalothrin ND 85.2 6.2 96.5 1.7
cyfluthrin ND 82.9 4.3 92.0 1.9

cypermethrin ND 86.3 2.5 88.3 0.8
flucythrinate ND 82.5 3.7 90.2 4.4

4. Conclusions

In summary, a novel type composite name as magnetic ZIF-8 modified with DES has been
synthesized based on the coordination-polymerization and the physisorption mechanism. The prepared
M-ZIF-8@DES was used as an adsorbent for MSPE of the four pyrethroids from environment water
samples. The results of material characterization indicated that the M-ZIF-8@DES composite possesses
high superparamagnetism, a large specific surface area and a porous structure, which can enable
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the composite adsorption for the pyrethroids. After the optimization of adsorption and desorption
parameters, the developed method shows good linearities, low LODs and good precisions. This work
provides the basis for development of methods for removal of pesticides from environmental water
samples by DES-modified MOFs.
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