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Abstract

Nucleotide repeat disorders encompass more than 30 diseases, most of which show dominant inheritance, such as Huntington’s
disease, spinocerebellar ataxias, and myotonic dystrophies. Yet others, including Friedreich’s ataxia, are recessively inherited. A
common feature is the presence of a DNA tandem repeat in the disease-associated gene and the propensity of the repeats to expand
in germ and in somatic cells, with ensuing neurological and frequently also neuromuscular defects. Repeat expansion is the most
frequent event in these diseases; however, sequence contractions, deletions, and mutations have also been reported. Nucleotide
repeat sequences are predisposed to adopt non-B-DNA conformations, such as hairpins, cruciform, and intramolecular triple-helix
structures (triplexes), also known as H-DNA. For gain-of-function disorders, oligonucleotides can be used to target either transcripts
or duplex DNA and in diseases with recessive inheritance oligonucleotides may be used to alter repressive DNA or RNA
conformations. Most current treatment strategies are aimed at altering transcript levels, but therapies directed against DNA are
also emerging, and novel strategies targeting DNA, instead of RNA, are described. Different mechanisms using modified oligo-
nucleotides are discussed along with the structural aspects of repeat sequences, which can influence binding modes and efficiencies.

Key Words Chromatin - DNA repair - fragile X syndrome - locked nucleic acid - spinal and bulbar muscular atrophy -
non-canonical DNA structure

Introduction

Nucleotide repeat disorders (NRDs) are defined by the pres-
ence of tandem copies of a specific DNA sequence within the
disease-associated gene(s) [1, 2]. DNA repeat sequences are
located throughout the genome on both autosomes and on the
X chromosome, as depicted in Fig. 1, and pathologic repeat
expansion may occur on one or both alleles. The number of
inherited repeats varies between the different disease genes and
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among individuals within the same patient group. Even if
premutations with an increased number of repeats are
inherited, further expansion still occurs in somatic cells, and
another critical feature is that the expansion is tissue-specific,
suggesting that phenotypic differences among cell types may
determine the repeat instability [3—5]. The most studied are
trinucleotide repeat (TNRs) sequences; however, larger repeats
also exist in the human genome, such as tetra-, penta-, and
hexanucleotide repeats. Expanded repeat sequences are found
in both coding and non-coding gene regions, and some exam-
ples are shown in Table 1. A common denominator of nucle-
otide repeats is their inclination to expand, which results in the
introduction of a varying number of sequence copies and con-
sequently mutation of the corresponding gene. The genomic
instability component in NRDs presents an additional dimen-
sion as compared to genetic diseases carrying variations in
non-repeat sequences. The number of expanded repeats, in
most cases, is directly correlated with age at onset and severity
of disease, and therefore, expansion in one specific gene can
result in varying subphenotypes within the same disorder.
Oligonucleotide (ON)-targeting strategies have recently
proved to be successful for the treatment of an increasing
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Fig. 1T Chromosomal location of genes in nucleotide repeat disorders.
BPES (blepharophimosis, ptosis, and epicanthus inversus syndrome),
gene: FOXL2, forkhead box L2; CCD (cleidocranial dysplasia), gene:
RUNX2, runt-related transcription factor 2; CCHS (congenital central
hypoventilation syndrome), gene: PHOX2B, paired like homeobox 2B;
DMI1 (myotonic dystrophy type 1), gene: DMPK, dystrophia myotonica
protein kinase; DM2 (myotonic dystrophy type 2), gene: CNBP, CCHC-
type zinc finger nucleic acid-binding protein; DRPLA (dentatorubral-
pallidoluysian atrophy), gene: ATN/, atrophin 1; EPM1 (progressive
myoclonus epilepsy), gene: CSTB, cystatin B; FRDA (Friedreich’s
ataxia), gene: FXN, frataxin; FXS (fragile X syndrome), gene: FMRI,
fragile X mental retardation 1; FXTAS (fragile X-associated tremor
ataxia syndrome), FMRI, fragile X mental retardation 1; HD
(Huntington’s disease), gene: HTT, huntingtin; HDL2 (Huntington’s
disease—like 2), gene: JPH3, junctophilin 3; HFG (hand-foot-genital-
syndrome), gene: HOXA13, homeobox A13; HPES (holoprosencephaly
5), gene: ZIC2, zinc finger protein of cerebellum 2; ISSX (X-linked

number of genetic diseases [6]. Nevertheless, the medical re-
search field of ON treatment in NRDs is still at its infancy.

Gain-of-Function Disorders

Expansion of CAG*CTG repeats is the hallmark of a number of
different NRDs. The location of these sequences within the
open reading frame of the corresponding disease genes varies
and the biological pathways leading to phenotypes are different.
However, CAG*CTG repeat expansion results in most cases in
the production of toxic RNA and/or protein containing
polyglutamine tracts. We have limited the scope of this review
to include only the following CAG-related diseases:
Huntington’s disease (HD), myotonic dystrophy type 1 and 2
(DM1 and DM2), and spinocerebellar ataxias 1, 2, and 3 (SCA

infantile spasms), gene: ARX, aristaless-related homeobox; OPMD
(oculopharyngeal muscular dystrophy), gene: PABPN1, poly(A) binding
protein nuclear 1; SBMA (spinal and bulbar muscular atrophy), gene: AR,
androgen receptor; SCAI (spinocerebellar ataxia type 1), gene: ATXNI,
ataxin 1; SCA2 (spinocerebellar ataxia type 2), gene: ATXN2, ataxin 2;
SCA3 (spinocerebellar ataxia type 3), gene: ATXN3, ataxin 3; SCA6
(spinocerebellar ataxia type 6), gene: CACNAIA, calcium voltage—gated
channel subunit alphal A; SCA7 (spinocerebellar ataxia type 7), gene:
ATXN?7, ataxin 7; SCA8 (spinocerebellar ataxia type 8), gene: ATXNSOS,
ATXNS opposite strand IncRNA; SCA10 (spinocerebellar ataxia type
10), gene: ATXNI0, ataxin 10; SCA12 (spinocerebellar ataxia type 12),
gene: PPP2R2B, protein phosphatase 2 regulatory subunit B beta; SCA17
(spinocerebellar ataxia type 17), gene: TBP, TATA-box—binding protein;
SPD (synpolydactyly 1), gene: HOXD13, homeobox D13. Red arrows
indicate dominant inheritance, orange autosomal recessive, and green X-
linked inheritance. Arrows surrounded by blue mark diseases described in
some detail in the review.

1, 2, and 3). Huntington’s disease is an autosomal dominant
disorder characterized by progressive degeneration of nerve
cells in the brain leading to movement, cognitive, and psycho-
logical impairment [7]. CAG expansion in exon 1 of the
Huntingtin (HTT) gene results in toxic mutant (mutHTT)
RNA and protein. Myotonic dystrophy is an autosomal domi-
nant disorder characterized by progressive muscle weakness
[8]. DM is the most common muscular dystrophy having an
adulthood onset. It can be classified in two subtypes: type 1
(DM1) is caused by a CTG expansion in the 3'-untranslated
region (UTR) of the myotonic dystrophy protein kinase
(DMPK) gene, which encodes a myosin kinase. A milder phe-
notype was later identified in type 2 (DM2) and is caused by an
unstable CCTG*CAGG repeat located at intron 1 of the nucleic
acid-binding protein (CNBP) gene. SCA1, SCA2, and SCA3,
also known as Machado—Joseph disease, are neurodegenerative
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Table 1 Nucleotide repeat disorders: disease gene characteristics
Disease (abbreviation) Gene Normal repeat ~ Expanded repeat ~ Gene product Repeat sequence  Location of
length length repeat
Fragile X mental retardation 1, FMRI1 5-55 >200 Fragile X mental CGGCCG 5"UTR
(Fragile X) retardation protein
Friedreich’s ataxia (FRDA) FXN 5-34 66-1700 Frataxin GAA-CTT Intron
Huntington’s disease (HD) HTT 6-35 36-250 Huntingtin CAG<CTG Exon
Myotonic dystrophy type 1 (DM1) DMPK 5-34 >50 Dystrophia myotonica ~ CTG*CAG 3'UTR
protein kinase
Myotonic dystrophy CNBP 11-26 75-11,000 Cellular nucleic CCTG+CAGG Intron
type 2 (DM2) acid-binding protein
Spinal and bulbar muscular AR 9-34 38-68 Androgen receptor CAGCTG Exon
atrophy (SBMA)
Spinal cerebellar ataxia type 1 (SCA1) ATXNI 644 39-82 Ataxin 1 CAG-CTG Exon
Spinal cerebellar ataxia type 2 (SCA2) ATXN2 1244 55-87 Ataxin 2 CAG-CTG Exon
Spinal cerebellar ataxia type 3 (SCA3) ATXN3 1244 55-87 Ataxin 3 CAG-CTG Exon

disorders that belong to a large group of dominantly inherited
spinocerebellar ataxias [9]. Expansion of CAG repeats in cod-
ing regions of the Ataxin 1, 2, and 3 genes, respectively, is
directly associated with the development of these diseases.

Loss-of-Function Disorders

Friedreich’s ataxia (FRDA) and fragile X syndrome (FXS) are
two of the most studied NRDs associated with loss-of-
function mechanisms. FRDA is an autosomal recessive neu-
rodegenerative disorder characterized mainly by ataxia, sen-
sory loss, and motor dysfunction. Cardiomyopathy, diabetes,
and scoliosis are other features associated with the disease.
The majority of FRDA patients (98%) carries an expansion
of a GAA-TTC repeat in the first intron of the Frataxin (FXN)
gene on both alleles, whereas the rest (2%) has an expansion
on one allele and a point mutation or deletion on the other
[10]. The GAA-TTC expansion results in a deficiency of the
corresponding Frataxin protein and therefore, current research
focuses on therapeutic strategies that increase the amount of
mRNA and/or protein to reach normal levels [11].

Fragile X syndrome (FXS) is an X-linked neurodevelopmental
disorder caused by a CGG*CCG repeat expansion in the 5-UTR
of the FMRI gene [12, 13]. Expansion exceeding 200 repeats
results in hypermethylation and silencing of FMR/ and reduction
in the level of the corresponding product, fragile X mental retar-
dation protein 1 (FMRP) [14, 15]. The repeat expansion in the
FMRI gene is a clear example of the complexity of NRDs being
directly related to varying numbers of the corresponding nucleo-
tide repeat (Table 1). Healthy individuals have <55 copies of the
CGG*CCG repeat in the FMRI gene [16]. Males and females
carrying 55-200 repeats (so-called premutated alleles) are at risk
of developing fragile X-associated disorders, e.g., fragile X-
associated tremor/ataxia syndrome (FXTAS) and premature ovar-
ian failure (POF), respectively [17, 18]. Interestingly, expansion
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between 55 and 200 repeats results in an increased transcription of
FMR1 mRNA, but deficient translation to produce FMRP. On the
other hand, transcriptional silencing, leading to FXS, is reached
first when the expansion is >200 repeats. In other words, ON
treatment concepts in the case of the FMRI gene mutations can-
not follow “straightforward” strategies, because expansion of the
CGGCCG repeat may lead to several different phenotypes.

Chemical Modifications of Oligonucleotides

Oligonucleotides based on non-modified nucleic acids are
readily degraded by endo- and exonucleases both in plas-
ma and in the cell [19, 20]. A plethora of chemical modi-
fications of ONs has been reported during the latest de-
cades aiming to provide biologically active compounds
with improved plasma half-life, cell uptake, stability, and
bio-distribution in different tissues as well as enhanced
target binding affinity and specificity [21]. ON modifica-
tions can be made at one or several of the following sites of
a nucleic acid (Fig. 2): the heterocyclic nucleobase, the
sugar moiety, the phosphodiester linkage, and/or the
sugar-phosphate backbone. Here, we describe only a few
ON chemical modifications (Fig. 2) that are relevant to the
field of nucleotide repeat genes, thereby leaving out the
remaining ON modifications (for more detailed reading,
please see [21]).

One of the most examined nucleobase modifications in
RNA-targeting ONs is 5-methyl cytosine (5-Me-C, Fig. 2).
This substitution enhances duplex thermal stability, which is
attributed to the stacking of the methyl group between the
nucleobases in the major groove of the duplex [22].
Interestingly, the improved property is also valid for modified
RNA guide strands in short interfering RNA (siRNA) and for
ONs targeting double-strand DNA (dsDNA) [23]. Moreover,
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the 5-Me-C modification also prevents innate immune reactions
from Toll-like receptor 9 [6, 24], which is expressed in the brain.

The 2'-position of the ribose sugar in RNA has an
electron-withdrawing group, which results in a C3'-endo sug-
ar pucker with a north conformation favorable for duplex
formation; thereby, an RNA/RNA duplex is more stable than
the corresponding DNA/DNA duplex. Several sugar modifi-
cations in antisense oligonucleotides (AONs) have, therefore,
been developed to obtain an RNA-like structure. 2'-O-methyl
(2'-O-Me) (Fig. 2) is a naturally occurring modification and is
one of the most applied in several strategies, including in anti-
sense [25, 26]. Another example of 2'-O-modification of ribose,
2'-0-methoxyethyl (2"-O-MOE), is shown in Fig. 2, which im-
proves binding affinity to RNA and resistance to nucleases [21].

Locked nucleic acid (LNA) was developed to further re-
strain the C3'-endo and north sugar conformation [27-29]. In
LNA (Fig. 2), a methylene bridge links the 2'-O with the C4’
position resulting in excellent duplex-stabilizing properties.
LNA-based ONs have been successfully used in siRNAs
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Fig.2 Chemical modifications of oligonucleotides. Chemical structure of
a GC dinucleotide is shown (blue box) in which R =H for DNA and R =
OH for RNA; PO = phosphodiester and PS = phosphorothioate.
Examples of heterocyclic nucleobase (light green box) and sugar (light
salmon box) modifications are shown. Two examples of sugar-

and AON gapmers, which work through RNA degradation
and are described in more details in the following sections
[30]. In addition, the LNA modification is used to improve
binding of single-strand oligonucleotides (ssONs) and triplex-
forming oligonucleotides (TFOs) to DNA to form duplex and
triplex structures, respectively (Fig. 3) [31]. LNA analogs, or
bridged nucleic acids (BNAs) such as 2',4"-constrained ethyl
(cEt) BNA [32], having constrained conformation, have also
been synthesized and found to improve ON performance.
Phosphorothioate (PS) is a modification of the phosphodi-
ester linkage in which one of the non-bridging oxygen atoms
is replaced by a sulfur atom [33], as shown in Fig. 2. PS
confers resistance towards exo- and endonucleases and ex-
tends the half-life of ONs in plasma, due to its protein binding
ability [34]. However, the drawback of this later feature is
non-specific protein binding, which may lead to undesired
side effects such as immunostimulation, complement activa-
tion, and thromobocytopenia, in particular when PS is com-
bined with additional ON modifications [35-37]. On the

2,6-diaminopurine

Y NH,

N
2)\

R 5-methyl C

phosphodiester backbone modifications are also presented (light gray
box). Abbreviations: 2'-O-Me, 2'-O-methyl; 2’-O-MOE, 2'-O-
methoxyethyl; B, heterocyclic nucleobase; 5-mehtyl C, 5-
methylcytosine; LNA, locked nucleic acid; PNA, peptide nucleic acid
and PMO, phosphorodiamidate morpholino oligomers
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Fig. 3 Genome targeting mechanisms. Chromosomal DNA and anti-
gene mechanisms to interfere with the duplex through triplex-forming
oligonucleotides, strand-invading oligonucleotides, or CRISPR-Cas, in

other hand, PS backbones can promote binding to proteins
(such as La and NPM1), which increases AON nuclear local-
ization [38].

An additional modification of the phosphodiester group is
the introduction of a nitrogen atom at the 3'-position of the
sugar moiety (ribose in RNA and deoxyribose in DNA) and
hence substituting the 3'-OH [39]. N3'-phosphoramidate (NP)
modification provides increased binding affinity of RNA and
stability towards nucleases. However, NP is not recognized by
RNase H and therefore cannot be part of the gap in gapmers
(Fig. 2). Furthermore, the sugar and phosphodiester backbone
can be replaced to generate two different classes of charge-
neutral backbone: peptide nucleic acid (PNA) [40] and
phosphorodiamidate morpholino oligomer (PMO) [41]. PNA
and PMO (Fig. 2) are not degraded by nucleases, provide high
binding affinity, and do not trigger RNase H. PNA is a nucleic
acid mimic, which has a peptide-based backbone composed of
N-(2-aminoethyl)glycine but is still able to bind to nucleic acids
with higher affinity than non-modified DNA or RNA.
Furthermore, PNA binds to dsDNA and forms double- and
triple-strand structures (Fig. 3) through Watson-Crick,
Hoogsteen, or reverse-Hoogsteen base pairing [42]. PNA [43]
and LNA [44, 45] can invade dsDNA and form different
PNA:DNA, and LNA:DNA, complexes, respectively (Fig. 3).

The Choice of Target Sequence in the Context
of Allele Selectivity

Already 40 years ago, Zamecnik and Stephenson first described
the biological activity of synthetic AONs [46, 47], and such
compounds remain the predominating ON therapeutic strategy
for NRDs with dominant inheritance as depicted in Fig. 4
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(reviewed in [6, 48]). In theory, for NRDs with this inheritance,
the preferred principle would be to only target the disease allele
and not the normal allele. There are, however, arguments
against this view. Thus, in order to selectively target single
alleles, they must differ. One option is that they are polymorphic
outside the repeats. Such sequence polymorphisms vary among
individuals. This means that many different therapeutic ONs
need to be generated to obtain selectivity, and apart from con-
stituting a technical challenge, this also leads to considerably
more expensive therapies as compared to the use of a universal
ON directed against a non-polymorphic target found essentially
on all alleles. An alternative approach would be to direct the
ON medicine against the repeat sequences in the mRNA pro-
vided that there would be differences in their secondary struc-
ture based on repeat length, which could discriminate the longer
disease allele from the shorter, healthy one. There are indica-
tions from structure predictions that expanded repeats in tran-
scripts may differ sufficiently for selective targeting of AONs
[49]. However, favored binding of a longer repeat in RNA
could only be expected based on the presence of significant
discrepancies in both the length and conformation of the repeat
sequences. It should also be emphasized that none of the AONs
currently used has the capacity to completely silence expression
of both alleles. This means that a certain level of intact mRNA
and protein will always be generated.

To illustrate the complexity of the situation, we will provide
an example, namely HD. It has been demonstrated that gene-
targeted mice completely lacking the huntingtin protein die in
utero, whereas the effect of heterozygosity may vary [50-52].
Mice with highly reduced expression showed perinatal mortal-
ity [53]. This clearly demonstrates that in this species, a certain
level of huntingtin protein is needed during gestation. Whether
the same is true in humans is not known, but none of the
current therapeutic AON strategies would completely wipe
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out expression of HTT, and the resulting phenotype would
therefore likely differ as compared to a gene knockout situa-
tion. In nonhuman primates (NHPs), it has been demonstrated
that 45% downregulation of HTT following an RNAi approach
did not induce any measurable abnormalities 6 weeks [54] or
6 months [55] after treatment. This does not exclude the pos-
sibility that more subtle changes still may occur, and again it is
unknown whether these observations are translatable to
humans, or if there are any differences among species.
Interestingly, when the effect of inactivating the H7T gene
in mice was further analyzed, it was found that it was not the
lack of expression in embryonic, but rather in extra-embryonic
tissues that was the cause of the lethality [56]. If the same is
true in humans, this observation is compatible with the use of
nonallele-selective AONS as therapy after birth. Conversely, it
was recently reported that conditional inactivation of the HTT
gene in the adult mouse at 3, 6, or 9 months of age leads to
progressive motor and behavioral decline, reduced life-span,
and extensive neuropathology [57]. Collectively, although a
cautious attitude is important, there is no definitive evidence
suggesting that downregulation, i.e., not elimination, of
huntingtin expression in the adult causes neuronal
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abnormalities. The same is also true for SCA1, because down-
regulation of ataxin 1 in macaques did not result in any de-
tectable brain aberrations [58].

RNA-Targeting Mechanisms
in Gain-of-Function Disorders

A therapeutic aim in dominantly inherited NRDs is to lower
toxicity by reducing the cellular mRNA content and as a con-
sequence of that, also the protein levels. As depicted in Fig. 4,
there are four major approaches, all of which have attracted
interest from the scientific community. These are 1) single-
stranded AONSs (ssAONs), normally in the form of gapmers,
which make use of RNase H for the degradation of the
targeted RNA; 2) noncatalytic ssONs, which block translation
of mRNA to protein; 3) micro-RNA-mediated silencing and
4) predominantly double-stranded AONs (dsAONs) used in
siRNA-mediated downregulation. Gapmers contain a central
“gap” of ssDNA, which upon hybridization to RNA permits
degradation of the RNA by the endogenous RNase H enzyme.
The gap is on both sides surrounded by a short stretch of
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modified nucleotides, which normally are resistant to degra-
dation and show strong binding. Gapmer ssAONSs is currently
the prevailing ON approach for treatment of dominantly
inherited diseases (Fig. 4) with HD being the most extensively
studied among the NRDs, presumably owing to its prevalence
and unique, characteristic phenotype.

Rather than reviewing all studies related to RNA-targeting
approaches, we have chosen to identify some of the earliest
reports and to concentrate on certain aspects of more general
interest taking into account the universal considerations on
how to apply therapeutic ONs.

Single-Strand Antisense Oligonucleotides

The first antisense approach, using 18mer PS AONs direct-
ed against HTT transcripts and injected into the striatum of
mice, was reported in 1997, but failed to induce downreg-
ulation [59]. Yen et al. [60] used a catalytic DNAzyme,
which reduced HTT levels in cells, whereas Nelleman
et al. in 2000 [61] were the first to report on the successful
use of a phosphorothioate (Fig. 2) AON to reduce
huntingtin protein levels in cells (Fig. 4). Transient infu-
sion of nonallele-selective gapmer AONS into the cerebro-
spinal fluid in HD mouse models delays disease progres-
sion and also mediates a sustained reversal of disease phe-
notype, which persists longer than the huntingtin knock-
down [62]. Using this strategy, infusion in NHPs also ef-
fectively lowered huntingtin in many brain regions affected
by HD pathology [62]. Such strategies have also been
attempted in other disorders with polyglutamine expan-
sion, such as in spinocerebellar ataxia type 3, SCA3 [49,
63], and in SCAL1 [64]. Also the DMPK transcript, defec-
tive in DM1 has been targeted using AONs [65].
Moreover, two ONs, a 2’'-O-methoxyethyl/2’,4’-
constrained 2'-O-ethyl (2'-MOE/cEt) and a 2'-MOE
gapmer AONSs (Figs. 2 and 3) were used as treatment in a
mouse model of Spinal and bulbar muscular atrophy
(SBMA). The authors reported that a single intracerebro-
ventricular administration of the antisense ONs in the pre-
symptomatic phase suppressed mutant gene expression in
the CNS and delayed the onset and progression of motor
dysfunction [66].

In addition, splice switching has been studied in SCA3
mice with the aim of skipping the exon encoding the repeat
[67]. The basic concept in splice switching is to use ON
binding to the pre-mRNA to alter the inclusion of exons, a
strategy, which has been studied extensively in Duchenne
muscular dystrophy (DMD) with the aim of restoring the
reading frame [6]. For most proteins, exon skipping leads
to abolished activity, whereas for dystrophin, the activity is
only slightly reduced.
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Disease Allele-Selective Approaches

Owing to that in autosomal dominant disorders there is one
mutated and one healthy allele, it may be possible to direct the
therapy only to the affected allele. As discussed in the previ-
ous section, this would be an elegant solution, but when
targeting single nucleotide polymorphisms (SNPs), this is nor-
mally achieved at the expense of more individualized and
costly treatments. Suitable candidate SNPs have been identi-
fied in, e.g., the HTT gene [68].

Allele-selective HTT gapmers, in which a central DNA gap
is surrounded by 2’-O-MOE wings, for enhanced hybridiza-
tion and stability, were previously developed [69] and subse-
quently tested both in mice and in NHPs demonstrating good
activity. In NHPs, suppression of HTT was observed through-
out the cortex and limbic structures [70], and by rational de-
sign, it is possible to obtain AONs highly selective for the
HTT disease allele [71].

Allele-Selective Targeting Using
Repeat-Directed Antisense Oligonucleotides

Interestingly, by targeting the repeats in the transcript, it has
been possible to obtain allele selectivity in both SCA3 and in
HD. In these studies of cultured cells, several different nucleic
acid chemistries were used in the single-strand AONSs, includ-
ing substitution using LNA, or PNA [49]. Prediction of the
mRNA secondary structure carrying repeats of different
lengths suggested that allele-selective targeting could be
achieved by the use of nonpolymorphic oligomers. Apart from
secondary structures yielding selectivity, the increased length
of the repeat in the disease allele per se would also enhance
targeting simply because additional cognate sequences would
be available for hybridization.

Allele-Selective siRNAs

Apart from using allele-selective gapmer AONSs, efforts have
also been made to apply allele-selective siRNAs (Fig. 4). It
has been reported that the majority of SNPs in the H7T gene
are intronic [72]; however, siRNAs are active only in the cy-
toplasm, i.e., after the introns have been removed from the
pre-mRNA. In contrast, gapmers function both in the nucleus
and in the cytoplasm [73], and thereby enable more options
for the targeting of SNPs. In a recent report [74], it was dem-
onstrated that about half of the H77 mRNA in neuronal cells
is located in the nucleus. This further argues in favor of ther-
apeutic strategies efficiently targeting nuclear-resident nucleic
acids. Most of the RNAi-based studies to date have been
based on viral transfer of the RNAi construct [75-77], but
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there are also attempts to develop chemically modified ONs
for this purpose [78].

Construction of Micro-RNA Mimics

A novel approach for the treatment of HD is based on
targeting of the 3" end of HTT mRNA (Fig. 4), a region fre-
quently used in endogenous micro-RNA regulation. Through
the development of an adeno-associated virus encoding artifi-
cial micro-RNAs, it has been possible to harness the cellular
machinery for degradation of H77 mRNA in both rats [79]
and in minipigs [80]. The US Food and Drug Administration
granted orphan drug designation for this therapy, named
AMT-130, in Huntington’s disease in 2017 and in January
2018, AMT-130 received an Orphan Medicinal Product
Designation (OMPD) from the European Medicines Agency
for the same indication. Although this development is based
on therapeutic viruses, the same approach could be applied by
the use of ON-based micro-RNA mimics. Such attempts have
already been made and entered into clinical trials in the field of
tumor treatment in which RNA species, that are believed to
have transforming activity, have been targeted, as reviewed in
Smith and Zain [6].

Clinical Trials

In 2018, the first results from a phase I/II study using a 20mer
2'-MOE gapmer directed against H77 transcripts were an-
nounced (Ionis Pharm. 2018. http://ir.ionispharma.com/node/
23401/pdf). The Roche/lonis gapmer directed against HTT
RNA, designated RG6042, also known as IONIS-HTTRx,
received PRIME designation by the European Medicines
Agency (EMA) in August 2018, primarily based on the data
from an exploratory phase I/Ila trial demonstrating significant
reduction in mutated huntingtin in the cerebrospinal fluid of
adult patients treated for 3 months. The levels of the defective
protein continued to decline in the majority of treated patients
and in January 2019 it was announced that the first patient has
been enrolled in a phase III study of RG6042.

Genome and Transcript Editing

During the twenty-first century, there have been major devel-
opments in the field of genome editing. For decades, this was
considered as science fiction, but the availability of increas-
ingly efficient methods has changed the situation completely.
Thus, tools such as zinc finger nucleases (ZFNs), transcription
activator—like effector nucleases (TALENS), and the clustered
regularly interspaced short palindromic repeat (CRISPR)—as-
sociated protein system are available and the current

development is unprecedented [81, 82]. We will only very
briefly discuss the CRISPR-Cas technology, which is sche-
matically depicted in Fig. 3. The CRISPR-Cas complex is
composed of an enzymatic component and a guide RNA
(gRNA). Improvement of the catalytic activity and specificity
has been made using gRNAs carrying synthetic, chemically
modified nucleotides [6].

Studies in mice suggest that nonallele-selective CRISPR/
Cas9-mediated gene editing by deletion of the HTT repeats
could be used to permanently eliminate polyglutamine
expansion-induced neuronal toxicity in the adult mouse brain
[83, 84]. Excision of the CAG tract from the H7T gene by
Cas9 nickases was also recently reported [85]. Furthermore,
also for other NRDs, such as the fragile X syndrome,
Friedreich’s ataxia, and SCA2 and SCA3, genome editing
has been tested [86—89]. In DM1 and DM2, the reported ap-
proach was based on the use of deactivated editing enzymes,
which efficiently reduced transcription after systemic delivery
of dCas9/gRNA by an adeno-associated virus vector [90].
Editing occurs preferentially in dividing cells, and it was re-
cently demonstrated that Cas9-mediated cleavage of DNA is
quite weak when nucleosomes are present, whereas the activ-
ity of ZFNs was less affected [91]. Engineered systems, which
target the defective RNA, have also been described for HD,
DM]1, and DM2 [92].

Endonucleases may have different molecular weights; nev-
ertheless, their size remains a hurdle for uptake when many
cells in the brain need to be targeted, but it is evident that
curative, clinical genome editing for NRDs may become pos-
sible in the future. Delivery of the editing enzyme, in complex
with the synthetic chemically modified gRNA, and virus-
mediated transfer are possible scenarios for such therapies.

Nucleic Acid-Based Approaches
in Loss-of-Function Disorders

Repeat expansion can interfere with the regulation of gene
transcription in several different ways, including bidirectional
and antisense transcription, formation of RNA:DNA hybrids
[93], and non-B-DNA structures [2]. In the case in which the
repeat expansion leads to reduced expression of mRNA and
protein, “classical” AON targeting of RNA (as described in a
previous section) is clearly not an option. In FRDA, expansion
of the GAA-TTC repeats is directly associated with transcrip-
tion downregulation, which results in reduced levels of
frataxin mRNA and protein [94, 95]. Inhibition of Pol II in
FRDA is also correlated with repressive chromatin modifica-
tions, and gene silencing of FRDA has been described. A
novel approach to circumvent the frataxin deficiency is to
directly deliver the corresponding mRNA in vivo. Recently,
transfer of human FXN mRNA was first examined in 293-T
cells using lipofectamine transfection and mature functional
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FXN protein was detected. More important, lipid encapsulated
nanoparticles of FXN mRNA were subsequently delivered by
intrathecal injection in adult mice and human FXN protein
was measured in the dorsal root ganglia [96]. Another strategy
is to direct chemically modified ONs to the repeat region of
FXN pre-mRNA to avoid its engagement in forming
RNA:DNA hybrids, which has been suggested as one of sev-
eral possible mechanisms leading to the deficiency of frataxin
mRNA and protein [97, 98].

RNA Targeting

To affect gene expression in loss-of-function diseases using ONs
directed against RNA, one has to consider several aspects, which
differ from targeting toxic mRNA in gain-of-function diseases.
For example, in Friedreich’s ataxia, the expanded GAATTC
repeats are located in an intron and therefore, ONs directed to
the repeat region of the transcript should 1) target the pre-mRNA
and exert their activity in the nucleus and 2) lead to an activation,
rather than an inhibition, of gene expression.

Double-strand RNA (dsRNA) has been examined for acti-
vating FXN gene expression in Friedreich’s ataxia patient—
derived fibroblasts [97]. To this end, dsSRNA targeting the
GAA-TTC repeat in the RNA enabled transcription elevation,
which has been attributed to an RNAi de-repression mecha-
nism. In this study, the authors reported that Argonaute2
(Ago2) binding of the transcript is necessary, but without the
engagement of an Ago2-mediated cleavage. Moreover, an an-
tisense LNA-based ON targeting the pre-mRNA at the repeat
region was shown in the same study to cause activation of
FXN gene expression. Although the gene-activating molecu-
lar mechanism of the AON has not been fully examined, one
possible scenario is that the ON causes release of the pre-
mRNA from a DNA:RNA hybrid (sometimes referred to as
R-loop), which has been proposed to form at GAA and CGG
repeats [99, 100].

Fragile X-associated tremor ataxia syndrome (FXTAS)
is caused by a CGG repeat expansion in the FMRI gene
[16]. However, and as mentioned in the previous section,
CGG*CCG expansions of > 200 repeats are also associated
with fragile X syndrome. The CGG repeat is located in the
5'-untranslated region and pathological repeats of 55-200
produces toxic RNA. AONs carrying 2'-O-Me-PS have
been examined in model cell lines with the aim to invade
the structured RNA formed at the 5-UTR of the FMRI
gene [101]. Nevertheless, this strategy may not be optimal,
as inactivation of the FMRI mRNA may aggravate disease
because fragile X syndrome is caused by loss of FMRP.
Instead, low-molecular weight small molecules have been
screened for their ability to recognize and bind the struc-
tured transcript.

@ Springer

Natural Antisense Transcripts
and Oligonucleotide Treatment

Natural antisense transcripts (NATs), which are complementary
to the corresponding mRNA, are heterogeneous and prevalent
and often accumulate in the nucleus [102, 103]. They likely have
regulatory functions [102], but their rather modest expression
level [104] has made it difficult to clearly establish their role.
The opposite directional transcription of antisense and sense
RNAs suggests that they might be part of self-regulatory circuits
allowing genes to control their own expression.

NATs are associated with the DMPK [105], FXN [106],
HTT [107], and SCA2 [108] genes. The expanded disease
allele in congenital DM1 is associated with loss of CCCTC-
binding factor (CTCF) binding, spread of heterochromatin,
and regional CpG methylation. In Friedreich’s ataxia, FXN
antisense transcription and depletion of the chromatin insula-
tor protein CTCF are also associated with epigenetic silencing
[106, 109]. In a recent report, a FXN NAT was also found to
exert an effect when expressed in trans [110]. In the HTT
gene, a NAT named HTTAS, encompasses the H7T locus con-
taining the repeat tract [107]. It is 5'-capped, poly (A) tailed
and contains three alternatively spliced exons expressed in
multiple tissue types and throughout the brain. Repeat expan-
sion seems to reduce the efficiency of the corresponding pro-
moter. Over-expression of one splice form specifically reduces
endogenous HTT transcript levels. Collectively, these findings
support the idea that NATs may regulate the expression of
many NRD genes.

Owing to that the physiological role of the NATSs to a great
extent is unknown, their potential role as drug targets also
remains elusive. It is possible to influence the levels of the
NRD-associated NATs by, e.g., AONs, but whether this will
have any beneficial clinical effect is not known. To this end, it
has been demonstrated that in SCA2, a NAT exerts toxic func-
tions and it has been proposed that therapeutics against these
transcripts may have favorable effects [108].

The frequent existence of NATs also means that whenever
the effects of ON-based treatments for NRDs are evaluated,
such transcripts need to be taken into consideration.
Depending on their sequence, and which genomic region they
correspond to, AONs directed against the regular sense tran-
script may resemble parts of a NAT and, conversely, an AON
complementary to the NAT may be identical to a stretch of the
regular sense transcript. In a similar way, ONs directed to-
wards genomic DNA (anti-gene ONs) may target, or be sim-
ilar in sequence, to the NAT depending on their composition.
In the experiments recently conducted in our laboratory using
anti-gene ONs directed against the H7T gene, the anti-gene
ONss target the template strand and are hence identical in se-
quence to a stretch in the H77 mRNA [111]. An effect on the
NAT is unlikely, because that presumably would result in the
upregulation of the sense H77 mRNA, whereas we observed
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the opposite. This is also in line with the demonstration that an
siRNA directed against the HTT NAT causes enhanced HTT
mRNA expression [107].

Structural Properties and Genomic Instability
of Repeats

The most common DNA structure in the human genome is the
right-handed helix known as B-DNA. However, repeat se-
quences within DNA can form non-canonical conformations,
which are collectively called non-B-DNA. These structures
are formed at different repeat sequences; e.g., CAG*CTG re-
peats can adopt a hairpin or cruciform conformation (Fig. 5),
whereas polypurinespolypyrimidine mirror repeats (such as
GAA-TTC repeats) form an inter- or intramolecular triple-
helix (triplex), also known as H-DNA (Fig. 5). G-rich se-
quences can form G-quadruplex (G4) structures consisting
of m—t stacking of planar G-tetrads. These conformations
are implicated in NRDs even if this has not been equally
substantiated for all structures [2, 5].

An important parameter for the expansion rate is whether a
tandem repeat sequence is uninterrupted or not. It has been
demonstrated that interruptions profoundly reduce the

Repeat expansion

GAA GAA GAA GAA GAA GAA GAA
CTT CTT CTT CTT CTT CTT CO7

GAAeCTT repeat

3
5

expansion rate, and the length of the uninterrupted repeat de-
termines the stability [112]. Here, it was shown that the com-
position and the length of the repeat determine the propensity
to form secondary structures, such as hairpins. The structure
and the dynamics of both DNA and RNA duplexes of CAG,
GAC, CCG, and GGC trinucleotide repeats have been studied
by molecular modeling revealing that A-A non-canonical pairs
form high-anti conformations in DNA [113] and that mis-
matches in C-rich hairpin stems are weakly bonded and may
flip out forming “e-motifs” [114, 115]. Although these studies
provide interesting insights, the detailed dynamics of these
processes inside the nucleus of neuronal cells remains to be
elucidated.

It is believed that changes in the repeat number in normal
cells mainly occur during replication, transcription, or under
DNA repair (reviewed in [3—-5]). In addition, they may occur
when translocations take place. It has been demonstrated that
extended hairpins have long lifetimes, even in the presence of
their complementary strands, and inhibit duplex reannealing at
a slippage site [116]. For repeated CG-containing sequences,
RNA:DNA hybrids can form at the expanded, abnormal,
CGG repeat regions, as shown in the FMRI gene [117].
Apart from introducing structural changes, this also may result
in silencing of this gene. Chromatin domain boundaries were

Repeat expansion

CAG CAG CAG CAG CAG CAG CAG
GTC GTC GTC GTC GTC GTC GTC

CAGeGTC repeat

o 3 3'
Triplex/H-DNA 5 5
Hairpin/
5' cruciform
3
Oligonucleotide
t NANANN t
v 3 v
GAA GAA GAA GAA GAA CAG CAG CAG CAG CAG

CTT CTT CTT CTT CIT

(>
%7,
B-DNA

Fig. 5 Oligonucleotide targeting of non-B-DNA structures at expanded
repeat regions. Schematic representation of genomic DNA carrying
repeat expansions, in which the presence of GAA*TTC repeats
promotes the conversion of B-DNA to a pyrimidine motif (YRY)
triplex/H-DNA structure in Friedreich’s ataxia (left) and CAG*CTG
repeat expansions, such as in Huntington’s disease, adopt a hairpin/
cruciform conformation (right). The gray arrows indicate the direction

GTC GTC GTC GTC GTC

G
e,
B-DNA

and strength of the equilibrium between B- and non-B-DNA structures,
indicating higher propensity to form a stable triplex/H-DNA in
GAA-TTC repeats (left) compared to the conformations formed in
repeats of CAG*CTG (right). The red oligonucleotide interferes with
formation of non-B-DNA structures, which are implicated in the repeat
instability leading to expansions (top panel)
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recently reported to co-localize with short tandem repeats
[118], and in plants, it was found that an intronic GAA*TTC
repeat induces accumulation of siRNAs and repressive histone
marks, causing epigenetic silencing [119].

Owing to that the main expansion in NRDs occurs in
disease-specific subsets of neuronal cells in the adult [120,
121], and that these cells only rarely divide, transcription
and DNA repair are considered as the most important contrib-
utors for the observed plasticity. Apart from that transcription
causes strand separation, it also yields negative supercoiling,
which further enhances the stability of non-B-DNA structures
[122, 123]. The isolation of a large number of mutants prone
to GAA-TTC fragility and large-scale expansions in yeast
suggest that transcription initiation in nondividing cells is cru-
cial for genome instability [124]. For Huntington’s disease, a
catalog of genetic components that modify the clinical onset
of disease was recently compiled [125]. It included the MutL
Homolog 1 (MLHI) gene, substantiating a role for DNA re-
pair and this gene, among several others, was also reported in
what is referred to as a “repeat expansion DNA damage re-
sponse (REDD) pathway” that acts to prevent repeat expan-
sions in the genome [126]. Related repair proteins were also
found in other studies [127]. Cis- and trans-modifiers of re-
peat expansions were recently reviewed [5]. Collectively, this
shows that there are numerous cellular components, which
influence the propensity to expand tandem repeats, although
considerably less is known about what ignites these processes.

Oligonucleotide Targeting of Non-B-DNA
Structures

The ability of expanded nucleotide repeat sequences to form
alternative DNA structures provides an additional possibility
to target the mutated gene allele and this is being investigated
in preclinical models. Modified ONs can then be targeted to
interact with the repeats at the site of non-B-DNA structure. A
prime example is expanded GAA*TTC repeats in the Frataxin
gene in Friedreich’s ataxia, which can form an intramolecular
triplex (H-DNA). There are few examples in which this con-
cept has been examined using repeat-specific oligomers or
modified ONs. One is the use of synthetic polyamides, initial-
ly developed to recognize dsDNA and form a triplex structure
(Fig. 3); however, their binding was shown to rather occur
through recognition of the dsDNA minor groove [128].
Polyamides have been previously examined aiming to modu-
late gene expression in different cell models, both through
transcription inhibition and activation. In FRDA lymphoid
cell lines, GAA-binding polyamides showed moderate en-
hancement of the levels of frataxin mRNA and protein
[129]. The effect was attributed to alteration of the DNA con-
formation or to chromatin opening through displacement of
repressor proteins causing a reversal of inactive
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heterochromatin [130]. More recently, it was demonstrated
that GAA-binding polyamides rescued replication fork
stalling in FRDA-induced pluripotent stem (iPS) cells [131].

An approach that we have introduced is to take advantage
of modified ONs, such as LNA/DNA mixmer ONs or PNA
oligomers, which have the ability to invade dsDNA and form
stable complexes. A detailed molecular analysis of the DNA
structure(s) formed at FRDA GAA*TTC repeats has been car-
ried out in our laboratory and we were able to confirm forma-
tion of a pyrimidine motif (YRY) H-DNA [132, 133], as
shown in Fig. 5. Furthermore, we found that sequence-
specific binding using repeat-specific PNA oligomers resulted
in complete disruption of the triplex formed and LNA ONs
showed similar results (Fig. 5) [42]. These findings are cur-
rently employed in FRDA patient cell lines to upregulate FXN
transcription and increase the levels of mRNA and protein
(manuscript in preparation). Nevertheless, these findings need
to be substantiated in preclinical models.

Following a related DNA targeting concept, we have re-
cently reported that LNA/DNA mixmer ON binding of CAG
repeats in the H77T gene in primary patient cell lines resulted in
efficient downregulation of transcription [111]. The ON used
was directed against the template strand and we found no
evidence of hybridization with HTT transcripts. Expanded
CAG repeats can form a hairpin/cruciform structure, which
we believe facilitates strand invasion and binding of the
single-strand LNA ONs to a DNA strand (Fig. 5).

Conclusion

The recent development of nucleic acid—based therapeutic
strategies is deep-rooted in the long and extensive research
in the fields of ON chemistry and biophysics, reliable biolog-
ical models, imaging and delivery, to mention few. Nucleotide
repeat diseases are biologically diverse, yet they share com-
mon features caused by genetic instability, mainly in the form
of repeat expansion. The various ON mechanisms of action,
targeting RNA, editing the genome, or interfering with the
repeat DNA structure, have obvious potentials but each ap-
proach can prove to be suitable for certain but not all diseases.
Targeting the repeat sequences at the DNA level and thereby
preventing instability would be highly useful and is part of our
ongoing research. Many approaches are under study and we
are witnessing a promising scientific era that could enable
important medical advancement for the treatment of several,
if not all, nucleotide repeat disorders.
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