# **RSC Advances**



# REVIEW



Cite this: RSC Adv., 2021, 11, 2359

# DNA-encoded libraries (DELs): a review of on-DNA chemistries and their output

Ying Shi, (10 †\*\* Yan-ran Wu, †\* Jian-qiang Yu, (10 \* Wan-nian Zhang\*) and Chun-lin Zhuang (10 \*\*)

A DNA-encoded library is a collection of small molecules covalently linked to DNA that has unique information about the identity and the structure of each library member. A DNA-encoded chemical library (DEL) is broadly adopted by major pharmaceutical companies and used in numerous drug discovery programs. The application of the DEL technology is advantageous at the initial period of drug discovery because of reduced cost, time, and storage space for the identification of target compounds. The key points for the construction of DELs comprise the development and the selection of the encoding methods, transfer of routine chemical reaction from off-DNA to on-DNA, and exploration of new chemical reactions on DNA. The limitations in the chemical space and the diversity of DEL were reduced gradually by using novel DNA-compatible reactions based on the formation and the cleavage of various bonds. Here, we summarized a series of novel DNA-compatible chemistry reactions for DEL building blocks and analysed the druggability of screened hit molecules *via* DELs in the past five years.

Received 21st November 2020 Accepted 21st December 2020

DOI: 10.1039/d0ra09889b

rsc.li/rsc-advances

## 1 Introduction

In 1992, Brenner and Lerner first proposed the concept of encoding a chemical library with sequenced nucleotide tags,1 and this concept was rapidly applied to practice by Janda and Brenner in 1993.2 In recent decades, DEL has become a technology platform that combines the advantages of chemical and biological display libraries. Every member in a DEL is constructed through polymerase chain reaction and DNA-compatible routine reaction. The identity of an individual compound can be determined via high-throughput DNA sequencing, because every molecule is correspondingly conjugated with its unique DNA barcode. DNA tags are used as barcodes, which ensure the high-precision hit screening and improve the application efficiency of chemical libraries. Library members can be completely stored in a minute space, and the trace amounts used for affinity capture procedures. Recently, DEL drown too much attention because of its unique advantages in drug discovery, which even catches up with traditional high-throughput screening (HTS), fragment-based drug discovery, phenotypic screening, in silico screening, and affinity selection through mass spectrometry.3 Compared with traditional approaches, DEL is more conducive to drug discovery and identification.4 Other advantages of DEL include (1) enormous library size, (2) small space for compounds storage, (3) a thimbleful of DNA-tagged molecules to affinity assay, (4) low-cost tools for academic institution and small pharmaceutical company, (5) and efficient collection of drug-like compounds.<sup>5–7</sup> With the constant influx of capital, some clinical candidates are provided *via* DEL technologies in a short time.<sup>3,8</sup> GSK reports the phase II clinical molecule, GSK2256294, developed through DEL, used to cure chronic obstructive pulmonary disease (Fig. 1).<sup>9,10</sup> The GSK2982772, a receptor-interacting protein-1 kinase inhibitor developed by GSK, is applied to cure ulcerative colitis, rheumatoid arthritis, and psoriasis in phase II trials (Fig. 1).<sup>11</sup>

Recently, some excellent reviews have analysed the characteristics of DEL technology from different perspectives.<sup>3,8,12,13</sup> Here, we have discussed the new exploration of the DEL-compatible chemistry and analysed the drug ability of the hit compounds isolated from DEL in recent selection campaigns. Finally, we have proposed our views on the current challenges and future directions for DEL.

# 2 Exploration of novel DNAcompatible reactions

The synthesis of functional molecules tagged with DNA played a considerable role in a promotion to the diversity of chemical

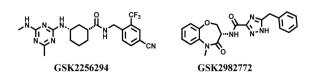



Fig. 1 Compounds developed via DEL.

<sup>&</sup>quot;School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China. E-mail: nxshiying@163.com

<sup>&</sup>lt;sup>b</sup>School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China. E-mail: zclnathan@163.com

<sup>†</sup> These authors contributed equally.

spaces at the initial stage of the construction of DEL. Numerous catalysts should be developed and employed to promote the compatibility of the chemistry reactions that DNA participated. Solvents, temperature, and reaction time were screened and optimized. Here, we summarized the DNA-compatible reactions on the basis of the formation and the cleavage of various bonds, such as C–C, C–N, and C–O, in the recent five years.

## C-C sp<sup>2</sup>-sp<sup>2</sup> coupling

Li successfully developed the DNA-compatible Suzuki–Miyaura reaction in aqueous media by using a water-soluble palladium precatalyst which could promote the coupling efficiency between DNA-linked aryl halides and boronic acids/esters (Table 1 entry 1).<sup>14</sup> Results showed that phenyl chlorides were coupled with 70% boronates and the conversion rate was as high as 50%. Heteroaryl chlorides were more reactive than phenyl chlorides, and the conversion was over 50%. Aryl bromine and aryl iodide presented optimum reactivity, and the conversion achieved over 90%. Generally, the carbonylative reaction was accomplished under high concentration of carbon monoxide, which guaranteed that the carbon monoxide could insert into the palladium–electrophile complex efficiently.<sup>15–17</sup>

After the regulation of the reaction conditions based on their previous work, Li and his coworkers developed palladiumcatalyzed DNA-linked aryl halides and generated aryl acid (Table 1 entry 2).18 The substrate was aryl and heteroaryl halides, and the typical carbon monoxide gas was changed to carbon monoxide sources, including N-formyl saccharin<sup>19</sup> and molybdenum hexacarbonyl,20 which could decompose and generate carbon monoxide in the reaction system. After screening, molybdenum hexacarbonyl was chosen as the CO source. The result was consistent with those of previous works. 14 (Hetero)aryl iodide and bromide substrates transformed into hydroxycarbonylation more efficiently than (hetero)aryl chloride. The hydroxycarbonylation reaction was successfully used to construct DEL, and the known hits for soluble epoxide hydrolase (sEH, EPHX2), a cardiovascular target, and L3MBTL1, a member of the malignant brain tumor family, were further validated. Liu's group first reported the Heck reaction on DNA.21 However, only three entries were described, and the conversion was moderate. The diversity of the substrates cannot be reflected. Recently, Dai and Lu described palladium-promoted DNA-compatible Heck reaction and optimized the reaction conditions, which were compatible for DNA-conjugated styrene/ acrylamides and aryl halide22 (Table 1 entry 3). The substrates

**Table 1** C-C sp<sup>2</sup>-sp<sup>2</sup> coupling DNA-compatible reactions

| Entry | DNA-compatible reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conditions                                                                |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 1     | $\begin{array}{c c} \textbf{dsDNA} & & & & \\ & & & & \\ & & & & \\ \hline A=N \text{ or } CH \\ \textbf{X}=Cl, \textbf{Br}, \textbf{I} \end{array} \qquad \begin{array}{c} \textbf{Br}-\textbf{B}(OH)_2 \\ \hline sSPhos-Pd-G2 \\ \hline \end{array} \qquad \begin{array}{c} \textbf{dsDNA} & & \\ \hline \end{array} \qquad \begin{array}{c} \textbf{Ar} \\ \hline NaO_{pl} & \\ \hline sSPhos-Pd-G2 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CsOH/H <sub>2</sub> O, 80 °C, 15 min                                      |
| 2     | $ \begin{array}{c} \text{dsDNA} & \xrightarrow{\text{I}} & \xrightarrow{\text{I}} & \times \\ A=\text{N or CH} \\ X=\text{Cl,Br,I} \end{array} $ $ \begin{array}{c} \text{A=N or CH} \\ X=\text{Cl,Br,I} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CsOH, Mo(CO) <sub>6</sub> , 80 °C, 15 min                                 |
| 3     | dsDNA H Ar-X Pd promoters, dsDNA H Ar-X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Base, organic solvent/H $_2$ O, 80 °C/6 h                                 |
| 4     | $\begin{array}{c} \text{dsDNA} - \underset{A=\text{CH, N}}{\text{NH}} & \xrightarrow{\text{NH}} & \xrightarrow{\text{Ar-B(OH)}_2} & \text{dsDNA} - \underset{A}{\text{NH}} & \xrightarrow{\text{NH}} & \text$ | $Na_2CO_3$ , $H_2O$ , 80 $^{\circ}C$                                      |
| 5     | Ar-B(OR') <sub>2</sub> POPd/Ligand 1  Ar-B(OR') <sub>2</sub> POPd/Ligand 1  Ar-B(OR') <sub>2</sub> POPd/Ligand 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $KOH/H_2O$                                                                |
| 6     | $\frac{1}{ \operatorname{RuCl}_2(\operatorname{p-cym}) _2} \longrightarrow \frac{1}{ \operatorname{RuCl}_2(\operatorname{p-cym}) _2} \longrightarrow \frac{1}{ \operatorname{dsDNA}_{\operatorname{NH}} + \operatorname{IO}_{\operatorname{NH}}} = \frac{\operatorname{R}_{\operatorname{NH}} + \operatorname{IO}_{\operatorname{NH}}}{\operatorname{dsDNA}_{\operatorname{NH}} + \operatorname{IO}_{\operatorname{NH}}} = \frac{\operatorname{R}_{\operatorname{NH}} + \operatorname{IO}_{\operatorname{NH}}}{\operatorname{RuCl}_2(\operatorname{p-cym})} = \frac{\operatorname{R}_{\operatorname{NH}} + \operatorname{RuCl}_2(\operatorname{p-cym})}{\operatorname{RuCl}_2(\operatorname{p-cym})} = \frac{\operatorname{R}_{\operatorname{NH}} + \operatorname{RuCl}_2(\operatorname{p-cym})}{\operatorname{RuCl}_2(\operatorname{p-cym})} = \frac{\operatorname{R}_{\operatorname{NH}} + \operatorname{RuCl}_2(\operatorname{p-cym})}{\operatorname{RuCl}_2(\operatorname{p-cym})} = \frac{\operatorname{RuCl}_2(\operatorname{p-cym})}{\operatorname{RuCl}_2(\operatorname{p-cym})} = \operatorname{RuC$                                                                                                                  | KOAc buffer/DMF, 60 $^{\circ}$ C, 10 h                                    |
| 7     | $\frac{\text{dsDNA}}{\text{N}} \xrightarrow{\text{N}} \frac{\text{OSO}_2 \text{F}}{\text{Pd(OAe)}_2} \xrightarrow{\text{Ar-B(OH)}_2} \frac{\text{dsDNA}}{\text{N}} \xrightarrow{\text{N}} \frac{\text{Ar}}{\text{N}} \xrightarrow{\text{N}} \frac{\text{Ar}}{\text{N}} \xrightarrow{\text{N}} \frac{\text{Ar}}{\text{N}} \xrightarrow{\text{N}} \frac{\text{N}}{\text{N}} \xrightarrow{\text{N}} \text{N$                                                                                                                                                                                                                                                                                 | Suzuki-Miyaura                                                            |
| 8     | CONTROL CONTRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\rm K_3PO_4$ , (800 equiv.), 2% TPGPS–750 M, 15% THF, 60 $^{\circ}\rm C$ |

included aryl iodide, aryl bromide, and aryl borate/boric acid, and most of the observed conversion achieved over 60-95%. The possibility and the feasibility of constructing DEL were revealed. The Heck reaction was utilized to a three-cycle synthesis for DEL. The GlaxoSmithKline successfully and efficiently applied Pd(PPh<sub>3</sub>)<sub>4</sub> to catalyze the Suzuki-Miyaura coupling reaction between DNA-conjugated phenyl bromides or phenyl iodides and pyridinyl bromides with (hetero)aryl boronic acids/esters.23 The aryl-aryl binding was generated, and the vast majority of the conversion achieved over 70% (Table 1 entry 4). Particularly, the furanyl, pyrazoleyl, and thiopheneyl boronic ester substrates underwent the coupling reaction, and the conversion reached 100%. Aryl iodide substrates coupled with DNA-conjugated halides more readily than aryl bromide substrates. Nevertheless, the substituted groups on the ortho position of aryl boronic acids/esters limited the formation of aryl-aryl bonds and reduced the conversion. Except (hetero)aryl iodide and bromide, (hetero)aryl chloride substrates were coupled with (hetero)aryl boronic acids/esters, and results demonstrated that Pd(PPh<sub>3</sub>)<sub>4</sub> was unfit for the (hetero)aryl chloride-participated Suzuki-Miyaura coupling reaction with (hetero)aryl boronic acids/esters.24 After optimization, DNAlinked phenyl chlorides and pyridinyl chlorides were coupled with aromatic boronic acids/esters,24 which first used the newly developed palladium catalyst system (POPd) with ligand 1 in the Suzuki-Miyaura coupling reaction (Table 1 entry 5). Particularly, the pyrimidinyl chloride coupled with various boronates greatly expanded the chemical space in the DNA-encoded library. Lu also first developed the C-H activation reaction on DNA,25 and this reaction was catalyzed by ruthenium and applied in the reaction between DNA-linked acrylamides and aromatic acids (Table 1 entry 6). Recently, Lerner's group developed DNA-bound aryl fluorosulfonates to construct the C(sp<sup>2</sup>)-C(sp<sup>2</sup>) bond (Table 1 entries 7).<sup>26</sup> Pd(OAc)<sub>2</sub> as the catalyst was used in Suzuki-Miyaura cross-coupling reactions where arvl boric acid and aryl alkyne participated in. Waring's team developed a new and efficient method for the construction of aryl C-C bonds through the Suzuki-Miyaura reaction. The DNAtagged phenyl iodine, aryl or heteroaryl boric acid/boronate esters, and pinacolato were locked in commercial micellar surfactants (Table 1 entry 8). This new methodology avoided the detectable remarkable DNA degradation, and even improved the conversion which the most yield of the coupling reactions were near to 100%. After the condition optimization, the methodology in the synthesis of DEL was used.27

## C-C sp<sup>2</sup>-sp and C-C sp<sup>2</sup>-sp<sup>3</sup> coupling

Lerner's group developed DNA-bound aryl fluorosulfonates which was used to construct the  $C(sp^2)$ –C(sp) bonds (Table 2 entry 1). <sup>26</sup> Neri's group achieved the Sonogashira cross-coupling reaction on DNA, in which the DNA-linked phenyl iodine was coupled with (het)aryl, guanidyl, and aliphatic alkynes under the (PdCl[allyl])<sub>2</sub> catalysis (Table 2 entry 2). <sup>28</sup> Nearly half of the reactions worked, and the conversion achieved 75%. Yu's team exploited the  $C(sp^3)$ –H activation on DNA. <sup>29</sup> The DNA-linked aryl iodides reacted with the  $\beta$ -position  $C(sp^3)$  of aliphatic carboxylic

acids, amides, and ketones in water, and this reaction was catalyzed by palladium catalysis (Table 2 etrentry 3). The structurally diverse substrates were compatible with DNA, which contained enriched C(sp3) character, chiral centers, cyclopropane, cyclobutane, and heterocycles. Recently, Peng's team developed Suzuki-Miyaura cross-coupling on DNA,30 in which DNA-linked aryl bromides reacted with potassium Bocprotected amino methyl trifluoroborate and finally formed benzylamine under the Pd(OAc)2 catalysis (Table 2 Entry 4). Peng's team optimized the cross-coupling condition and preferred the combination of ligand and base (rac-BIDIME and K<sub>2</sub>CO<sub>3</sub>). The DNA-conjugated substrates comprised diverse (het) aromatic bromides, and most conversion achieved 70%. Pfizer and HitGen Inc. Implemented the photoredox with nickel and iridium catalysis between decarboxylated α-amino acids and DNA-lined aryl halides (iodide and bromine) in aqueous solution with blue LED (Table 2 Entry 5).31 The methodology possessed huge potential for the preparation of DEL because of the mild reaction conditions on DNA. GSK developed Ni/ photoredox-catalyzed C(sp<sup>2</sup>)-C(sp<sup>3</sup>) cross-coupling and used the photoredox catalysis in radical/polar crossover alkylation for the construction of DEL.32 Ni/Photoredox promoted DNA-linked (hetero)aryl halides coupled with alkyl-DHPs and α-amino acids in 49 examples, and the overall conversion was 40-80%. The photoredox catalyst catalyzed DNA-linked aryl trifluoromethyl alkene radical/polar crossover alkylated with alkyl silicates, DHPs, and α-amino acids, and almost all conversions were over 60% (Table 2 Entry 6). Molander's group found new radical precursors generated from primary or secondary alkyl bromides and α-silylamines, and used the radical precursors to couple with DNA-conjugated (het)aryl bromides and iodides to form the target molecules under the Ni/photoredox dual catalyst (Table 2 entries 7-9).33 Baran's team used nickel to mediate the decarboxylative C(sp<sup>2</sup>)-C(sp<sup>3</sup>) cross-coupling under the conditions of reversible adsorption to solid support, which was compatible with DNA (Table 2 Entry 10).34 After optimization, the conversion was above 80%. The condition was suitable for substrates containing phenyl, saturated cycloalkyl, and Nheterocycle, which reacted with the DNA-bound phenyl iodine. Liu's team first reported a new and highly efficient method for constructing C3-alkylated indole structures on DNA.35 At the beginning, the DNA-linked indole reaction with aldehydes forming the products in two steps under the metalfree catalysis was explored. Most conversions achieved 70-94% (Table 2 entry 11). The aldehydes were replaced with DNAlinked moieties, and results indicated that the mild conditions promoted the current reactions. The conversions improved heavily (Table 2 entry 12).

#### Construction of the C-C sp<sup>2</sup>-sp<sup>2</sup> and the C-C sp<sup>3</sup>-sp<sup>3</sup> bonds

Dai's group synthesized pyridazines on DNA through inverse electron demand Diels-Alder (IEDDA) reactions (Table 3 entry 1). The DNA-linked tetrazine reacted with alkene which contained terminal olefin and cyclo-olefin in aqueous solutions, and the reaction was catalyzed by copper(II). The DNA-compatible reactions included Suzuki-Miyaura coupling,

Table 2  $C-C sp^2-sp$  and  $C-C sp^2-sp^3$  coupling DNA-compatible reactions

| Entry | DNA-compatible reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Conditions                                            |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 1     | dsDNA-H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sonogashira cross-coupling                            |
| 2     | ssDNA NHAQ   R   PdCl(allyl) 2   SsDNA N   NHAQ R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathrm{Na_{2}CO_{3}/H_{2}O}$                        |
| 3     | dsDNA TO THE GADNA | AgTFA<br>NaOAc<br>H <sub>2</sub> O/DMA<br>80 °C, 20 h |
| 4     | $\begin{array}{c} \text{dsDNA} \\ \text{-NH} \\ \text{R} \end{array} \xrightarrow{A} \begin{array}{c} \text{BF}_3K \\ \text{1)Pd(OAc)}_2, \text{(rac)-BIDIME} \\ \text{2)de-Boc protection} \end{array} \xrightarrow{A} \begin{array}{c} \text{-NH} \\ \text{L} \end{array} \xrightarrow{A} \begin{array}{c} \text{NH} \\ \text{R} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ${ m K_2CO_3}$ , DMAc/ ${ m H_2O}$ , 95 °C, 2 h       |
| 5     | dsDNA Boc dsDNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\rm K_2HPO_4$ , DMSO/ $\rm H_2O$ , RT Blue LED       |
| 6     | dsDNA    RP   photoredox   RP   catalysis   dsDNA   R2   R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DMSO/ $\mathrm{H_2O}$ , RT Blue LED                   |
| 7     | dsDNA NH X R1 Ir(ppy)2dtbpy dsDNA NH X R1 NiBr2bpy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ${ m Et_3N,DMSO/H_2O}$<br>Kessil lamp, 45 min         |
| 8     | dsDNA-NH  R  [Ir(dFCF,ppy)_2(bpy)]PF6 NiBr3dOMe-bpy  NiBr3dOMe-bpy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mathrm{DMSO/H_{2}O}$<br>Kessil lamp, 15 min         |
| 9     | $\frac{F_3C}{\frac{R^2}{N^1}} = \frac{\frac{R^2}{N^1}}{\frac{R^1}{[Ir(dFCF_3ppy)_2(bpy)]PF_6}} = \frac{\frac{R^2}{N^2}}{\frac{R^2}{R^2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DMSO/H <sub>2</sub> O<br>Kessil lamp, 5 min           |
| 10    | dsDNA H H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RASS, K <sub>2</sub> CO <sub>3</sub> , DMA            |
| 11    | dsDNA_NH RCHO  RCH | 9DMSO/H $_2$ O, NaOH, 60 $^\circ$ C                   |
| 12    | dsDNA Hy RICHO COOET dsDNA Hy RICHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DMSO/ ${ m H_2O},~{ m RT}$                            |

acylation, and S<sub>N</sub>Ar substitution reactions, which the conversion was near to 100%.<sup>36</sup> Xu and his coworkers used copper(II) to catalyze the tetrazine-mediated IEDDA reactions on DNA (Table 3 entries 2 and 3). Tetrazine reacted with DNA-tagged terminal olefin or cyclo-olefin and resulted in 90% of the desired products.<sup>37</sup> Grubbs Ru reagents were widely used in ring-closing metathesis (RCM) for drug discovery.<sup>38-42</sup> Recently, Lu and his coworkers first used Grubbs Ru reagents to promote DNA-linked RCM and cross-metathesis reactions.<sup>43</sup> After conditions optimization, the conversion of the closing metathesis reaction on DNA achieved 50–85% (Table 3 Entry 4). Mg<sup>2+</sup> prevented the decomposition of the DNA. Simmons' team used the Grubbs

third-generation catalyst **B** to construct a new olefin through RCM reactions, <sup>44</sup> and the average conversion was 41% (Table 3 Entry 5). In 2018, Dai's group explored proline-catalyzed IEDDA among DNA-tagged tetrazine, ketones, and aldehydes. <sup>36</sup> Results showed that the average yield was 69% (Table 3 Entry 6). Peng's team synthesized the DNA-linked  $\alpha$ ,  $\beta$ -unsaturated carbonyl compounds via the intermolecular Wittig olefination reaction. <sup>45</sup> They explored the catalysis of phosphine reagents, and chose PPh<sub>2</sub>CH<sub>3</sub>. KH<sub>2</sub>PO<sub>4</sub> and DMAc as the preferred additive and solvent, which promoted the conversion neaer to 72%. DNA-conjugated  $\alpha$ -chloroacetamides reacted with (het)aromatic and aliphatic aldehydes, the results indicated that the

**Table 3** Formation of the  $C-C sp^2-sp^2$  and the  $C-C sp^3-sp^3$  bonds

| Entry | DNA-compatible reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Conditions                                                                                                                              |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 1     | $0 = \bigvee_{N=1}^{N=N} \frac{1}{2)Cu(ClO_4)_2} \xrightarrow{0 = \bigvee_{N=1}^{N+1} R^2} 0 = \bigvee_{N=1}^{R^2 \setminus R^2} \frac{1}{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul><li>(1) DMSO, H<sub>2</sub>O</li><li>(2) bypridine</li><li>TEMPO</li></ul>                                                          |
| 2     | $\begin{array}{c} O = \\ O = \\$ | <ul><li>(1) DMSO, H<sub>2</sub>O</li><li>(2) bypridine</li><li>TEMPO</li></ul>                                                          |
| 3     | dsDNA NH Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul><li>(1) DMSO, H<sub>2</sub>O</li><li>(2) bypridine</li><li>TEMPO</li></ul>                                                          |
| 4     | dsDNA-NH dsDNA-NH NHBoc IRu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $H_2O: t$ -Bu $OH = 3: 2$                                                                                                               |
| 5     | dsDNA-NH R GSDNA-NH R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $H_2O: EtOH: MeOAc = 5:4:1$                                                                                                             |
| 6     | 0 = NH $0 = NH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DMSO/water, 20 °C                                                                                                                       |
| 7     | dsDNA_NH CI R dsDNA_NH \R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ${ m PPh}_2{ m CH}_3$ , ${ m KH}_2{ m PO}_4$<br>pH 9.45 buffer<br>80 °C, 6 h                                                            |
| 8     | dsDNA NH R=0 Brunk R dsDNA NH R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $PPh_2CH_3$ , $KH_2PO_4$<br>Sodium borate buffer/DMAc<br>80 °C, 2 h; 25 °C, 4 h                                                         |
| 9     | dsDNA_NH R=0 CI_CI_NH2 DsDNA_NH R=\( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \(                                                                                                                                                                                                                                                                                                                                                                 | PPh <sub>2</sub> CH <sub>3</sub> , KH <sub>2</sub> PO <sub>4</sub><br>Sodium borate buffer/CH <sub>3</sub> CN<br>80 °C, 2 h; 25 °C, 4 h |
| 10    | dsDNA To Ref Res And Aspert As                                                                                                                                                                                                                                                                                                                                                                 | pH 5.5–6.5 buffer/DMSO, RT, 2 h                                                                                                         |
| 11    | dsDNA-  Ir dF(CF <sub>3</sub> )ppy  <sub>E</sub> (dtbbpy)FF <sub>6</sub> dsDNA-  Boc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K <sub>2</sub> HPO <sub>4</sub> , DMSO/H <sub>2</sub> O, RT<br>Blue LED                                                                 |
| 12    | dsDNA H R1 R2 S-proline dsDNA H R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DMSO, RT, 16 h                                                                                                                          |
| 13    | dsDNA H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DMSO/ $\rm H_2O$ , RT                                                                                                                   |

conversion for (het)aromatic aldehydes preferred the aliphatic aldehydes (Table 3 entry 7). For DNA-conjugated aldehyde reacting with  $\alpha$ -halo acetamides or ketones, most conversions achieved approximately 60–90% (Table 3 entries 8 and 9). Baran's team constructed the  $C(sp^3)$ – $C(sp^3)$  bond through zinc nanopowder-mediated Giese addition reaction on DNA-linked molecules, which was based on the radical mechanism (Table 3 entry 10). <sup>46</sup> Some highly hindered  $C(sp^3)$ – $C(sp^3)$  linkages were also synthesized, and substrates containing amino, carboxyl,

and dipeptide were compatible for the construction of DEL. In the past few years, the photocatalysis was utilized to synthesize drugs and key pharmaceutical intermediates. <sup>47</sup> Merck implemented photocatalysis in small-scale batch reactions. <sup>48</sup> Lilly used photoredox catalyst to synthesize the key intermediate of the JAK2 inhibitor LY2784544. <sup>49</sup> Recently, Pfizer achieved the addition reaction between decarboxylated  $\alpha$ -amino acids and DNA-linked Michael receptor under mild conditions by photoredox with iridium catalyst <sup>50</sup> (Table 3 entry 11). They screened

the reaction conditions found that photoredox catalyst and the light were necessary which determined whether the reaction happened or not. Proline catalyzed DNA-tagged aldehydes react with soluble ketones for asymmetric aldol reaction (Table 3 entry 12).51 The conversions of most reactions were up to 90% with 70% e.e. The formed β-hydroxy ketones were used as substrates for the Mitsunobu reactions, and results showed that the conversions of all reactions were 90-99% with 57-98% e.e. Two years later, Dai's group developed a convenient and efficient formal [4 + 2] cycloaddition reaction, which was compatible with DNA.52 This reaction was utilized to construct the diverse thiazole-fused dihydropyrans (Table 3 entry 13). The solvents were screened, and results showed that the combination of DMSO and water could improve the conversion perfectly. The DNA-tagged multisubstituted thiazol-4(5H)-one worked efficiently with aliphatic and (het)aryl aldehydes or cycloalkyl ketones under the pyrrolidine/BzOH catalyst.

## Construction of $C(sp^2)$ -X (X = N, O, P, S, Se) bonds

The C-N coupling appeared later than the C-C coupling for DNA-conjugated aryl halides. Lu and his coworkers first successfully developed C-N coupling reactions on DNA-linked aryl iodide and aromatic amines, and these reactions were catalyzed *via* the Buchwald *t*-butyl-XPhos precatalyst G1 (Table 4 entry 1).53,54 Two years later, Torrado first reported the palladium-catalyzed C-N coupling between DNA-conjugated aryl bromides and aromatic amines, which were successfully utilized in the production of the third cycle of DEL (Table 4 entry 2).55 Recently, Lerner's group developed DNA-bound aryl fluorosulfonates to construct the C(sp<sup>2</sup>)-N bonds, which belongs to Buchwald-Hartwig cross-coupling reactions (Table 4 Entry 3).26 T-BuBrettphos Pd was utilized in the cross-coupling reaction, and another substrate was substituted with aryl amines. The conversions of all cross-coupling reactions were about 80-100%. Simmons' group recently developed new DNAcompatible conditions for the formation of the C-N bond. 56 The DNA-tagged aryl halogen (i.e., Cl, Br, and I) coupled with anilines and 2° amines under N-heterocyclic carbene-palladium catalyst, which was used to construct the DEL that contained 63 million molecules (Table 4 entry 4). Copper-catalyzed C-N coupling reactions had a long application history in drug discovery.<sup>57,58</sup> Nevertheless, copper-catalyzed reactions for the construction of DEL appeared until 2017, which Lu first reported the copper-catalyzed Ullmann N-arylation of amino acids and aliphatic primary amines with aryl iodide on DNA.<sup>53</sup> Cu(I) combined with amino acids, which also acted as the ligand, could promote C-N coupling reactions. Simultaneously, the copper interacted with DNA and enabled DNA decomposition without amino acid. The CuSO<sub>4</sub>: proline (1:2) complex efficiently catalyzed the C-N coupling between aliphatic primary amino and DNA-conjugated aryl iodide (Table 4 entry 5). Berst used Cu(OAc)<sub>2</sub> and a new ligand L15 complex not only to catalyze the same reaction as Lu's, but also promoted various hindered second amines coupled with the DNA-conjugated aryl iodide (Table 4 entry 6).59 Except C-C coupling, the construction of C-N bond was mediated by nickel catalyst. The DNA linked

phenyl iodine could react with alkylamines and heterocyclyamines, and the result showed that the conversion of alkylamines was more preferred (Table 4 entry 7). Recently, Dawson and his coworkers developed new methodologies to synthesize C-S and C-P bonds on DNA (Table 4 entries 8 and 9).60 The DNAlinked (het)aryl iodide reacted with aryl, heteroaryl, and alkyl thiols, which was catalyzed by nickel. At the same time, phosphinic chlorides were competent coupling partners for aryl iodides to construct C-P bond. Zhang's team developed the nontransition metal-mediated formation of C-O and C-S bonds.61 DNA-conjugated heteroaryl quaternary ammonium salt reacted with aliphatic and arylanol or the mercapto compounds to form the designed molecules under mild conditions. Most conversions achieved above 70% (Table 4 entries 10 and 11). Lerner's team constructed the C-Se bond off DNA, which was catalyzed by rhodium(III). After optimization, they transferred the method to on-DNA reaction (Table 4 entry 12).62 The DNA-tagged indole derivatives reacted with benzoselenazolones, which were substituted with halogen (i.e., F, Cl, and Br) and methoxy in phosphate buffer-DMA (7:1) under (RhCp\*[MeCN]<sub>3</sub>[SbF<sub>6</sub>]<sub>2</sub>) catalysis. The yield of monosubstituted products was better than that of multisubstituted products.

#### **Multicomponent reaction**

Brunschweiger's group developed multicomponent reactions on DNA which was catalyzed via various transition metal catalysts. They reported the Petasis 3-component reaction on DNA, which was catalyzed via copper(1)/bipyridine (Table 5 entry 1). The yield of most products were above 70%, and the  $R^2$  was confirmed as phenyl which benefited the reaction.<sup>63</sup> Recently, they reported oligothymidine-initiated DNA-encoded chemistry,64 which described a hexathymidine oligonucleotide (hexT)-linked group reacted with other components. This process was catalyzed by Au(1), and the synthesis steps were recorded by coding DNA sequences. They optimized the BB, developed Au(1)-catalyzed 3-component reactions on DNA, and constructed the DNA-conjugated spiroheterocycles from either DNA-coupled aldehydes, hydrazides, or alkynols (Table 5 entry 2).65 Thymine-, cytosine-, and adenine-containing DNA were used in the reaction. Additionally, they synthesized the DNAconjugated isoquinolones via the Yb(III)-mediated Castagnoli-Cushman reaction under anhydrous conditions (Table 5 entry 3). The conditions of the Castagnoli-Cushman reaction were optimized, and the formation of isoquinolones was summarized. Aniline (500 equiv.) in dichloromethane/triethyl orthoformate (2:1), Yb(OTf)<sub>3</sub> (50 equiv.), and homophthalic anhydride (500 equiv.) in dichloromethane were used.66 The 1,3dipolar cycloaddition was conventionally used to synthesize 5membered heterocyclic compounds. Their team developed silver-mediated (1,3)-cycloaddition to synthesize highly substituted DNA-conjugated pyrrolidines (Table 5 entry 4).66 The reaction conditions were optimized using 1000 equiv. aldehydes, 100 equiv. AgOAc, 1000 equiv. dipolarophiles, and 1000 equiv. triethylamine in ACN/triethyl orthoformate (2:1). The conversion achieved about 50%. They constructed the 6membered nitrogen heterocycle through the ZnCl2-mediated

**Table 4** Formation of  $C(sp^2)-X$  (X = N, O, P, S, and Se) bonds on DNA

| Entry | DNA-compatible reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conditions                                                                                     |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 1     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CsOH, DMA, 100 $^{\circ}$ C                                                                    |
| 2     | $ \frac{\text{dsDNA}}{\text{NH}} \xrightarrow{\text{NH}} \frac{\text{ArNH}_2}{\text{NH}} \longrightarrow \frac{\text{dsDN}}{\text{H}} \xrightarrow{\text{NH}} \frac{\text{NH}}{\text{NH}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Water, DMA, NaOH                                                                               |
| 3     | dsDNA H OSO <sub>2</sub> F R·NH <sub>2</sub> dsDNA H OSDNA H OSDNA H OSDNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Buchwald-Hartwig cross-coupling                                                                |
| 4     | $ \begin{array}{c} \text{dsDNA} \\ X = I, \text{ Br, Cl} \end{array} $ $ \begin{array}{c} A = \\ R \end{array} $ $ \begin{array}{c} X = I \\ R \\ \end{array} $ $ \begin{array}{c} A = \\ R \\ \end{array} $ $ \begin{array}{c} A = \\ R \\ \end{array} $ $ \begin{array}{c} R^1 \\ R^2 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DMA, CsOH, 80 °C-95 °C                                                                         |
| 5     | dsDNA- NH <sub>2</sub> COOH COOH    COOH COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH   COOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KOH, sodium ascorbate, $H_2O$ , DMA                                                            |
| 6     | $\begin{array}{c} \begin{array}{ccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sodium ascorbate, $K_3PO_4$ , DMSO/water, 40 °C, 3 h                                           |
| 7     | $\begin{array}{c c} \text{dsDNA} & \overset{\text{H}}{\overset{\text{NH}_2}{\overset{\text{R'}}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}{\overset{\text{NH}_2}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RASS, DMA, MS                                                                                  |
| 8     | dsDNA H R-SH INII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $K_2CO_3$ , DMA                                                                                |
| 9     | dsDNA H POR <sub>2</sub> CI POR <sub>2</sub> CI OSDNA H R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Phosphonic chloride, 4,4'-di-tertbutyl bipyridine                                              |
| 10    | $ \begin{array}{c} \text{dsDNA} \xrightarrow{\text{NH}} \text{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\mbox{K}_{2}\mbox{CO}_{3}$ or KOH, DMA + $\mbox{H}_{2}\mbox{O}$ , RT or 60 $^{\circ}\mbox{C}$ |
| 11    | $\begin{array}{c} \text{dsDNA-NH} \\ \underset{N}{\overset{N}{\longrightarrow}} \underset{\text{Br}}{\overset{+}{\overset{N}{\longrightarrow}}} \underset{\text{Ne}_{\bar{3}}\bar{\text{Cl}}}{\overset{HS-R}{\longrightarrow}} \\ \end{array} \begin{array}{c} \text{dsDNA-NH} \\ \underset{N}{\overset{N}{\longrightarrow}} \underset{R}{\overset{N}{\longrightarrow}} \underset{N}{\overset{N}{\longrightarrow}} \underset{N}{\overset{N}{\longrightarrow}} \underset{N}{\overset{N}{\longrightarrow}} \underset{N}{\overset{N}{\longrightarrow}} \underset{N}{\overset{N}{\longrightarrow}} \underset{N}{\overset{N}{\longrightarrow}} \underset{N}{\overset{N}{$ | $K_2CO_3$ , DMA + $H_2O$ , RT or 80 $^{\circ}C$                                                |
| 12    | dsDNA    Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DCE, 100 $^{\circ}$ C, 1 h                                                                     |

aza-Diels-Alder reaction on DNA<sup>67</sup> and screened the ratio among the DNA-tagged aromatic aldehydes, amines, Danishefsky's diene, and ZnCl<sub>2</sub>, which revealed that the most suitable ratio was 1:500:500:50. Among seven kinds of anhydrous organic solvents, acetonitrile, in which a conversion of 82% was achieved (Table 5 entry 5). Brunschweiger's group also developed isocyanide multicomponent reactions on DNA (Table 5 entries 6–9).<sup>68</sup> DNA-aldehyde conjugates reacted with a diverse set of isocyanides, carboxylic acids and amines, that formed the products *via* the Ugi 4-component reaction (U-4CR) with nearly full conversion. DNA-linked aldehydes reacted with isocyanides, amines, and TMSN<sub>3</sub> to form azide derivatives *via* 

the Ugi-azide 4-component reaction. Nearly all combinations of substrates transformed the designed molecules with high conversion. Another U-4CR/aza-Wittig reaction was utilized to synthesize the oxadiazole core under similar conditions as the U-4CR. Finally, the Groebke–Blackburn–Bienaymé 3-component reaction was completed on DNA. After the optimization of catalysts, the AcOH was preferred, and the average conversion achieved 63%.

Kodadek's group developed the asymmetric Mannich reaction between DNA-linked aldehydes, soluble ketones and anilines, which was catalyzed by proline.<sup>69</sup> The conversion of most reactions was 65%. The substituted group on the *para* 

Table 5 Multicomponent reaction on DNA

| Entry | DNA-compatible reactions                                                                                                                                                                                                                                                                           | Conditions                                             |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 1     | $\begin{array}{c c} \text{SSDNA} & \overset{\text{O}}{\underset{\text{N}}{\bigvee}} & \overset{\text{O}}{\underset{\text{N}}{\bigvee}} & \overset{\text{O}}{\underset{\text{N}}{\bigvee}} & \overset{\text{Copper}(I)}{\underset{\text{solvent}}{\bigvee}} \\ & & & & & & & & & & & & & & & & & &$ | DMF/TEOF, 50 °C, 24 h                                  |
| 2     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                               | THF, RT, 20 h                                          |
| 3     | SSDNA NO SSDNA NO SSDNA                                                                                                                                                                                                                                                                            | $\mathrm{CH_2Cl_2/triethyl}$ orthoformate, RT, 4 h     |
| 4     | SSDNA NII1 + RO SOLVERT SSDNA NI RRO RESDNA                                                                                                                                                                                                                                                        | ACN/triethyl orthoformate, RT, 6 h                     |
| 5     | SSDNA RANG ZECT SSDNA                                                                                                                                                                                                                                                                              | MeCN/TEOF, RT, 4 h; MeCN, RT, 1 h; NH $_3,$ 50 °C, 6 h |
| 6     | SSDNA SSDNA SSDNA SSDNA SSDNA                                                                                                                                                                                                                                                                      | Ugi 4-component reaction                               |
| 7     | SSDNA OSDNA SSDNA SSDNA SSDNA SSDNA SSDNA SSDNA                                                                                                                                                                                                                                                    | Ugi-Azide 4-component reaction                         |
| 8     | SSDNA SSDNA SSDNA SSDNA                                                                                                                                                                                                                                                                            | Ugi 4-component/aza-Wittig reaction                    |
| 9     | SSDNA OSDNA OSDNA                                                                                                                                                                                                                                                                                  | Groebke–Blackburn–Bienayme 3-component reaction        |
| 10    | dsDNA H OR2  L-proline  OR2                                                                                                                                                                                                                                                                        | DMSO, RT, 18 h                                         |
| 11    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                              | Morpholine,aq. DMA, 45 °C                              |

position of anilines could accelerate the formation of the products, and the average conversion was above 95% (Table 5 entry 10). Satz's team first reported the new synthesis strategy for the imidazole *via* the one-pot Van Leusen 3-component reaction on DNA (Table 5 entry 11).<sup>70</sup> Organic bases improved the conversion more efficiently than inorganic bases. Additionally, the ratio of the organic solvent to water was a significant factor to the reaction, which indicated that 62% DMA was preferred. Finally, mild heating (45 °C) could afford high conversion. Aldehyde–DNA conjugates reacted with (het)aryl, aliphatic (cyclo)alkyl primary amines, and various commercial toluenesulphonylmethyl isocyanide molecules, and most conversions achieved 90%.

#### Ring-closing and ring-opening reactions

Neri's group synthesized triazoles through DNA-tagged phenylalanine-based scaffold containing an azido group, (het) aryl, guanidyl and aliphatic alkynes, which was catalyzed *via* Cu(OAc)<sub>2</sub> (Table 6 Entry 1).<sup>28</sup> More than half of the reactions worked, and the conversion was up to75%. Peng's team synthesized 1,2,3-triazoles *via* an efficient DNA-compatible reaction. DNA-conjugated alkynes, aryl borates, and TMS-N3 conducted a click cycloaddition reaction in a one-pot reaction that was mediated by copper(II) (Table 6 entry 2).<sup>71</sup> Schreiber's group developed [2 + 2], [3 + 2], and [4 + 2] reactions on DNA.<sup>72</sup> The DNA-tagged silyl derivatives underwent the cycloaddition reaction with 1,3-dipoles, olefins, and *N*-substituted pyrroles

Table 6 Ring-closing and ring-opening reactions on DNA

| Entry | DNA-compatible reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conditions                                                                                                     |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 1     | $ \begin{array}{c c}  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\$ | ${ m Na_2CO_3}$ , sodium ascorbate, ${ m H_2O}$ , 35 °C, 3 h                                                   |
| 2     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sodium borate buffer, MDAc/H2O, 20 $^{\circ}$ C,16 h                                                           |
| 3     | dsDNA NH Sieth Coff Coff Coff NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90% aq. DMSO, RT, 1 h                                                                                          |
| 4     | dsDNA (Het)Ar (Het)Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DMSO/H2O/glycerol (2:1:0.2), LED array                                                                         |
| 5     | dsDNA-NH R <sup>1</sup> L1.1. R <sup>2</sup> dsDNA-NH R <sup>1</sup> dsDNA-NH R <sup>2</sup> dsDNA-NH R <sup>2</sup> dsDNA-NH R <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MeCN : H <sub>2</sub> O, DMSO, Et <sub>3</sub> N, borate buffer, RT, 16 h                                      |
| 6     | SSDNA NH <sub>2</sub> S-TMP SSDNA SSDNA SSDNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Borate buffer, $H_2O$ , RT                                                                                     |
|       | O NIR SSDNA  O NIR SSDNA  Br H <sub>2</sub> N.  Br H <sub>2</sub> N.  SSDNA  SSDNA  SSDNA  SSDNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.6 mM cyclization reagent                                                                                     |
|       | O NIE SSDNA  O NIE                                                                                                                                                                                                                                                                                                              | 20% MeCN                                                                                                       |
| 7     | $O = \begin{pmatrix} H & O & O & O & O \\ N & O & O & O & O & O \\ N & O & O & O & O & O \\ O & O & O & O & O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $80\%~\mathrm{NH_4HCO_3}$ buffer, pH8                                                                          |
|       | O H SSDNA  NH SSDNA  H <sub>2</sub> N  H <sub>2</sub> N  SSDNA  H <sub>2</sub> N  SSDNA  76%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 °C, 2 h; TCEP                                                                                               |
|       | O=NHS<br>H <sub>2</sub> N SSDNA<br>O=NH <sub>2</sub> SSDNA<br>NH <sub>2</sub> SSDNA<br>SSDNA<br>SSDNA<br>SSDNA<br>SSDNA<br>SSDNA<br>SSDNA<br>SSDNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH <sub>4</sub> HCO <sub>3</sub> buffer, pH 8, RT, 1 h                                                         |
| 8     | (A=CO or SO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pH 9.5 borate buffer, viologen; 80 °C, 12 h                                                                    |
| 9     | dsDNA-N-1-1-R  1)NH <sub>2</sub> OH 2)R <sup>1</sup> CO <sub>2</sub> H  3)Heat 54 examples  dsDN  H  R  R  R  R  R  R  R  R  R  R  R  R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pH 8.2 borate, Na <sub>2</sub> CO <sub>3</sub> ; pH 8.0 phose. Buffer, PyAOP; CH <sub>3</sub> CN, buffer, heat |

Table 6 (Contd.)

| Entry | DNA-compatible reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Conditions                                    |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 10    | SSDNA NH NH2 NH SSDNA NH HN HN H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TFA, CH <sub>2</sub> Cl <sub>2</sub> ,        |
| 11    | dsDNA NH2 NH RLOO DSDNA HN I R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i-PrOH/NMP (1 : 1)                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pH 5.5 phosphate buffer                       |
| 12    | SSDNA ® SSDNA ®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\mathrm{H}_2\mathrm{O}$ , micellar catalysis |
| 13    | $\frac{0}{dsDNA} - \frac{0}{NH} - \frac{1}{NH} - \frac{1}{NH}$ | ACN/ $\rm H_2O$ , 50 °C                       |

under the CsF catalysis. The yield of most products was above 90% (Table 6 entry 3). Dominik's group constructed new C(sp<sup>3</sup>)-C(sp<sup>3</sup>) bonds, and DNA-tagged cyclobutanes were formed on a photocatalytic [2 + 2] cycloaddition reaction in aqueous solution. This reaction was catalyzed by the iridium-based photocatalyst, Ir(ppy)<sub>2</sub>(dtbbpy)PF<sub>6</sub> (Table 6 entry 4). Ketones were more readily formed than esters, and the heterocyclic substituted cinnamates were consumed slower than the phenyl cinnamates, which resulted in different d.r values.73 They used the method to construct a three-cycle DNA-encoded library. A year later, Liu's team and their coworkers successfully synthesized the multifunctional 2-aminobenzimidazoles on DNA via the iodine-promoted cyclization.<sup>74</sup> 2-Aminobenzimidazoles were synthesized through the thiourea formation and the I2promoted cyclodesulfurization (Table 6 entry 5). The conditions for the two steps were optimized with broad substrate scopes, and the average conversion achieved 73%. Heinis' group synthesized the disulfide-cyclized peptide-DNA conjugates, which were utilized with bis-electrophile reagents for the construction of thioether-cyclized peptides (Table 6 entry 6).75 The NH<sub>2</sub>-(CH<sub>2</sub>)<sub>6</sub>-DNA underwent the condensation reaction with Fmoc-Cys(S-TMP)-OH, and the Fmoc group was deprotected. The Fmoc-glycine was introduced and subjected to deprotection. Finally, Fmoc-Cys(S-TMP)-OH was introduced, and the disulfide-cyclized peptide was formed at 10% piperidine and 5% DTT in water. The conditions were applied to other reactions, which the average conversion achieved 79% (Table 6 entry 7). Huang's group explored the synthesis of benzimidazoles on DNA via two-step reactions containing nitro reduction and cyclization (Table 6 entry 8).76 A new reduction condition of nitro was developed. The previous reductants RANEY® Ni with hydrazine utilized by chemists in Roche were replaced by Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub>. Benzimidazoles were synthesized by amines and

aldehydes under conventional conditions. The total average conversion achieved 84%. Du's group transformed the conventional synthesis of 1,2,4-oxadiazoles to the DNAcompatible reaction via a multistep reaction (Table 6 entry 9).77 DNA-conjugated aryl nitrile substrates reacted with hydroxylamine to form amidoxime. The ambient temperature was chosen rather than heating which avoiding the decomposition of DNA conjugates. The combination of buffer and coupling reagents for the ortho-acylation of amidoxime was screened, which indicated that pH 8.0 phosphate and PyAOP could promote the conversion near to 95%. DNA-conjugated amidoxime reacted with aromatic and aliphatic carboxylic acids to form the O-acylamidoxime with more than 90% average conversion. For the cyclodehydration of acylamidoximes, the combination of pH 9.5 borate (buffer) and N,N'-diisopropylethylamine (base) was chosen as the preferred reaction condition. A total of 54 examples for the synthesis of 1,2,4-oxadiazoles had an average conversion above 70%. Brunschweiger's group used the Pictet-Spengler reaction on DNA under strong acid catalysis (Table 6 entry 10).64 The group screened the reaction conditions and found that 1% trifluoroacetic acid could facilitate the conversion near to 100% in toluene, C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>, MeCN, and CH<sub>2</sub>Cl<sub>2</sub> for 18 h. However, DNA was degraded under the combined conditions of 10% trifluoroacetic acid and CH2Cl2 for 18 h. Recently, Lu and coworkers optimized the conditions of Pictet-Spengler reaction on DNA (Table 6 entry 11),78 which showed that the combination of i-PrOH/NMP (1:1) and pH 5.5 phosphate buffer was preferred. Two years later, Brunschweiger's group developed the synthesis of DNA-tagged heterocycles mediated by micellar Brønsted acid (Table 6 entry 12).79 The micelle-based acid catalyst was designed, and the sulfonic acid moieties were located in the internal hydrophobic pocket and the interface to the external hydrophilic shell. These acid

nanoreactors promoted the DNA-conjugated aryl aldehydes to react with various substituted amines and olefins to form tetrahydroquinolines and aminoimidazopyridines *via* the Povarov and the Groebke–Blackburn–Bienaymé reactions. The development history of zirconium was shorter than that of palladium. Zirconium was utilized for condensation, Friedel–Crafts alkylation, intermolecular and intramolecular hydroamination, and asymmetric chiral catalysis reactions. <sup>80–85</sup> Recently, scientists in GSK first developed the catalytic system of zirconium tetrakis(dodecyl sulfate) (Zr(DS)<sub>4</sub>) and ACN/H<sub>2</sub>O, which was utilized for the aminolysis of DNA-conjugated epoxides to form β-amino alcohols (Table 6 entry 13). <sup>86</sup> Under the preferred conditions, most entries possessed 60–100% conversion, and all were applicable. A DEL containing 137 million compounds was also synthesized.

#### **Redox reactions**

The chemists in the Roche Innovation Center used the RANEY® Ni with hydrazine to reduce the nitro to amine on DNA (Table 7 entry 1).87 Biocatalysis was implemented widely in drug development and production.88 Particularly, enzyme-catalyzed chemical reactions drew much attention due to high selectivity, mild reaction conditions (most in water), short reaction steps, effective atomic utilization, and renewability.89 GSK developed the first enzyme-catalyzed reactions on DNA, which were combined with traditional organic chemistry to synthesize the DNA-linked carbohydrate library.90 GSK used various galactose oxidases to oxidize hexoses C6-OH and form aldehydes on DNA, and the aldehydes transformed to other groups by hydrazone ligation or reductive amination (Table 7 entry 2). The metal-free reduction of nitro aromatics was catalyzed via the diboronic acid off DNA and reported by Wu and Zhou. 91,92 Simmons's group used the efficient and facile reduction methodology for nitro on DNA (Table 7 entry 3).93 The preferred combination of Bases and solvents were sodium hydroxide and

alcohol, which promoted the conversion up to 95%. DNA-linked aromatic and aliphatic nitro groups efficiently formed the desired amines, and the average conversion achieved above 82%. Finally, the method for DEL construction contained above 75 million compounds. Regularly, sulfonamides were synthesized through amines and sulfonyl chlorides in suitable organic solvents. However, transforming the routine method to the DNA-compatible reactions was difficult because sulfonyl chlorides were unstable in water. Peng's group used the DNA-linked amine to react with sodium benzenesulfinate or DNA-conjugated benzenesulfinic acid to react with amine to form sulfonamide under the oxidant catalysis, which avoided the limitation to sulfonyl chlorides (Table 7 entries 4 and 5).94 In the former reaction, the oxidant and the solvent were screened, and the combination of I2 and pH 9.5 buffer were preferred. The substrate scope was explored and indicated that DNAconjugated aliphatic or (het)aryl amines and aryl sodium sulfinates could form the target sulfonamide molecules. The sulfonylation of aliphatic amines with phenyl sodium sulfinates showed the average conversion near to 86%. For the later reaction, the DNA-conjugated benzenesulfinic acid was used to react with diverse amines, and most conversion achieved above 80%. Neri's team optimized the reaction conditions to construct amide on DNA (Table 7 entry 6).95 Various coupling reagents were screened in eight amidation reactions, and results showed that the combination of 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide, 1-hydroxy-7azabenzotriazole, and DIPEA was the preferred due to more than 90% average conversion. DNA-conjugated amines were used to react with diverse carboxylic acids, which provided average conversion greater than 75%, which 78% (423/543) of the carboxylic acid substrates were consumed.

#### Hit/lead

Until June 2016, some excellent reviews summarized the use of DEL in identifying the hits to therapeutic targets.<sup>5,6</sup> Here, we

Table 7 Redox and acylation reactions on DNA

Entry DNA-compatible

| Entry | DNA-compatible reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Conditions                               |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 1     | dsDNA NH Raney Ni hydrazine dsDNA NH NH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H <sub>2</sub> O, RT, 24 h, with shaking |
| 2     | HOUND HOUSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Enzyme                                   |
| 3     | $ \begin{array}{c c} \text{dsDNA} & \downarrow & \downarrow \\ \hline \downarrow & \downarrow & \downarrow \\ R & & & \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NaOH, aq. EtOH, 25 °C                    |
| 4     | dsDNA NH <sub>2</sub> NaO S Ar I <sub>2</sub> dsDNA N S Ar O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pH 9.5 buffer, RT, 16 h                  |
| 5     | $\frac{\text{dsDNA}}{\text{dsDNA}} \stackrel{\text{H}}{\underset{\text{R}}{\text{dsDNA}}} \stackrel{\text{Q}}{\underset{\text{N}}{\text{dsDNA}}} \stackrel{\text{Q}}{\underset{\text{N}}} \stackrel{\text{Q}}{\underset{\text{N}}{\text{dsDNA}}} \stackrel{\text{Q}}{\underset{\text{N}}{\text{dsDNA}}} \stackrel{\text{Q}}{\underset{\text{N}}{\text{dsDNA}}} \stackrel{\text{Q}}{\underset{\text{N}}} \stackrel{\text{Q}}{\underset{\text{N}}} \stackrel{\text{Q}}{\underset{\text{N}}} \stackrel{\text{Q}}{\underset{\text{N}}} \stackrel{\text{Q}}{\underset{\text{N}}} \stackrel{\text{Q}}{\underset{\text{N}}} \stackrel{\text{N}}{\underset{\text{N}}}} \stackrel{\text{Q}}{\underset{\text{N}}} \stackrel{\text{Q}}{\underset{\text{N}}} \stackrel{\text{Q}}{\underset{\text{N}}$ | H <sub>2</sub> O, RT, 1 h                |
| 6     | SSDNA NH <sub>2</sub> SSDNA NH <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EDC/HOAt/DIPEA                           |

Table 8 Hits to therapeutic targets identified using DEL methods published between 2016 and 2020

| Entry | Target                           | Sample compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Activity                                               | Lipinski/Kihlberg <sup>a</sup>                                              | Drug<br>score <sup>b</sup> | Drug<br>likeness <sup>b</sup> | CNS<br>MPO <sup>c</sup> | Ref.              |
|-------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------|-------------------------------|-------------------------|-------------------|
| 1     | SIRT6                            | NH <sub>2</sub> | IC <sub>50</sub> = 6.7<br>μM binding<br>assay          | MW = 541.5<br>HBD = 6<br>HBA = 16<br>CLoP = -2.36<br>RB = 13<br>PSA = 226.1 | 0.67                       | 8.6                           | 3.0                     | 101               |
| 2     | PARP15                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IC <sub>50</sub> = 200<br>nM binding<br>assay          | MW = 423.4<br>HBD = 5<br>HBA = 10<br>CLoP = 0.13<br>RB = 6<br>PSA = 145.5   | 0.45                       | 1.45                          | 3.5                     | 101               |
| 9(3)  | PARP1                            | HO NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IC <sub>50</sub> = 2.5<br>nM<br>inhibition<br>of PARP1 | MW = 500.5<br>HBD = 2<br>HBA = 9<br>CLoP = 2.04<br>RB = 5<br>PSA = 102.3    | 0.51                       | 5.22                          | 3.4                     | 102<br>and<br>103 |
| 12(4) | Oxacillinase-48<br>carbapenemase | P N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K <sub>i</sub> = 0.53 ±<br>0.08 μM                     | MW = 382.4<br>HBD = 1<br>HBA = 8<br>CLoP = 1.63<br>RB = 4<br>PSA = 84.1     | 0.1                        | 5.88                          | 5.7                     | 104               |
| 20(5) | DDR1                             | N N N HN FFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IC <sub>50</sub> = 29<br>nM<br>prevents<br>fibrosis    | MW = 565.4<br>HBD = 2<br>HBA = 12<br>CLoP = 1.65<br>RB = 5<br>PSA = 106.5   | 0.4                        | 0.12                          | 4                       | 105               |
| 3(6)  | TNKS1                            | N NH2 NH<br>HN NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K <sub>d</sub> = 15 nM<br>binding<br>assay             | MW = 457.4<br>HBD = 4<br>HBA = 12<br>CLoP = -0.86<br>RB = 10<br>PSA = 158.7 | 0.48                       | -1.12                         | 3.3                     | 106               |
| 18(7) | PqsE<br>thioesterase             | HO CI N-Boc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IC <sub>50</sub> = 5.6<br>μΜ                           | MW = 489.0<br>HBD = 2<br>HBA = 8<br>CLoP = 5.1<br>RB = 7<br>PSA = 105.2     | 0.19                       | -3.99                         | 3.1                     | 107               |
| 21(8) | MAP2K6                           | Сі<br>Сі<br>Сі                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IC <sub>50</sub> = 4.5<br>μM<br>binding<br>assay       | MW = 303.1<br>HBD = 1<br>HBA = 4<br>CLOP = 3.44<br>RB = 6<br>PSA = 63.6     | 0.14                       | -2.84                         | 5.6                     | 108               |

Table 8 Contd.

| Entry  | Target                                | Sample compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Activity                                                       | Lipinski/Kihlberg <sup>a</sup>                                             | Drug<br>score <sup>b</sup> | Drug<br>likeness <sup>b</sup> | CNS<br>MPO <sup>c</sup> | Ref. |
|--------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------|-------------------------------|-------------------------|------|
| 4(9)   | Tyrosine kinase<br>c-Src              | H <sub>2</sub> N O O H O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IC <sub>50</sub> = 48<br>μΜ<br>pathway<br>inhibition           | MW = 553.6<br>HBD = 6<br>HBA = 11<br>CLoP = 0.62<br>RB = 16<br>PSA = 187.3 | 0.59                       | 2.87                          | 2.1                     | 109  |
| 7(10)  | SIRT3                                 | HO OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IC <sub>50</sub> = 4.5<br>μM<br>SIRT3<br>inhibition<br>assay   | MW = 534.7<br>HBD = 2<br>HBA = 5<br>CLoP = 7.32<br>RB = 9<br>PSA = 64.0    | 0.11                       | 2.0                           | 1.5                     | 110  |
| 15(11) | Mycobacterium<br>tuberculosis<br>InhA | Br N N N n Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MIC = 12<br>μM aerobic<br>Mtb H37Rv<br>assay                   | MW = 662.6<br>HBD = 2<br>HBA = 11<br>CLOP = 3.9<br>RB = 10<br>PSA = 94.11  | 0.27                       | 1.11                          | 3.0                     | 111  |
| 16(12) | b2AR                                  | O = S + O + O + O + O + O + O + O + O + O +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K <sub>d</sub> = 5.21 ±<br>0.53 μM                             | MW = 611.8<br>HBD = 3<br>HBA = 8<br>CLoP = 5.75<br>RB = 13<br>PSA = 118.8  | 0.26                       | 3.59                          | 0.7                     | 112  |
| 13(13) | CBX homolog<br>proteins               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K <sub>d</sub> = 800<br>nM binding<br>assay                    | MW = 760.9<br>HBD = 6<br>HBA = 13<br>CLoP = 5.66<br>RB = 23<br>PSA = 178.2 | 0.17                       | 6.7                           | 0                       | 113  |
| 17(14) | Mcl-1                                 | NH CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Optimized<br>compound<br>McI-1 FRET<br>IC <sub>50</sub> ≤ 3 nM | MW = 826.5<br>HBD = 3<br>HBA = 11<br>CLOP = 6.56<br>RB = 8<br>PSA = 145    | 0.2                        | 9.88                          | 1.2                     | 114  |
| 19(15) | DOR                                   | HO HO NH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | K <sub>i</sub> = 2.7 nM<br>binding<br>assay                    | MW = 613.8<br>HBD = 7<br>HBA = 10<br>CLoP = 1.35<br>RB = 12<br>PSA = 167.9 | 0.45                       | 3.53                          | 2.2                     | 115  |
| 14(16) | PAR2                                  | NC SHIP STATE OF STAT | EC <sub>50</sub> = 40<br>nM<br>IP1<br>antagonist<br>assay      | MW = 571.5<br>HBD = 1<br>HBA = 7<br>CLoP = 7.96<br>RB = 5<br>PSA = 87.0    | 0.09                       | -11.15                        | 2.8                     | 116  |

Table 8 Contd.

| Entry | Target                                         | Sample compound | Activity                                              | Lipinski/Kihlberg <sup>a</sup>                                            | Drug<br>score <sup>b</sup> | Drug<br>likeness <sup>b</sup> | CNS<br>MPO <sup>c</sup> | Ref. |
|-------|------------------------------------------------|-----------------|-------------------------------------------------------|---------------------------------------------------------------------------|----------------------------|-------------------------------|-------------------------|------|
| 17    | BRD4 in<br>bromodomain<br>and<br>extraterminal |                 | pIC <sub>50</sub> = 7.9<br>1.5 mg/kg<br>in dog        | MW = 426.5<br>HBD = 0<br>HBA = 8<br>CLoP = 1.55<br>RB = 7<br>PSA = 66.8   | 0.81                       | 2.45                          | 5.5                     | 117  |
| 18    | втк                                            |                 | IC <sub>50</sub> = 2 nM<br>Ramos cell<br>assay        | MW = 480.5<br>HBD = 3<br>HBA = 9<br>CLoP = 2.34<br>RB = 5<br>PSA = 107.4  | 0.65                       | 5.99                          | 3.5                     | 118  |
| 19    | PARP1                                          | HO OH OH        | IC <sub>50</sub> =<br>7.5μM<br>inhibition<br>of PARP1 | MW = 286.24<br>HBD = 4<br>HBA = 6<br>CLoP = 2.31<br>RB = 1<br>PSA = 107.2 | 0.84                       | 1.9                           | 3.3                     | 102  |
| 20    | Insulin receptor                               | N HN-C          | <i>K</i> <sub>i</sub> = 14 μM                         | MW = 287.32<br>HBD = 1<br>HBA = 4<br>CLoP = 3.2<br>RB = 0<br>PSA = 44.7   | 0.81                       | 4.66                          | 5.7                     | 119  |

 $<sup>^</sup>a$  Lipinski: molecular weight (MW) < 500 Da;  $0 < C \log P < 5$ ; hydrogen bond donors (HBD) < 5; hydrogen bond acceptors (HBA) < 10; rotatable bonds (RB) < 10; polar surface area (PSA) < 140. Kihlberg: MW < 1000 Da;  $-2 < C \log P < 10$ ; HBD < 6; HBA < 15; RB < 20; PSA < 250. (Green means the compounds comply with Lipinski and Kihlberg; light green means the compounds comply with either Lipinski or Kihlberg; yellow means that the compounds do not comply with Lipinski and Kihlberg).  $^b$  The values of drug score and likeness are calculated via the PEO software (htttp://www.organic-chemistry.org/prog/peo).  $^c$  4 < CNS MPO (green); 3 < CNS MPO < 4 (light green); 2 < CNS MPO < 3 (yellow); 1 < CNS MPO < 2 (orange); 0 < CNS MPO < 1 (red).

summarized some new ligands for targets, which were identified via the DEL from July 2016 to present (Table 8). Physicochemical properties, oral druggable space, and cell permeability of the hit/lead were predicted via the rules of Lipinski/Kihlberg. 96-98 The possibility of studying these compounds against central nervous system (CNS) diseases was also predicted via the CNS Multiparameter Optimization (MPO) approach. 99,100 Entry 1 compound could inhibit neurodegeneration via targeting SIRT6 (Sirtuin 6), but the MPO scored 3 (yellow) which means this compound need to be further optimized as a CNS drug. Entry 2 compound was the most potent inhibitor reported for PARP15 (poly(ADP-ribose) polymerase), and its' drug score was 0.45(yellow) which indicated the drug-conforming behavior need to be improved in further study, such a saturation was same as entry 3 and entry 4 compounds. Entry 5-8 compounds scored negatively in the items of drug score and drug likeness (yellow to red), and positively in other items (green). These results were contrary to entry 9 compound. Entry 10-12 compounds were perhaps difficult to use for CNS diseases treatment due to the low scores in items of drug score and MPO. To entry 13-15 compounds, Lipinski/Kihlberg, drug score and MPO three items were negative (yellow and red), these may attribute to higher molecular weight, more heteroatom and

other uncertainties. Entry 16 compound possessed low scores in drug score and drug likeness (red), which were adverse to the drug-conforming behavior. However, for entry 5, 6, 10 and 11 compounds, Lipinski/Kihlberg, drug score, drug likeness and MPO four items were positive (green). Particularly for entry 5 compound, a BRD4 inhibitor, had a potent *vivo* activity (1.5 mg kg<sup>-1</sup> in dog). To sum up, a compound was designed for CNS disease treatment, its four prediction items should be positive (green), if not, the CNS MPO should be negative. These should be seriously considered at the stage of molecules design in DEL, which could improve the efficiency drug discovery.

# Conclusion and outlook

Novel DNA-compatible reactions were constantly explored and developed. These reactions, which included transition and nontransition metal catalyses, photocatalysis, and biocatalysis, depend on catalysts. The DNA-conjugated reaction was not merely evaluated by the rate of conversion, but other important factors included the universality (passing rate) of synthon and the recovery rate of the DNA material. The DEL underwent initial exploration, technology accumulation, and preliminary application and achieved remarkable results in developing

preclinical and clinical candidates. DEL was widely recognized as a method with great promise for lead generation and beyond due to high productivity and other benefits. However, challenges and limitations existed in DEL. These limitations included (1) limitations in types of BBs and reactions, (2) probable effect of oligonucleotide on binding affinity, (3) targeting of DNA-/RNA-binding proteins4,120 and (4) low drug ability of hit/lead (Table 8). The significant advantages of DEL included productivity, cost effectiveness, and efficiency, which cannot be surpassed by traditional HTS methods and other existing platform technologies. The limitations generated increased the chances to develop new encoding methods, such as DNA-compatible chemical reactions and other processes of DEL. For DEL, the future directions evidently focused on (1) expanding the chemical space and the diversity of DEL and (2) improving the druggability of hit/lead to further cut down the cost and time for drug discovery.

## Conflicts of interest

There are no conflicts to declare.

# Acknowledgements

This project was supported by excellent Young Teacher Cultivation Fund Project of Ningxia Province (No. NGY2020033); Ningxia key R & D project (No. 2019BFG02017; 2020BEG03011, 2020BEB04020); Natural Science Foundation of Ningxia Province (No. 2020AAC03134); Ningxia Medical University Special Talents Program (XT2019016).

## References

- 1 S. Brenner and R. A. Lerner, *Proc. Natl. Acad. Sci. U. S. A.*, 1992, **89**, 5381–5384.
- 2 J. Nielsen, S. Brenner and K. D. Janda, J. Am. Chem. Soc., 1993, 115, 9812–9815.
- 3 M. Song and G. T. Hwang, J. Med. Chem., 2020, 63, 6578-6599
- 4 W. Decurtins, M. Wichert, R. M. Franzini, F. Buller, M. A. Stravs, Y. Zhang, D. Neri and J. Scheuermann, *Nat. Protoc.*, 2016, **11**, 764–780.
- 5 R. A. Goodnow, C. E. Dumelin and A. D. Keefe, *Nat. Rev. Drug Discovery*, 2017, **16**, 131–147.
- 6 R. E. Kleiner, C. E. Dumelin and D. R. Liu, *Chem. Soc. Rev.*, 2011, **40**, 5707–5717.
- 7 R. A. Lerner and S. Brenner, Angew. Chem., Int. Ed. Engl., 2017, 56, 1164–1169.
- 8 D. Madsen, C. Azevedo, I. Micco, L. K. Petersen and N. J. V. Hansen, *Prog. Med. Chem.*, 2020, 59, 181–249.
- 9 C. C. Arico-Muendel, RSC Med. Chem., 2016, 7, 1898–1909.
- 10 S. L. Belyanskaya, Y. Ding, J. F. Callahan, A. L. Lazaar and D. I. Israel, *ChemBioChem*, 2017, **18**, 837–842.
- 11 P. A. Harris, S. B. Berger, J. U. Jeong, R. Nagilla, D. Bandyopadhyay, N. Campobasso, C. A. Capriotti, J. A. Cox, L. Dare, X. Dong, P. M. Eidam, J. N. Finger, S. J. Hoffman, J. Kang, V. Kasparcova, B. W. King, R. Lehr,

- Y. Lan, L. K. Leister, J. D. Lich, T. T. MacDonald, N. A. Miller, M. T. Ouellette, C. S. Pao, A. Rahman, M. A. Reilly, A. R. Rendina, E. J. Rivera, M. C. Schaeffer, C. A. Sehon, R. R. Singhaus, H. H. Sun, B. A. Swift, R. D. Totoritis, A. Vossenkamper, P. Ward, D. D. Wisnoski, D. Zhang, R. W. Marquis, P. J. Gough and J. Bertin, *J. Med. Chem.*, 2017, **60**, 1247–1261.
- 12 N. Favalli, G. Bassi, J. Scheuermann and D. Neri, *FEBS Lett.*, 2018, **592**, 2168–2180.
- 13 G. Zhao, Y. Huang, Y. Zhou, Y. Li and X. Li, *Expert Opin. Drug Discovery*, 2019, **14**, 735–753.
- 14 J. Y. Li and H. Huang, *Bioconjugate Chem.*, 2018, **29**, 3841–3846.
- 15 X. Wu, H. Neumann, A. Spannenberg, T. Schulz, H. Jiao and M. Beller, *J. Am. Chem. Soc.*, 2010, **132**, 14596–14602.
- 16 X. Wu, H. Neumann and M. Beller, *Chem. Soc. Rev.*, 2011, **40**, 4986–5009.
- 17 A. Arcadi, G. Cerichelli, M. Chiarini, M. Correa and D. Zorzan, *Eur. J. Org. Chem.*, 2003, 2003, 4080–4086.
- 18 J. Y. Li, G. Miklossy, R. K. Modukuri, K. M. Bohren, Z. Yu, M. Palaniappan, J. C. Faver, K. Riehle, M. M. Matzuk and N. Simmons, *Bioconjugate Chem.*, 2019, 30, 2209–2215.
- 19 T. Ueda, H. Konishi and K. Manabe, *Angew. Chem., Int. Ed.*, 2013, 52, 8611–8616.
- 20 F. Jafarpour, P. Rashidi-Ranjbar and A. O. Kashani, *Eur. J. Org. Chem.*, 2011, **2011**, 2128–2132.
- 21 M. W. K. Zev, J. Gartner and D. R. Liu, *Angew. Chem., Int. Ed.*, 2002, **41**, 1796–1800.
- 22 X. Wang, H. Sun, J. Liu, W. Zhong, M. Zhang, H. Zhou, D. Dai and X. Lu, *Org. Lett.*, 2019, **21**, 719–723.
- 23 Y. Ding and M. A. Clark, ACS Comb. Sci., 2015, 17, 1-4.
- 24 Y. Ding, J. L. DeLorey and M. A. Clark, *Bioconjugate Chem.*, 2016, 27, 2597–2600.
- 25 X. Wang, H. Sun, J. Liu, D. Dai, M. Zhang, H. Zhou, W. Zhong and X. Lu, *Org. Lett.*, 2018, **20**, 4764–4768.
- 26 H. Xu, F. Ma, N. Wang, W. Hou, H. Xiong, F. Lu, J. Li, S. Wang, P. Ma, G. Yang and R. A. Lerner, *Adv. Sci.*, 2019, 6, 1901551.
- 27 J. H. Hunter, L. Prendergast, L. F. Valente, A. Madin, G. Pairaudeau and M. J. Waring, *Bioconjugate Chem.*, 2020, 31, 149–155.
- 28 F. Nicholas, G. Bassi, T. Zanetti, J. Scheuermann and D. Neri, *Helv. Chim. Acta*, 2019, **102**, e1900033.
- 29 Z. Fan, S. Zhao, T. Liu, P. Shen and J. Yu, *ChemRxiv*, 2020, DOI: 10.26434/chemrxiv.11514774.v1 Preprint.
- 30 Y. Qu, S. Liu, H. Wen, Y. Xu, Y. An, K. Li, M. Ni, Y. Shen, X. Shi, W. Su, W. Cui, L. Kuai, A. L. Satz, H. Yang, X. Lu and X. Peng, *Biochem. Biophys. Res. Commun.*, 2020, 533, 209–214.
- 31 D. K. Kolmel, J. Meng, M. H. Tsai, J. Que, R. P. Loach, T. Knauber, J. Wan and M. E. Flanagan, *ACS Comb. Sci.*, 2019, 21, 588–597.
- 32 J. P. Phelan, S. B. Lang, J. Sim, S. Berritt, A. J. Peat, K. Billings, L. Fan and G. A. Molander, *J. Am. Chem. Soc.*, 2019, **141**, 3723–3732.
- 33 S. O. Badir, J. Sim, K. Billings, A. Csakai, X. Zhang, W. Dong and G. A. Molander, *Org. Lett.*, 2020, **22**, 1046–1051.

- 34 D. T. Flood, S. Asai, X. Zhang, J. Wang, L. Yoon, Z. C. Adams,
  B. C. Dillingham, B. B. Sanchez, J. C. Vantourout,
  M. E. Flanagan, D. W. Piotrowski, P. Richardson,
  S. A. Green, R. A. Shenvi, J. S. Chen, P. S. Baran and
  P. E. Dawson, J. Am. Chem. Soc., 2019, 141, 9998-10006.
- 35 P. Cai, G. Yang, L. Zhao, J. Wan, J. Li and G. Liu, *Org. Lett.*, 2019, **21**, 6633–6637.
- 36 H. Li, Z. Sun, W. Wu, X. Wang, M. Zhang, X. Lu, W. Zhong and D. Dai, *Org. Lett.*, 2018, **20**, 7186–7191.
- 37 H. Xiong, Y. Gu, S. Zhang, F. Lu, Q. Ji, L. Liu, P. Ma, G. Yang, W. Hou and H. Xu, *Chem. Commun.*, 2020, **56**, 4692–4695.
- 38 K. C. Nicolaou, P. G. Bulger and D. Sarlah, *Angew. Chem., Int. Ed. Engl.*, 2005, **44**, 4490–4527.
- 39 R. R. Schrock, Angew. Chem., Int. Ed. Engl., 2006, 45, 3748-3759.
- 40 Y. Chauvin, Angew. Chem., Int. Ed., 2006, 45, 3740-3765.
- 41 R. H. Grubbs, Angew. Chem., Int. Ed. Engl., 2006, 45, 3760–3765.
- 42 G. C. Vougioukalakis and R. H. Grubbs, *Chem. Rev.*, 2010, **110**, 1746–1787.
- 43 X. Lu, L. Fan, C. B. Phelps, C. P. Davie and C. P. Donahue, *Bioconjugate Chem.*, 2017, **28**, 1625–1629.
- 44 O. B. C. Monty, P. Nyshadham, K. M. Bohren, M. Palaniappan, M. M. Matzuk, D. W. Young and N. Simmons, *ACS Comb. Sci.*, 2020, **22**, 80–88.
- 45 Y. L. An, K. Li, Y. Shen, Z. Hong, L. Chen, Y. Hu, L. Zhou, D. Wang, X. Shi, S. Liu, W. Su, W. Cui, L. Kuai, H. Yang and X. Peng, *Org. Lett.*, 2020, 22, 3931–3935.
- 46 J. Wang, H. Lundberg, S. Asai, P. Martín-Acosta, J. S. Chen, S. Brown, W. Farrell, R. G. Dushin, C. J. O'Donnell, A. S. Ratnayake, P. Richardson, Z. Liu, T. Qin, D. G. Blackmond and P. S. Baran, *Proc. Natl. Acad. Sci. U.S.A.*, 2018, 115, E6404–E6410.
- 47 J. J. Douglas, M. J. Sevrin and C. R. J. Stephenson, *Org. Process Res. Dev.*, 2016, 20, 1134–1147.
- 48 D. A. DiRocco, K. Dykstra, S. Krska, P. Vachal, D. V. Conway and M. Tudge, *Angew. Chem., Int. Ed.*, 2014, 53, 4802–4806.
- 49 J. J. Douglas, K. P. Cole and C. R. J. Stephenson, *J. Org. Chem.*, 2014, **79**, 11631–11643.
- 50 D. K. Kolmel, R. P. Loach, T. Knauber and M. E. Flanagan, *ChemMedChem*, 2018, **13**, 2159–2165.
- 51 K. Shu and T. Kodadek, ACS Comb. Sci., 2018, 20, 277-281.
- 52 W. Wu, Z. Sun, X. Wang, X. Lu and D. Dai, *Org. Lett.*, 2020, 22, 3239–3244.
- 53 X. Lu, S. E. Roberts, G. J. Franklin and C. P. Davie, *RSC Med. Chem.*, 2017, **8**, 1614–1617.
- 54 D. S. Surry and S. L. Buchwald, Chem. Sci., 2011, 2, 27-50.
- 55 E. de Pedro Beato, J. Priego, A. Gironda-Martinez, F. Gonzalez, J. Benavides, J. Blas, M. D. Martin-Ortega, M. A. Toledo, J. Ezquerra and A. Torrado, ACS Comb. Sci., 2019, 21, 69–74.
- 56 Y. C. Chen, J. C. Faver, A. F. Ku, G. Miklossy, K. Riehle, K. M. Bohren, M. N. Ucisik, M. M. Matzuk, Z. Yu and N. Simmons, *Bioconjugate Chem.*, 2020, 31, 770–780.
- 57 C. Sambiagio, S. P. Marsden, A. J. Blacker and P. C. McGowan, *Chem. Soc. Rev.*, 2014, **43**, 3525–3550.

58 I. P. Beletskaya and A. V. Cheprakov, *Coord. Chem. Rev.*, 2004, 248, 2337–2364.

- 59 Y. Ruff and F. Berst, RSC Med. Chem., 2018, 9, 1188-1193.
- 60 D. T. Flood, X. Fu, Z. Zhao, S. Asai, B. B. Sanchez, E. J. Sturgell, J. C. Vantourout, P. Richardson, M. E. Flanagan, D. W. Piotrowski, D. K. Kçlmel, J. Wan, M. Tsai, J. S. Chen, P. S. Baran and P. E. Dawson, *Angew. Chem., Int. Ed.*, 2020, 59, 1–8.
- 61 D. Y. Wang, X. Wen, C. D. Xiong, J. N. Zhao, C. Y. Ding, Q. Meng, H. Zhou, C. Wang, M. Uchiyama, X. J. Lu and A. Zhang, *iScience*, 2019, 15, 307–315.
- 62 H. Xu, Y. Gu, S. Zhang, H. Xiong, F. Ma, F. Lu, Q. Ji, L. Liu, P. Ma, W. Hou, G. Yang and R. A. Lerner, *Angew. Chem., Int. Ed. Engl.*, 2020, **59**, 13273–13280.
- 63 M. Potowski, R. Esken and A. Brunschweiger, *Bioorg. Med. Chem.*, 2020, **28**, 115441.
- 64 M. K. Skopic, H. Salamon, O. Bugain, K. Jung, A. Gohla, L. J. Doetsch, D. Dos Santos, A. Bhat, B. Wagner and A. Brunschweiger, *Chem. Sci.*, 2017, 8, 3356–3361.
- 65 M. Klika Skopic, S. Willems, B. Wagner, J. Schieven, N. Krause and A. Brunschweiger, *Org. Biomol. Chem.*, 2017, **15**, 8648–8654.
- 66 M. Potowski, V. B. K. Kunig, F. Losch and A. Brunschweiger, *RSC Med. Chem.*, 2019, **10**, 1082–1093.
- 67 M. Potowski, F. Losch, E. Wünnemann, J. K. Dahmen, S. Chines and A. Brunschweiger, *Chem. Sci.*, 2019, **10**, 10481–10492.
- 68 V. B. K. Kunig, C. Ehrt, A. Domling and A. Brunschweiger, *Org. Lett.*, 2019, 21, 7238–7243.
- 69 N. Tran-Hoang and T. Kodadek, ACS Comb. Sci., 2018, 20, 55–60.
- 70 S. N. Geigle, A. C. Petersen and A. L. Satz, *Org. Lett.*, 2019, 21, 9001–9004.
- 71 Y. Qu, H. Wen, R. Ge, Y. Xu, H. Gao, X. Shi, J. Wang, W. Cui, W. Su, H. Yang, L. Kuai, A. L. Satz and X. Peng, *Org. Lett.*, 2020, 22, 4146–4150.
- 72 M. V. Westphal, L. Hudson, J. W. Mason, J. A. Pradeilles, F. J. Zecri, K. Briner and S. L. Schreiber, *J. Am. Chem. Soc.*, 2020, 142, 7776–7782.
- 73 D. K. Kolmel, A. S. Ratnayake, M. E. Flanagan, M. H. Tsai, C. Duan and C. Song, Photocatalytic [2 + 2] Cycloaddition in DNA-Encoded Chemistry, *Org. Lett.*, 2020.
- 74 L. Su, J. Feng, T. Peng, J. Wan, J. Fan, J. Li, J. O'Connell, D. R. Lancia Jr, G. J. Franklin and G. Liu, *Org. Lett.*, 2020, 22, 1290–1294.
- 75 M. B.-B. Manh, V. Pham and C. Heinis, *ChemBioChem*, 2020, 21, 543–549.
- 76 H. C. Du and H. Huang, *Bioconjugate Chem.*, 2017, **28**, 2575–2580.
- 77 H. C. Du, M. C. Bangs, N. Simmons and M. M. Matzuk, *Bioconjugate Chem.*, 2019, **30**, 1304–1308.
- 78 K. Li, X. Liu, S. Liu, Y. An, Y. Shen, Q. Sun, X. Shi, W. Su, W. Cui, Z. Duan, L. Kuai, H. Yang, A. L. Satz, K. Chen, H. Jiang, M. Zheng, X. Peng and X. Lu, iScience, 2020, 23, 101142.

- 79 M. K. Skopic, K. Gotte, C. Gramse, M. Dieter, S. Pospich, S. Raunser, R. Weberskirch and A. Brunschweiger, *J. Am. Chem. Soc.*, 2019, **141**, 10546–10555.
- 80 I. F. Gonzalo Blay, A. Monleón, J. R. Pedro and C. Vila, *Org. Lett.*, 2008, **11**, 441–444.
- 81 I. Bytschkov and S. Doye, Eur. J. Org. Chem., 2003, 935-946.
- 82 G. Blay, I. Fernandez, J. R. Pedro and C. Vila, *Org. Lett.*, 2007, 9, 2601–2604.
- 83 C. V. Reddy, M. Mahesh, P. V. K. Raju, T. R. Babu and V. V. N. Reddy, *Tetrahedron Lett.*, 2002, 43, 2657–2659.
- 84 J. C. Han and J. A. Porco, Org. Lett., 2007, 9, 1517-1520.
- 85 G. V. Madhava Sharma, C. G. Reddy and P. R. Krishna, *J. Org. Chem.*, 2003, **68**, 4574–5457.
- 86 L. Fan and C. P. Davie, ChemBioChem, 2017, 18, 843-847.
- 87 A. L. Satz, J. Cai, Y. Chen, R. Goodnow, F. Gruber, A. Kowalczyk, A. Petersen, G. Naderi-Oboodi, L. Orzechowski and Q. Strebel, *Bioconjugate Chem.*, 2015, 26, 1623–1632.
- 88 P. N. Devine, R. M. Howard, R. Kumar, M. P. Thompson, M. D. Truppo and N. J. Turner, *Nat. Rev. Chem.*, 2018, 2, 409–421.
- 89 J. M. Woodley, Curr. Opin. Green Sustain. Chem., 2020, 21, 22-26.
- 90 B. Thomas, X. Lu, W. R. Birmingham, K. Huang, P. Both, J. E. Reyes Martinez, R. J. Young, C. P. Davie and S. L. Flitsch, *Chembiochem*, 2017, 18, 858–863.
- 91 H. Lu, Z. Geng, J. Li, D. Zou, Y. Wu and Y. Wu, *Org. Lett.*, 2016, **18**, 2774–2776.
- 92 Y. Uozumi, H. Zhou, D. Chen, Y. Zhou, S. Liu, Q. Liu and K. Zhang, *Synlett*, 2018, **29**, 1765–1768.
- 93 H. C. Du, N. Simmons, J. C. Faver, Z. Yu, M. Palaniappan, K. Riehle and M. M. Matzuk, *Org. Lett.*, 2019, **21**, 2194–2199.
- 94 W. Liu, W. Deng, S. Sun, C. Yu, X. Su, A. Wu, Y. Yuan, Z. Ma, K. Li, H. Yang, X. Peng and J. Dietrich, *Org. Lett.*, 2019, 21, 9909–9913.
- 95 Y. Li, E. Gabriele, F. Samain, N. Favalli, F. Sladojevich, J. Scheuermann and D. Neri, *ACS Comb. Sci.*, 2016, **18**, 438–443.
- 96 F. L. C. A. Lipinski, B. W. Dominy and P. J. Feeney, *Adv. Drug Delivery Rev.*, 2001, **46**, 3–26.
- 97 B. C. Doak, B. Over, F. Giordanetto and J. Kihlberg, *Chem. Biol.*, 2014, 21, 1115–1142.
- 98 P. Matsson, B. C. Doak, B. Over and J. Kihlberg, *Adv. Drug Deliv. Rev.*, 2016, **101**, 42–61.
- 99 T. T. Wager, X. Hou, P. R. Verhoest and A. Villalobos, ACS Chem. Neurosci., 2010, 1, 435–449.
- 100 T. T. Wager, X. Hou, P. R. Verhoest and A. Villalobos, *ACS Chem. Neurosci.*, 2016, 7, 767–775.
- 101 L. H. Yuen, S. Dana, Y. Liu, S. I. Bloom, A. G. Thorsell, D. Neri, A. J. Donato, D. Kireev, H. Schuler and R. M. Franzini, J. Am. Chem. Soc., 2019, 141, 5169–5181.
- 102 P. Ma, H. Xu, J. Li, F. Lu, F. Ma, S. Wang, H. Xiong, W. Wang, D. Buratto, F. Zonta, N. Wang, K. Liu, T. Hua, Z. J. Liu, G. Yang and R. A. Lerner, *Angew. Chem., Int. Ed. Engl.*, 2019, 58, 9254–9261.

103 J. Li, Y. Li, F. Lu, L. Liu, Q. Ji, K. Song, Q. Yin, R. A. Lerner, G. Yang, H. Xu and P. Ma, *Biochem. Biophys. Res. Commun.*, 2020, 533, 241–248.

- 104 D. M. Taylor, J. Anglin, S. Park, M. N. Ucisik, J. C. Faver, N. Simmons, Z. Jin, M. Palaniappan, P. Nyshadham, F. Li, J. Campbell, L. Hu, B. Sankaran, B. V. V. Prasad, H. Huang, M. M. Matzuk and T. Palzkill, ACS Infect. Dis., 2020, 6, 1214–1227.
- H. Richter, A. L. Satz, M. Bedoucha, B. Buettelmann, A. C. Petersen, A. Harmeier, R. Hermosilla, R. Hochstrasser, D. Burger, B. Gsell, R. Gasser, S. Huber, M. N. Hug, B. Kocer, B. Kuhn, M. Ritter, M. G. Rudolph, F. Weibel, J. Molina-David, J. J. Kim, J. V. Santos, M. Stihle, G. J. Georges, R. D. Bonfil, R. Fridman, S. Uhles, S. Moll, C. Faul, A. Fornoni and M. Prunotto, ACS Chem. Biol., 2019, 14, 37–49.
- 106 N. Favalli, S. Biendl, M. Hartmann, J. Piazzi, F. Sladojevich, S. Graslund, P. J. Brown, K. Nareoja, H. Schuler, J. Scheuermann, R. Franzini and D. Neri, *ChemMedChem*, 2018, 13, 1303–1307.
- 107 J. S. Valastyan, M. R. Tota, I. R. Taylor, V. Stergioula, G. A. B. Hone, C. D. Smith, B. R. Henke, K. G. Carson and B. L. Bassler, ACS Chem. Biol., 2020, 15, 446–456.
- 108 A. I. Chan, L. M. McGregor, T. Jain and D. R. Liu, *J. Am. Chem. Soc.*, 2017, **139**, 10192–10195.
- 109 D. Kim, Y. Sun, D. Xie, K. E. Denton, H. Chen, H. Lin, M. K. Wendt, C. B. Post and C. J. Krusemark, *Molecules*, 2019, 24, 2764.
- 110 Y. Zhou, C. Li, J. Peng, L. Xie, L. Meng, Q. Li, J. Zhang, X. D. Li, X. Li, X. Huang and X. Li, J. Am. Chem. Soc., 2018, 140, 15859–15867.
- 111 P. Centrella, H. H. Soutter, M. A. Clark, J. W. Cuozzo, C. E. Dumelin, M. Guie, S. Habeshian, A. D. Keefe, K. M. Kennedy, E. A. Sigel, D. M. Troast, Y. Zhang, A. D. Ferguson, G. Davies, E. R. Steadi, J. Breed, P. Madhavapeddi and J. A. Read, *Proc. Natl. Acad. Sci. U. S. A.*, 2016, 113, E7880–E7889.
- 112 S. Ahn, B. Pani, A. W. Kahsai, E. K. Olsen, G. Husemoen, M. Vestergaard, L. Jin, S. Zhao, L. M. Wingler, P. K. Rambarat, R. K. Simhal, T. T. Xu, L. D. Sun, P. J. Shim, D. P. Staus, L. Y. Huang, T. Franch, X. Chen and R. J. Lefkowitz, Mol. Pharmacol., 2018, 94, 850–861.
- 113 S. Wang, K. E. Denton, K. F. Hobbs, T. Weaver, J. M. B. McFarlane, K. E. Connelly, M. C. Gignac, N. Milosevich, F. Hof, I. Paci, C. A. Musselman, E. C. Dykhuizen and C. J. Krusemark, ACS Chem. Biol., 2020, 15, 112–131.
- 114 S. B. J. W. Johannes, C. Beigie, M. A. Belmonte, J. Breen, S. Cao, P. A. Centrell, M. A. Clark, J. W. Cuozzo, C. E. Dumelin, A. D. Ferguson, S. Habeshian, D. Hargreaves, C. Joubran, S. Kazmirski, A. D. Keefe, M. L. Lamb, H. Lan, Y. Li, H. Ma, S. Mlynarski, M. J. Packer, P. B. Rawlins, D. W. Robbins, H. Shen, E. A. Sigel, H. H. Soutter, N. Su, D. M. Troast, H. Wang, K. F. Wickson, C. Wu, Y. Zhang, Q. Zhao, X. Zheng and A. W. Hird, ACS Med. Chem. Lett., 2017, 8, 239–244.

115 B. Cai, D. Kim, S. Akhand, Y. Sun, R. J. Cassell, A. Alpsoy, E. C. Dykhuizen, R. M. Van Rijn, M. K. Wendt and C. J. Krusemark, *J. Am. Chem. Soc.*, 2019, 141, 17057–17061.

- D. G. Brown, G. A. Brown, P. Centrella, K. Certel, R. M. Cooke, J. W. Cuozzo, N. Dekker, C. E. Dumelin, A. Ferguson, C. Fiez-Vandal, S. Geschwindner, M. A. Guie, S. Habeshian, A. D. Keefe, O. Schlenker, E. A. Sigel, A. Snijder, H. T. Soutter, L. Sundstrom, D. M. Troast, G. Wiggin, J. Zhang, Y. Zhang and M. A. Clark, SLAS Discovery, 2018, 23, 429–436.
- 117 C. R. Wellaway, D. Amans, P. Bamborough, H. Barnett,
  R. A. Bit, J. A. Brown, N. R. Carlson, C. W. Chung,
  A. W. J. Cooper, P. D. Craggs, R. P. Davis, T. W. Dean,
  J. P. Evans, L. Gordon, I. L. Harada, D. J. Hirst,
  P. G. Humphreys, K. L. Jones, A. J. Lewis, M. J. Lindon,
  D. Lugo, M. Mahmood, S. McCleary, P. Medeiros,
  D. J. Mitchell, M. O'Sullivan, A. Le Gall, V. K. Patel,

- C. Patten, D. L. Poole, R. R. Shah, J. E. Smith, K. A. J. Stafford, P. J. Thomas, M. Vimal, I. D. Wall, R. J. Watson, N. Wellaway, G. Yao and R. K. Prinjha, *J. Med. Chem.*, 2020, **63**, 714–746.
- 118 J. W. Cuozzo, P. A. Centrella, D. Gikunju, S. Habeshian, C. D. Hupp, A. D. Keefe, E. A. Sigel, H. H. Soutter, H. A. Thomson, Y. Zhang and M. A. Clark, *ChemBioChem*, 2017, 18, 864–871.
- 119 J. Xie, S. Wang, P. Ma, F. Ma, J. Li, W. Wang, F. Lu, H. Xiong, Y. Gu, S. Zhang, H. Xu, G. Yang and R. A. Lerner, *iScience*, 2020, 23, 101197.
- 120 A. B. Irina Bilous, *A Market Review Of DNA-encoded Libraries Technology In Drug Discovery*, BiopharmaTrend, 2019, https://www.biopharmatrend.com/post/126-a-market-review-of-dna-encoded-libraries-technology-in-drug-discovery/pdf/.