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B-cell epitopes are regions of the antigen surface which can be recognized by certain antibodies and elicit the immune response.
Identification of epitopes for a given antigen chain finds vital applications in vaccine and drug research. Experimental prediction of
B-cell epitopes is time-consuming and resource intensive, which may benefit from the computational approaches to identify B-cell
epitopes. In this paper, a novel cost-sensitive ensemble algorithm is proposed for predicting the antigenic determinant residues and
then a spatial clustering algorithm is adopted to identify the potential epitopes. Firstly, we explore various discriminative features
from primary sequences. Secondly, cost-sensitive ensemble scheme is introduced to deal with imbalanced learning problem.
Thirdly, we adopt spatial algorithm to tell which residues may potentially form the epitopes. Based on the strategies mentioned
above, a new predictor, called CBEP (conformational B-cell epitopes prediction), is proposed in this study. CBEP achieves good
prediction performance with the mean AUC scores (AUCs) of 0.721 and 0.703 on two benchmark datasets (bound and unbound)
using the leave-one-out cross-validation (LOOCV). When compared with previous prediction tools, CBEP produces higher
sensitivity and comparable specificity values. A web server named CBEP which implements the proposed method is available for
academic use.

1. Introduction

Epitopes or antigenic determinants are the components of
antigen membrane receptors which irritate specific interac-
tion with special antibodies [1]. B-cell epitopes are those
of spatially proximate residues in antigens which can be
recognized and bounded by certain antibodies. Experimen-
tal recognition of B-cell epitopes is time-consuming and
resource intensive. Therefore, it will be helpful to explore
effective computational approaches for reliably identifying
the B-cell epitopes in antigens.

Due to the significance of B-cell epitopes in prophy-
lactic and therapeutic biomedical applications [2], various
approaches have been proposed in epitope prediction and
obtained some achievements [3–19]. B-cell epitopes are of two
categories: linear epitopes and conformational epitopes. Since
the pioneering work of Hopp [3] on the linear B-cell epitope
prediction, many methods [4–8] have been proposed to
predict linear epitopes by using residue propensities, that is,

hydrophilicity, flexibility, and solvent accessibility. Although
the proportion of linear epitopes is very small while the
proportion of conformational epitopes is ∼90%, the study
on conformational epitopes began very late on account of
its difficulty. In 2005, CEP [9] was the first study which
used solvent accessibility to predict conformational epitopes.
DiscoTope [10] predicted antigenic determinants based on
antigen 3D structures. The predicted scores were obtained
by combining the propensity scores of residues and the
contact numbers. SEPPA [11] was another structure-based
predictor, which produced a propensity score for a target
residue by considering its adjacent residues’ information.
PEPITO [12] was proposed by feeding linear regression with
residue properties and half sphere exposure values. EPSVR
[13] built a support vector regression model with epitope
propensity scores and some other epitope discriminative
features. EPMeta [13] was a metamethod which combined
the predicted results from existing web tools to produce the
final results. In [14], Zhang et al. introduced the “thick surface
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patch” to consider the impact of internal residues to the sur-
face residues. Note that almost all abovementioned methods
predicted the antigenic residues as belonging to one single
epitope without considering multiple nonoverlapping epi-
topes for an antigen. Considering this, Zhao et al. [15] divided
an antigen surface graph into subgraghs by using a Markov
clustering approach and then distinguished these subgraphs
as epitopes or nonepitope subgraphs. Instead of making
predictions based on structures, which need essential 3D
structure information, some recent studies explored epitopes
based on simple sequence information. In 2010, CBTOPE [16]
made the first attempt on predicting conformational epitope
from antigen sequences. BEST [17] was a sequence-based
predictor that utilized a two-stage design. SVMTrip [7] com-
bined the similarity and occurring-frequency distribution of
tripeptides to predict epitopes. BEEPro [8] adopted a linear
averaging scheme on 16 properties to recognize both linear
and conformational epitopes. As the epitopes prediction was
an imbalanced problem, Zhang et al. [18] built an ensemble
model using bootstrap technique to deal with imbalanced
datasets. Another ensemble method from Zheng et al. [19]
was published recently using AdaBoost and the resample
method to improve prediction performance.

Althoughmuchprogress has beenmade in computational
approaches for B-cell epitope prediction, there still exist
several aspects for further investigation.

Firstly, many structure-based approaches require 3D
structure information as inputs to build prediction models.
These methods are invalid when no homology templates
can be found for the target antigen protein. Therefore, in
this paper, our aim is to develop a powerful predictor for
the identification of conformational B-cell epitopes using
template-free (sequence-based) approach. Several sequence-
derived features are explored to distinguish the epitopes from
nonepitopes. These features include evolutionary profile,
secondary structure, disorder zone, dipeptide composition,
and physicochemical properties.

Secondly, it is apparent that B-cell epitopes prediction
is a typical imbalanced learning problem, for which the
number of positive samples (epitopes) is much smaller than
that of negative samples (nonepitopes). Traditional statistical
machine learning algorithms, which tend to ignore the
rare samples, often lead to the invalid predicted results
under these circumstances. Reported solutions for dealing
with imbalanced dataset can be classified into data level
and algorithm level approaches [20]. At the data level, the
purpose is to rebalance the dataset, such as undersampling
technique and oversampling technique [21]. At the algorithm
level, the purpose is to search for a proper bias towards
the rare samples, such as recognition-based algorithm and
cost-sensitive algorithm [22–24]. In this study, cost-sensitive
boosting algorithm is firstly introduced for solving serious
imbalance samples and building prediction models. The
results on two benchmark datasets show that this approach
successfully predicts the antigenic determinant residues and
outperforms many existing approaches.

Finally, a common drawback of most existing sequence-
based B-cell epitope prediction methods is that they are
residues-state prediction; that is, they can only simply predict

Table 1: Detailed compositions of the bound, unbound and inde-
pendent datasets.

Dataset No. of Sequences (numP, numN)∗

Bound structure 83 (1076, 16744)
Unbound structure 48 (898, 8759)
Independent 19 (440, 4944)
∗(numP, numN) represent the numbers of positive (antigenic determi-
nant residues) and negative (non-antigenic determinant residues) samples,
respectively.

the antigenic determinant residues from sequences but can-
not tell which residuesmay potentially form the real epitopes.
Commonly, linear epitopes consist of continuous residues in
sequences, while conformational epitopes consist of residues
discontinuous in the sequences but spatial proximal [18].
This arouses the consideration of whether spatial clustering
algorithm with proper threshold can obtain better results
on potential conformational B-cell epitopes prediction. Here,
we will computationally investigate the level of residues
aggregation in spatial space and try to adopt spatial clustering
algorithm in this field.

Based on the strategies mentioned above, a novel method
CBEP was proposed for identifying conformational B-cell
epitopes by adopting cost-sensitive ensemble scheme with
the combination of sequence-derived features and a spatial
clustering algorithm for predicting potential epitopes.

2. Materials and Methods

2.1. Data Collection. In order to reach a consensus assess-
ment with previous methods [9–13, 25, 26], two benchmark
datasets including bound structure dataset and unbound
structure dataset, which complied from the Rubinstein’s
bound structure dataset [18, 24, 27] and Liang’s unbound
structure dataset [13, 18, 25], are also used in this paper.

In addition, to compare our method with previous pre-
diction tools, Liang’s [13] 19 antigen structures and sequences
with annotated real epitopes are served as independent
dataset in this study. The structures of Liang’s independent
dataset are used to evaluate the structure-based tools, while
the primary sequences are used to assess the sequence-
based tools. Table 1 summarizes the detailed compositions of
abovementioned three datasets.

2.2. Feature Construction. In this study, evolutionary profile,
secondary structure, disorder zone, dipeptide composition,
and physicochemical properties are combined to form feature
vectors for the machine learning techniques. All features are
described as follows.

2.2.1. Evolutionary Profile. Here, evolutionary profile is
obtained from position specific scoring matrix (PSSM). The
PSSM is generated by the program “blastpgp” [28] to search
the Swiss-Prot database (released on 15 May, 2011) using
default parameters (3 iterations (−𝑗 3) and 𝑒-value threshold
0.001 (−ℎ 0.001)) for multiple sequence alignment against
the query sequence. For a protein chain with 𝐿 residues, the
PSSM is composed of 20 × 𝐿 moments. The obtained PSSM
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scores are normalized to the interval [0, 1] by the logistic
function:

𝑓 (𝑥) =

1

1 + 𝑒

−𝑥

. (1)

A sliding window of 𝑁 neighboring residues is used
to represent the evolutionary profile of a sequence. (𝑁 −

1)/2 pseudoterminal residues are, respectively, added in the
beginning and the end of each sequence. For example, when
the window is 9, we add 4 pseudoterminal residues in the
head and the tail of the sequence. For the pseudoterminal
residue, the values of evolutionary profile features are 0.
Finally, each protein residue is represented by 20×𝑁 features.

2.2.2. Secondary Structure. This paper includes secondary
structure that came from the differences in distributions
of the residue depth, which have a strong impact on the
epitopes distributions on the protein surface [29]. PSIPRED
[30] applied two-stage neural networks to predict secondary
structures based on PSIBLAST. The result of PSIPRED is
encoded in three lists predicted possibilities for each residue
being helix, coil, and strand.The secondary structure features
are composed of 3×𝑁 features that concern probabilities in a
windowof𝑁 adjacent residues using exactly the same scheme
as mentioned above.

2.2.3. Disorder Zone. Unstructured regions or natively dis-
ordered zone is proved to be closely related with molecular
assembly, molecular recognition, surface solvent accessibility,
and protein interaction [31–33]. Thus, they are supposed to
be useful for protein structure and function predictions. In
this work, DISOPRED [34] are used to output the predicted
disorder status for each residue in the sequences. As a result,
a residue is represented by a 1 × 𝑁 feature which concern
statuses in a window of 𝑁 adjacent residues being ordered
or disordered.

2.2.4. Dipeptide Composition. The dipeptide is found widely
used in proteins and protein-related systems [35–38]. The
dipeptide composition for a given protein sequence consists
of 420 components. The first 20 components are the tra-
ditional amino acid composition (AAC), followed by 400
dipeptides, that is, AA,AC, . . . ,YW,YY; the 400 dipeptides
are calculated using the following equation:

contentdep(𝑖) =
∑ dep (𝑖)

∑ dipeptides
, (2)

where dep(𝑖) represents the 𝑖th dipeptide of the 400 dipep-
tides, 𝑖 = 1, 2, . . . , 400.

2.2.5. Physicochemical Properties. Many studies [4–6, 12–
18, 39] pointed out that the physicochemical properties of
residues were closely associated with the locations of con-
formation B-cell epitopes. These physicochemical properties
include hydrophilicity [14], flexibility [5], accessibility [40],
polarity [41], exposed surface [42], and turns [43]. For
each residue, the physicochemical features are encoded by
a 3 × 𝑁-dimensional vector that concerns physicochemical
properties in a window of𝑁 adjacent residues.

2.3. Fisher-Morkov Selector and Incremental Feature Selection.
Empirically speaking, the combination of various types of
features should lead to better prediction performance than
the individual features. However, information redundancy
brought by some features may lead to an unwanted poor
performance. To solve this problem, we adopt Fisher-Markov
selector [44] to search for optimal feature subset from high-
dimensional feature space. Fisher-Markov selector is proved
to be a successful method to select those features which
can describe the intrinsic differences among the possible
classes. In this algorithm, Markov random field optimization
schemes are used to solve the formulated objective functions
for choosing the best features. After computing the coefficient
values using the selector, the ranked feature list will be
obtained.Then, incremental feature selection (IFS) procedure
is adopted to select the optimal feature set. Each feature in the
feature list is added one by one from the head of the list to
the tail. When a new feature is added, a new feature subset is
generated.𝑁 different feature subsets will be obtained for the
total𝑁 features. The 𝑖th feature set can be formulated as

Set
𝑖
= {feature

1
, feature

2
, . . . , feature

𝑖
} (1 < 𝑖 < 𝑁) . (3)

For each feature subset, a predictor is built and tested
using LOOCV on the training dataset. As a result,𝑁 predic-
tors will be built for the 𝑁 feature subsets. After obtaining
the accurate rates of𝑁 predictors, an IFS scatter plot will be
drawn to identify the optimal feature subset (see Section 3.2).

2.4. Cost-Sensitive BoostingMethod for Antigenic Determinant
Residues Prediction. Conformational B-cell antigenic deter-
minant residues prediction is a typical imbalanced classifi-
cation problem; that is, the number of antigenic determi-
nant residues and nonantigenic determinant residues differs
significantly. Most traditional machine learning algorithms
are designed to reduce both training and generalization
errors and tend to pay less attention to the rare cases. Thus,
they generally perform poor performance on the imbalanced
datasets. To circumvent this problem, boosting algorithm
is adopted to improve the classification performance for
the imbalanced dataset. Most boosting algorithms iteratively
change the weight distribution of the data space, construct
weak classifiers, and boost them to a final strong classifier.
When a new weak classifier is added, the samples will be
reweighted with correctly classified examples losing weight
and misclassified examples gaining weight. The objective of
boosting algorithm is to develop a classifier team 𝐻(𝑥) =

{ℎ

1
, ℎ

2
, . . . , ℎ

𝑘
} by focusing on those misclassified samples in

the previous rounds of learning [21].The base classifier ℎ
𝑖
that

joins the ensemble at step 𝑖 is trained on a training subset
which is randomly sampled from the training dataset.

The performance of conventional machine learning algo-
rithms is based on their accuracy of classifying positive
samples from negative samples. Nevertheless, accuracy may
not be the only evaluation criterion inwhich rare classmay be
more valuable to be recognized. Compared with traditional
machine learning algorithm,which treats samples of different
classes equally, cost-sensitive algorithm associates a cost-
value with each sample to denote the different importance



4 BioMed Research International

BEGIN
Data preparation: 𝐷 = {(𝑙

1
, 𝑥

1
, 𝑐

1
), (𝑙

2
, 𝑥

2
, 𝑐

2
), . . . , (𝑙

𝑛
, 𝑥

𝑛
, 𝑐

𝑛
)}, where 𝑥

𝑖
∈ 𝑋, 𝑦

𝑖
∈ 𝑌 = {−1, +1}

𝐶

𝑖
⊂ (0, +∞), 𝑖 = 1, . . . , 𝑛

Initialization:
(a) Initialize the classifier 𝐻 = 0

(b) Initialize the weights distribution 𝑊

1

= (𝑤

1

1
, . . . , 𝑤

1

𝑛
), 𝑤

1

𝑡
∈ [0, 1], ∑

𝑀

𝑡=1
𝑤

1

𝑡
= 1. (Usually 𝑤1

𝑡
= 1/𝑛)

Iteration:
(1) Train the base learner ℎ

𝑡
: using weight distribution 𝑊

𝑡

(2) Choose the weight updating parameter:

𝛼

𝑡
=

1

2

log
1 + ∑

𝑖,𝑦𝑖=ℎ𝑡(𝑥𝑖)
𝐶

𝑖
⋅ 𝑊

𝑡

(𝑖) − ∑

𝑖,𝑦𝑖 ̸= ℎ𝑡(𝑥𝑖)
𝐶

𝑖
⋅ 𝑊

𝑡

(𝑖)

1 − ∑

𝑖,𝑦𝑖=ℎ𝑡(𝑥𝑖)
𝐶

𝑖
⋅ 𝑊

𝑡
(𝑖) + ∑

𝑖,𝑦𝑖 ̸= ℎ𝑡(𝑥𝑖)
𝐶

𝑖
⋅ 𝑊

𝑡
(𝑖)

(3) Updating and normalize the sample weights:

𝑊

𝑡+1

(𝑖) =

𝑊

𝑡

(𝑖) exp(−𝛼
𝑡
𝐶

𝑖
ℎ

𝑡
(𝑥

𝑖
)𝑙

𝑖
)

𝑍

𝑡

, where 𝑍
𝑡
= ∑

𝑖
𝑊

𝑡
(𝑖) exp(−𝛼

𝑡
𝑙

𝑖
ℎ

𝑡
(𝑥

𝑖
))

End Iteration
Output the final classifier:
𝐻(𝑥) = sign(∑𝑇

𝑡=1
𝛼

𝑡
tanh((ℎ

𝑡
(𝑥) − 𝜇)/𝜎)) where 𝜇 and 𝜎 are the mean and the standard deviation of scores produced

by the sub-classifiers
RETURN 𝐻(𝑥).

END

Procedure 1: Procedure Cost-Sensitive Boosting scheme.

Table 2: Confusion matrix.

Actually positive Actually negative
Predict positive Cost(+, +) Cost(+, −)
Predict negative Cost(−, +) Cost(−, −)
Cost values are set according to different classification results. Generally, for
a rare positive and prevalent negative samples, Cost(+, −) > Cost(−, +). And
Cost(+, +) = Cost(−, −) = 0 denotes no penalty for a correctly predicted
sample.

for identification. Here, a cost matrix is used to encode the
different cost of each type of misclassification (Table 2). Let
Cost(𝑖, 𝑗) denote the penalty of identifying a sample from
class 𝑖 as class 𝑗. Thus, Cost(+, −) is the cost of misidentifying
a positive sample as a negative one, while Cost(−, +) indi-
cates the opposite case. For the classical two class problem,
the positive class is the rare class with higher recognition
importance, while the negative class is the majority class with
less recognition importance. Therefore, in B-cell antigenic
determinant residues prediction, the penalty of misiden-
tifying an antigenic determinant residue outweighs that
of misidentifying a nonantigenic determinant residue (i.e.,
Cost(+, −) > Cost(−, +)); making an accurate identification
usually indicates zero penalty (i.e., Cost(+, +) = Cost(−, −) =
0). The higher the value is, the more the importance of
recognizing this sample is. In summary, the cost-sensitive
algorithm is used to minimize the total misclassification cost
by considering the various costs of different misclassification
types.

Here, we incorporate cost items into the architecture of
boosting algorithm to mark different values of various sam-
ples (rare antigenic determinant residues and prevalent
nonantigenic determinant residues). Let {(𝑙

1
, 𝑥

1
, 𝑐

1
), (𝑙

2
,

𝑥

2
, 𝑐

2
), . . . , (𝑙

𝑚
, 𝑥

𝑚
, 𝑐

𝑚
)} be a list of training samples,

where 𝑙

𝑖
∈ {−1, +1} is the class label; 𝑥

𝑖
is the feature

vector; and 𝐶

𝑖
⊂ [0, +∞) is a cost item marked on each

sample. Given a sample, each subclassifier will produce a
predicted score. The final predicted score will be obtained
by firstly normalizing each score using 𝑍-score function
and then transforming that using tanh function. Detailed
pseudocode for cost-sensitive boosting scheme is given as in
Procedure 1.

2.5. Clustering Antigenic Determinant Residues to Epitopes.
Up to now, all existing sequence-based conformational B-
cell epitope predictors can only perform antigenic determi-
nant residue state prediction; that is, they can only predict
antigenic determinant residues rather than real epitopes.
However, in practical applications, it will be more valuable
andmeaningful if the predictor can point out which antigenic
determinant residue(s) can potentially form an epitope.
Previous studies [45, 46] have pointed out that antigenic
determinant residues located in antigen-antibody complex
tend to cluster in the space. Taking myelin oligodendrocyte
glycoprotein (PDBID: 1PKO) as an example, we drew its 3D
structure with cartoon representation (Figure 1). As shown
in the figure, the area colored blue and red is antigenic
determinant residues and has been spatial clustered to form
epitopes 01 and 02.

Based on previous researches and observations, here, a
postprocessing procedure is developed to further investigate
which of the antigenic determinant residues being predicted
in previous processes may actually form an epitope.

Detailed pseudocode for spatial clustering scheme is
given as in Procedure 2.

In the spatial clustering algorithm, the only, but crucial,
parameter is the clustering threshold 𝑇 which determines
how many epitopes will be obtained in the end. Obviously,
a small threshold often produces large number of clusters,
while a large threshold often leads to small number of clusters.
Thus, it is vital to set an appropriate threshold for the spatial
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Begin
Data preparation: 𝐶: the set of predicted antigenic determinant residues; 𝑇: threshold for spatial clustering; 𝑃: 3D structure
(predicted or observed) of the protein.
Calculate the max distance between any two residues in 𝐶.
IF the max distance is greater than the pre-defined threshold 𝑇

Clustering the residues in 𝐶 into two smaller clusters according to their spatial positions with standard 𝐾-means
algorithm: 𝐶

1
and 𝐶

2

EpitopeClusters1 = SpatialClustering(𝐶
1
, 𝑇, 𝑃)

EpitopeClusters2 = SpatialClustering(𝐶
2
, 𝑇, 𝑃)

EpitopeClusters = EpitopeClusters1 ∪ EpitopeClusters2
ELSE

EpitopeClusters = 𝐶
END IF
RETURN EpitopeClusters

End

Procedure 2: Procedure Spatial clustering algorithm.

clustering algorithm. Here, we follow the previous study
[47] to solve this problem. First of all, 𝑅 avg is calculated
to represent the average distance between the antigenic
determinant residues and the centers of their corresponding
epitopes. In both bound and unbound datasets, the 𝑅 avg is
about 19 ± 2 Å. Then, the threshold 𝑇 can be initialized as
𝑇 = 𝛼 ⋅ (2 × 𝑅 avg), where 𝛼 is a coefficient which adjusts
the distance between two epitopes. After empirically testing
𝛼 based on bound and unbound dataset, the best clustering
performance was obtained when 𝛼 = 1.1 (𝑇 = 41.8 ± 2.4 Å).
Using abovementioned algorithm, the antigenic determinant
residues of 1PKO are spatially clustered into two clusters
(Figure 2). The system architecture of the proposed model is
illustrated in Figure 3.

2.6. Assessment of Prediction Accuracy. The performance
of the proposed model is evaluated by the LOOCV. For
comparison with other methods, the performance of this
study is measured by several metrics: accuracy (ACC),
sensitivity (SN), specificity (SP), 𝐹-measure (𝐹), and the area
under receiver operating characteristic (ROC) curve (AUC).
Consider

ACC =

TP + TN
TP + TN + FP + FN

,

SN =

TP
TP + FN

,

SP =

TN
TN + FP

,

𝐹 = 2 ×

TP
2 × TP + FN + FP

,

(4)

where TP and FN stand for the correctly and incorrectly
predicted antigenic determinant residues and TN and FN
represent the correctly and incorrectly predicted nonanti-
genic determinant residues. The ROC curve is to plot the
true positive rate against false positive rate, and the AUC is a
reliable measure for evaluating classifier performance. In the
paper, the AUC is the key criteria for assessing the optimal
classifier.

Epitope 01

Epitope 02

Figure 1: Visualization of two epitopes for chainA of antigenmyelin
oligodendrocyte glycoprotein (1PKO).

Table 3: Mean AUCs of proposed models for the bound dataset
using LOOCV.

Window #1 #2 #3 #4 Average
7 0.629 0.633 0.622 0.673 0.629
9 0.644 0.633 0.619 0.675 0.631
11 0.647 0.640 0.625 0.674 0.635
13 0.648 0.628 0.611 0.680 0.630
15 0.632 0.624 0.614 0.676 0.625
Evolutionary information (#1), secondary structure (#2), disorder zone (#3),
physicochemical features (#4).

3. Results and Discussion

3.1. Features Analysis and Optimal Window Selection. In
order to assess the impact of various window length which
is shifted over antigen features, four individual feature-based
models (evolutionary information, secondary structure, dis-
order zone, and physicochemical properties) are constructed
on two benchmark datasets (bound and unbound). The
performances of variousmodels are presented in Tables 3 and
4, respectively.

As shown in Tables 3 and 4, four types of features all have
the abilities of differentiating antigenic determinant residues
from nonantigenic determinant residues. Specifically, the
performance varies with different window length. Generally
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Max distance > T

(a)

Max distance < T

Max distance < T

(b)

Figure 2: Visualization of spatial clustering procedure on the predicted antigenic determinant residues for 1PKO. (a) Cluster all the predicted
antigenic determinant residues in one cluster; (b) split the cluster into two smaller clusters based on predefined threshold.
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Figure 3: The system architecture of the proposed prediction model.

speaking, for the bound dataset, the 11-residue windowmod-
els perform best among all individual feature-based models.
For the unbound dataset, the performance of models with 11-
residue window is close to that with 13-residue window. For
convenience, the 11-residue window is chosen in this study.

We also assess the performance of prediction model
constructed by dipeptide composition. Evaluated by LOOCV,
themodel achieves theAUCs of 0.633 and 0.618 for the bound
and unbound dataset, respectively.

As mentioned above, all five sequence-derived features
make contribution to differentiate antigenic determinant
residues from nonantigenic determinant residues. Therefore,

a total of 750 (750 = 20 × 11 + 3 × 11 + 1 × 11 + 6 × 11 + 420)
features can be obtained to represent a residue. Shown in
Table 5 is a breakdown of the total 750 features for a residue
of an antigen by considering its sequence-based information
and physicochemical properties.

3.2. Results of Fisher-Markov Selector and Incremental Feature
Selection. Based on the scores of Fisher-Markov, individual
classifiers were built recursively by adding features from the
head of the scores list to the tail one by one. Each subclassifier
from cost-sensitive boosting classifiers will produce an AUC.
The mean AUCs are calculated to represent the performance
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Figure 4: The IFS scatter plots of 750 features for bound dataset (a) and unbound dataset (b).
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Figure 5: The distribution of each feature type in the final optimal feature subset for bound dataset (a) and unbound dataset (b).

Table 4: Mean AUCs of proposed models for the unbound dataset
using LOOCV.

Window #1 #2 #3 #4 Average
7 0.609 0.623 0.597 0.636 0.616
9 0.611 0.631 0.595 0.639 0.619
11 0.613 0.636 0.597 0.644 0.622
13 0.615 0.634 0.598 0.641 0.622
15 0.615 0.630 0.597 0.642 0.621
Evolutionary information (#1), secondary structure (#2), disorder zone (#3),
physicochemical features (#4).

Table 5: A breakdown of the 750 features.

Feature type Number of feature Window size Total
Evolutionary information 20 11 220
Secondary structure 3 11 33
Disorder zone 1 11 11
Physicochemical features 6 11 66
Dipeptide composition 420 — 420
Summary — — 750

for each feature subsets. As shown in Figures 4(a) and
4(b), the mean AUCs reach their maximum when 177 and
218 features are selected for bound and unbound dataset,
respectively.

To discover the contribution of each feature type, we
further investigate the distribution of different feature types
in the final optimal feature subset (Figures 5(a) and 5(b)). It
shows that PSSMplays important roles in differentiating anti-
genic determinant residues from nonantigenic determinant
residues. Evolution is an eternal process which impenetrates
the whole history of life. The evolution of protein sequences
involves the changes, insertions, and deletions of single
residue or peptide along with the entire development of
proteins [48]. Although some similarities were gradually
eliminated after a long time, the corresponding zone having
the same biological function may still share some intrinsic
attributes [49]. This explains why PSSM occupies a very big
part of the optimal subset.

We also calculate different types of features accounting
for the various proportions of the optimal feature subset,
as can be seen in Figures 6(a) and 6(b). The black bars
represent the percentage of the selected features accounting
for corresponding feature type, and the gray bars represent
the percentage of the selected features accounting for the
whole optimal feature subsets. Although within the final
optimal feature subset few disorder features are selected, we
cannot say that disorder features are not tightly related to
antigenic determinant residues. Among the eleven disorder
features, three and two features are selected in the optimal
feature subsets for two benchmark datasets.
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Figure 6:The proportion of each type of features in the final optimal feature subset for bound dataset (a) and unbound dataset (b).The black
bars represent the percentage of the selected features accounting for corresponding feature type, and the gray bars represent the percentage
of the selected features accounting for the whole optimal feature subsets.

Table 6: Performance of different machine learning methods, evaluated by LOOCV.

Method Bound dataset Unbound dataset
𝐹 ACC SN SP AUC 𝐹 ACC SN SP AUC

ANN 0.294 0.723 0.629 0.732 0.643 0.276 0.678 0.659 0.679 0.645
KNN 0.323 0.744 0.666 0.752 0.654 0.298 0.692 0.662 0.665 0.648
SVM 0.330 0.750 0.648 0.760 0.661 0.312 0.689 0.704 0.687 0.652

3.3. Why We Choose SVM as the Final Classifier? In addition
to SVM, ANN and KNN are also widely used in pattern
recognition. For comparison, ANN and KNN are used
to build prediction models as well (ANN is implemented
by Weka [50], while KNN and SVM are implemented by
MATLAB). As shown in Table 6, SVM-basedmodel gives out
better predicted performance than ANN-based and KNN-
based models with default parameters. What is more, the
structure of ANN is more complex than SVM and KNN, and
KNN is sensitive to the value of 𝐾. Therefore, SVM is used
in this study as a classification engine. The parameters for
bound-dataset-based model are 𝐶 = 32, 𝛾 = 0.003022 using
radial basis function and for unbound-dataset-based model
are 𝐶 = 8, 𝛾 = 0.000068 using Gaussian kernel function.

3.4. The Performance of Cost-Sensitive Ensemble Models. To
deal with the imbalanced samples, we adopt cost-sensitive
ensemble technique to build the prediction models. Given
an original dataset, the cost setup is usually unknown in
advance. A higher cost setup for the rare samples than that
for the prevalent samples means that more weights will
be boosted on the rare samples. However, some “noisy”
data will be included inevitability. Therefore, it is significant
to determine the cost value. In this study, various cost
values (positive sample (epitopes) versus negative samples
(nonepitopes)) are tested from 2 to 9. As shown in Figure 7,
with the increase of the cost value on the rare positive samples
versus negative samples (epitopes versus nonepitopes), more
weighted positive samples are boosted to improve prediction
performance and more relevant epitopes tend to be iden-
tified. However, with the increase of cost value, the ability

of nonepitopes learning decreases simultaneously. Here, 𝐹-
measure and AUC values are used to adapt the balance of
learning from both negative and positive samples. For bound
dataset, when cost value is set as 4,𝐹-measure andAUC reach
the peak values of 0.3302 and 0.721, respectively (Figure 7(a)).
For unbound dataset, the 𝐹-measure and AUC reach the
maximal values of 0.3117 and 0.703 with cost being set as 5
(Figure 7(b)). Finally, 4 and 5 are chosen as the cost values
in bound-dataset-based model and unbound-dataset-based
model, respectively.

3.5. Comparison with Other Ensemble Methods. To further
assess the performance of cost-sensitive ensemble algorithm,
four ensemble algorithms, namely, Direct Combination,
EasyEnsemble [51], BalanceCascade [51], and SMOTEBoost
[52], are adopted in this paper using the optimal feature
subsets. EasyEnsemble independently samples several sub-
sets from the majority class. For each subset, a classifier
is built using the subset and minority samples. Finally, all
subclassifiers are combined to form an ensemble classifier.
BalanceCascade is similar to EasyEnsemble except that
it removes correctly classified majority class examples of
trained classifiers. Instead of using undersampling strategy,
SMOTEBoost combines the syntheticminority oversampling
technique and boosting strategy to deal with the imbalanced
dataset. Table 7 lists the performance comparison of different
ensemble methods on the two benchmark datasets. From
Table 7, it is clearly found that cost-sensitive ensemble algo-
rithm produces the best performance with the highest 𝐹 val-
ues as well as AUCs. Note that, although direct combination
gives out the highest SP values and ACCs, it is indeed invalid
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Table 7: Performance of different ensemble methods on bound and unbound datasets.

Method Bound dataset Unbound dataset
𝐹 ACC SN SP 𝐹 ACC SN SP

Direct Combination 0.016 0.939 0.008 0.999 0.021 0.907 0.011 0.999
EasyEnsemble 0.168 0.883 0.196 0.927 0.208 0.818 0.256 0.876
BalanceCascade 0.224 0.870 0.314 0.904 0.245 0.808 0.335 0.856
SMOTEBoost 0.252 0.852 0.415 0.879 0.239 0.750 0.423 0.784
Cost-Sensitive 0.330 0.750 0.648 0.760 0.312 0.689 0.704 0.687
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Figure 7: Different performance of various cost setups from 2 to 9. For bound dataset, when cost value is set as 4, 𝐹-measure and AUC reach
the peak values of 0.3302 and 0.721, respectively (a). For unbound dataset, the 𝐹-measure and AUC reach the maximal values of 0.3117 and
0.703 with cost being set as Figure 5(b).

in epitope prediction for it fails to identify the rare samples
(antigenic determinant residues). More importantly, Table 7
also figures that cost-sensitive ensemble strategy performs
better than data-level algorithms in epitopes prediction.

3.6. Comparison with Other Epitopes Prediction Methods. In
this section, a number of recently published approaches for
predicting conformational B-cell epitopes are used for com-
parison with our new proposed method. These approaches
include CEP [9], DiscoTope [10], SEPPA [11], PEPITO [12],
EPSVR [13], EPMeta [13], Epitopia [25], EPCES [53], and
ElliPro [26].These approaches can be classified into two types
according to the datasets for model building. CEP, Ellipro,
SEPPA, PEPITO,DiscoTope, andEpitopia are constructed for
identifying B-cell epitopes from bound dataset, while the rest
are designed for identifying B-cell epitopes from unbound
dataset.

Firstly, we compare our method with the recent bound-
structures-based approaches on the bound dataset using
LOOCV. DisoTope and Epitopia produce the mean AUCs of
0.60 and 0.59, and BPredictor yields the mean AUCs of 0.633
[18]. Zhang’s work gives out the mean AUCs of 0.687 [18].
Zheng’s work achieves the mean AUCs of 0.672 using 5-fold
cross-validation [19]. Here, our model produces the mean
AUCs of 0.721.

When compared with unbound-dataset-based predic-
tors, our method obtains the best AUCs of 0.703 using the

same evaluation measure. EPSVR, EPCES, and BPredictor
achieve the mean AUCs of 0.670, 0.644, and 0.654, respec-
tively [18]. Zhang’s work yields the mean AUCs of 0.651 [18].
Zheng’s work gives out the mean AUCs of 0.642 using 5-fold
cross-validation [19].

In addition, Liang’ independent dataset [13] is used to
compare our approach and previous methods. The mean
AUCs of DiscoTope, SEPPA, EPITOPIA, BPredictor, EPCES,
EPSVR, and CBTOPE calculated by their servers are 0.579,
0.589, 0.572, 0.587, 0.569, 0.606, and 0.607 [18]. Zhang’s
work gives out the mean AUCs of 0.600 and 0.601 on
bound-dataset-based and unbound-dataset-based models,
respectively. Our models are firstly built on the bound and
unbound dataset, and then the two models are tested by
Liang’s independent dataset. Finally, our approach gives out
the mean AUCs of 0.645 and 0.637, respectively. Although
our predictor achieves the best performance, the difference
between our predictor and other predictors is not statistically
significant by using pairwise Student’s t-test, partly due to the
small number of Liang’s independent datasets [13, 14].

In [18], Zhang et al. firstly introduced ensemble scheme
into predicting antigenic determinant residues. Zheng et al.
[19] adopted the AdaBoost algorithm and resample method
to deal with the imbalanced dataset. Compared with conven-
tional ensemble scheme, we add cost-sensitive strategy into
boosting scheme. Trained on the same benchmark datasets,
our models produce obviously better performance for the
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independent dataset. Therefore, the cost-sensitive ensemble
algorithm that incorporates cost-sensitive scheme produces
more robust performance than conventional ensemble simply
combining multiple predictors for predicting.

Compared with other predictors, our models produce
higher SN and comparable SP on bound, unbound, and inde-
pendent datasets. Note that cost-sensitive boosting scheme
is introduced in this paper to identify the rare epitope class
(positive class);more positive samples tend to be identified, so
the SN arises obviously; nevertheless, some negative samples
may be misidentified as well and the SP gives a slight
promotion.

3.7. Performance of Spatial Clustering. Two new invited
measures [48] (𝑉site, 𝑉𝑝) are adopted here to assess the per-
formance of proposed spatial clustering algorithm adopted
on the previous predicted antigenic determinant residues.
Consider

𝑉site =
∑ epitopepre=obs
∑ epitopepre

𝑉

𝑝
=

∑ antigenpre=obs
∑ antigen

,

(5)

where ∑ epitopepre=obs indicates the number of correctly
predicted epitopes; ∑ epitopepre indicates the sum of all
predicted epitopes;∑ antigenpre=obs represents the number of
correctly predicted antigens; and ∑ antigen is the sum of all
antigens. In this paper, an observed epitope is regarded as
a correctly predicted one if more than 30% of its antigenic
determinant residues are included in the predicted epitope;
an antigen is considered being correctly predicted if all the
epitopes are successfully identified and the number of the
identified epitopes is equal to that of the observed epitopes.
For the bound dataset, the values of 𝑉site and 𝑉

𝑝
are 53%

and 55%. For the unbound dataset, the values of 𝑉site and
𝑉

𝑝
are 52% and 53%. To evaluate the proposed clustering

algorithm, two popular spatial clustering algorithms, namely,
partitioning around medoids (PAM) [54] and CLARANS
[55], are adopted here to predict epitopes clusters. In this
study, PAM and CLARANS are implemented by R and
MATLAB, respectively; the optimal performance and cor-
responding parameters are given in Table 8. Experimental
results showed that our algorithm could indeed result in
better performance. It seems that the results have space
to be improved, but they are still encouraging as they are
obtained from simple primary sequence. Actually, this is
the first study that introduces spatial clustering algorithm
to conformational B-cell epitopes prediction. More effective
methods are needed to explore this field. It is expected to be
particularly useful when no template can be found for a given
antigen. In this situation, cost-sensitive ensemble predictors
are firstly used to predict the antigenic determinant residues,
and then spatial algorithm is performed on a modeled
structure from the algorithms like MODELLER and so forth
to predict the potential epitopes.

3.8. Implementation of CBEP. For the convenience of biol-
ogy scientists, CBEP has been implemented as a free web

Table 8: Performance of different clustering algorithms on bench-
mark datasets.

Method Bound dataset Unbound dataset
𝑉site 𝑉

𝑝
𝑉site 𝑉

𝑝

PAM1 41% 46% 40% 41%
CLARANS2 45% 48% 48% 51%
Our method3 53% 55% 52% 53%
1dist = Euclidean distance, 𝑘 = 4; 2dist = Euclidean distance, 𝑘 = 3; 3𝑅 avg =
19, 𝛼 = 1.1.

Figure 8: The home page of CBEP server.

server on Linux platform. A brief guide is given below
to describe how to use it. (i) Access the web server at
http://59.73.198.144:8088/CBEP/ and Home is the default
interface displayed (Figure 8). Click on the Introduction link
to see a detailed description about the server. (ii) Either type
or paste the antigen sequence (or list of sequences) into the
text box. Note that, the input sequence should be in the
FASTA format, which consists of a single-line description
and lines of sequence information. Click on the Example
link to see the example sequence. You will also be asked
to type your email address. The predicting results will be
sent to you as soon as the computational process is finished.
(iii) Click on the Query button to submit the computation
request. Generally speaking, it takes no more than 2 minutes
to predict the antigenic determinant residues for a sequence
with no more than 300 amino acids.

4. Conclusions

In this paper, we proposed a novel B-cell epitope predictor
CBEP. The antigen protein sequences are firstly encoded
with various sequence-derived features; then cost-sensitive
ensemble scheme is adopted to predict the antigenic deter-
minant residues; finally the predicted antigenic determinant
residues are fed into the spatial clustering algorithm to
evaluate the potential B-cell epitopes. Experiment results on
bound datasets, unbound datasets, and independent datasets
have demonstrated the efficacy of the proposed model. In
addition, our model could predict potential epitopes from
antigenic determinant residues with a spatial clustering pro-
cess. It is an enlightening attempt. Our future works will
focus on improving the prediction accuracy by developing
more powerful classifiers andmore accurate spatial clustering
algorithms. For the convenience of biology scientists, CBEP
has been implemented as a free web server located at
http://59.73.198.144:8088/CBEP/.
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BLAST and PSI-BLAST: a new generation of protein database
search programs,” Nucleic Acids Research, vol. 25, no. 17, pp.
3389–3402, 1997.

[29] H. Zhang, T. Zhang, K. Chen, S. Shen, J. Ruan, and L. Kurgan,
“Sequence based residue depth prediction using evolutionary
information and predicted secondary structure,” BMC Bioinfor-
matics, vol. 9, article 388, 2008.

[30] L. J. McGuffin, K. Bryson, and D. T. Jones, “The PSIPRED pro-
tein structure prediction server,” Bioinformatics, vol. 16, no. 4,
pp. 404–405, 2000.

[31] H. J. Dyson and P. E. Wright, “Intrinsically unstructured pro-
teins and their functions,” Nature Reviews Molecular Cell Biol-
ogy, vol. 6, no. 3, pp. 197–208, 2005.



12 BioMed Research International

[32] C. Haynes, C. J. Oldfield, F. Ji et al., “Intrinsic disorder is a com-
mon feature of hubproteins from four eukaryotic interactomes,”
PLoS Computational Biology, vol. 2, no. 8, article e100, 2006.

[33] J. Gsponer, M. E. Futschik, S. A. Teichmann, and M. M. Babu,
“Tight regulation of unstructured proteins: from transcript
synthesis to protein degradation,” Science, vol. 322, no. 5906, pp.
1365–1368, 2008.

[34] J. J. Ward, J. S. Sodhi, L. J. McGuffin, B. F. Buxton, and D. T.
Jones, “Prediction and functional analysis of native disorder in
proteins from the three kingdoms of life,” Journal of Molecular
Biology, vol. 337, no. 3, pp. 635–645, 2004.

[35] K.-C. Chou, “Pseudo amino acid composition and its applica-
tions in bioinformatics, proteomics and system biology,” Cur-
rent Proteomics, vol. 6, no. 4, pp. 262–274, 2009.

[36] H. Mohabatkar, “Prediction of cyclin proteins using chou's pse-
udo amino acid composition,” Protein and Peptide Letters, vol.
17, no. 10, pp. 1207–1214, 2010.

[37] C. Chen, L. Chen, X. Zou, and P. Cai, “Prediction of protein sec-
ondary structure content by using the concept of Chou's pseudo
amino acid composition and support vector machine,” Protein
and Peptide Letters, vol. 16, no. 1, pp. 27–31, 2009.

[38] H. Ding, L. Luo, and H. Lin, “Prediction of cell wall lytic enz-
ymes using chou's amphiphilic pseudo amino acid composi-
tion,”Protein andPeptide Letters, vol. 16, no. 4, pp. 351–355, 2009.

[39] S. Saha andG. P. S. Raghava, “BcePred: prediction of continuous
B-cell epitopes in antigenic sequences using physico-chemical
properties,” in Artificial Immune Systems, pp. 197–204, 2004.

[40] E. A. Emini, J. V. Hughes, D. S. Perlow, and J. Boger, “Induction
of hepatitis A virus-neutralizing antibody by a virus-specific
synthetic peptide,” Journal of Virology, vol. 55, no. 3, pp. 836–
839, 1985.

[41] P. K. Ponnuswamy, M. Prabhakaran, and P. Manavalan, “Hyd-
rophobic packing and spatial arrangement of amino acid
residues in globular proteins,” Biochimica et Biophysica Acta,
vol. 623, no. 2, pp. 301–316, 1980.

[42] J. Janin, S. Wodak, M. Levitt, and B. Maigret, “Conformation of
amino acid side chains in proteins,” Journal ofMolecular Biology,
vol. 125, no. 3, pp. 357–386, 1978.

[43] J.-L. Pellequer, E.Westhof, andM.H. V. van Regenmortel, “Cor-
relation between the location of antigenic sites and the predic-
tion of turns in proteins,” Immunology Letters, vol. 36, no. 1, pp.
83–99, 1993.

[44] Q. Cheng, H. Zhou, and J. Cheng, “The fisher-markov selector:
fast selecting maximally separable feature subset for multiclass
classification with applications to high-dimensional data,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
33, no. 6, pp. 1217–1233, 2011.

[45] Z.-Y. Keck, J. Xia, Y. Wang et al., “Human monoclonal antibod-
ies to a novel cluster of conformational epitopes on HCV E2
with resistance to neutralization escape in a genotype 2a isolate,”
PLoS Pathogens, vol. 8, no. 4, Article ID e1002653, 2012.

[46] A. Stufano, G. Capone, B. Pesetti, L. Polimeno, and D. Kanduc,
“Clustering of rare peptide segments in the HCV immunome,”
Self/Nonself, vol. 1, no. 2, pp. 154–162, 2010.

[47] D.-J. Yu, J. Hu, Y. Huang et al., “TargetATPsite: a template-free
method for ATP-binding sites predictionwith residue evolution
image sparse representation and classifier ensemble,” Journal of
Computational Chemistry, vol. 34, no. 11, pp. 974–985, 2013.

[48] K.-C. Chou, “The convergence-divergence duality in lectin
domains of selectin family and its implications,” FEBS Letters,
vol. 363, no. 1-2, pp. 123–126, 1995.

[49] B.-Q. Li, L.-L. Hu, L. Chen, K.-Y. Feng, Y.-D. Cai, and K.-C.
Chou, “Prediction of protein domain with mRMR feature sele-
ction and analysis,” PLoS ONE, vol. 7, no. 6, Article ID e39308,
2012.

[50] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: an update,”
ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10–18,
2009.

[51] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling
for class-imbalance learning,” IEEE Transactions on Systems,
Man, and Cybernetics B, vol. 39, no. 2, pp. 539–550, 2009.

[52] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer,
“SMOTEBoost: improving prediction of the minority class in
boosting,” in Proceedings of the 7th European Conference on
Principles and Practice of Knowledge Discovery in Databases
(PKDD ’03), pp. 107–119, September 2003.

[53] J. Ponomarenko, N. Papangelopoulos, D. M. Zajonc, B. Peters,
A. Sette, and P. E. Bourne, “IEDB-3D: structural data within the
immune epitope database,”Nucleic Acids Research, vol. 39, no. 1,
pp. D1164–D1170, 2011.

[54] M. J. van der Laan, K. S. Pollard, and J. Bryan, “A new parti-
tioning around medoids algorithm,” Journal of Statistical Com-
putation and Simulation, vol. 73, no. 8, pp. 575–584, 2003.

[55] R. T.Ng and J.Han, “CLARANS: amethod for clustering objects
for spatial data mining,” IEEE Transactions on Knowledge and
Data Engineering, vol. 14, no. 5, pp. 1003–1016, 2002.


