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Abstract

Testing one SNP at a time does not fully realise the potential of genome-wide association studies to identify multiple causal
variants, which is a plausible scenario for many complex diseases. We show that simultaneous analysis of the entire set of
SNPs from a genome-wide study to identify the subset that best predicts disease outcome is now feasible, thanks to
developments in stochastic search methods. We used a Bayesian-inspired penalised maximum likelihood approach in which
every SNP can be considered for additive, dominant, and recessive contributions to disease risk. Posterior mode estimates
were obtained for regression coefficients that were each assigned a prior with a sharp mode at zero. A non-zero coefficient
estimate was interpreted as corresponding to a significant SNP. We investigated two prior distributions and show that the
normal-exponential-gamma prior leads to improved SNP selection in comparison with single-SNP tests. We also derived an
explicit approximation for type-I error that avoids the need to use permutation procedures. As well as genome-wide
analyses, our method is well-suited to fine mapping with very dense SNP sets obtained from re-sequencing and/or
imputation. It can accommodate quantitative as well as case-control phenotypes, covariate adjustment, and can be
extended to search for interactions. Here, we demonstrate the power and empirical type-I error of our approach using
simulated case-control data sets of up to 500 K SNPs, a real genome-wide data set of 300 K SNPs, and a sequence-based
dataset, each of which can be analysed in a few hours on a desktop workstation.
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Introduction

The ideal analysis of a genome-wide association (GWA) study for

a complex disease would involve analysing all the SNP genotypes

simultaneously to find a set of SNPs most associated with disease

risk. Such an analysis can improve performance over single-SNP

tests, since a weak effect may be more apparent when other causal

effects are already accounted for, but also because a false signal may

be weakened by inclusion in the model of a stronger signal from a

true causal association. To date, analysing all SNPs simultaneously

has seemed infeasible, since current GWA platforms can type over

one million SNPs, and even larger variable sets may not be far away

as genome-wide re-sequencing advances.

We exploit recent advances in stochastic search algorithms [1,2]

to develop a computationally efficient tool to simultaneously

analyse k SNPs typed in n individuals for association with case-

control status, where k » n. We formulate the problem as variable

selection in a logistic regression analysis that includes a covariate

for each SNP. Our aim is to find a subset of SNPs (a ‘‘model’’) that

best explains the case-control status subject to a specified error

rate. The number of possible models is 2k and since k is typically of

the order of 106, classical methods such as forward-backward

variable selection are computationally expensive and are liable to

find sub-optimal modes [3]. Bayesian stochastic search methods

have been used to tackle variable selection problems, typically

using the ‘‘slab and spike’’ prior formulation [4]. Inference can be

made from these models using Markov chain Monte Carlo

(MCMC) [5,6] and this methodology has been extended to the

case of more variables than observations [7,8]. Similar methods

have been proposed for the analysis of SNP data [9,10], which

again utilised MCMC. However, despite design of the MCMC

algorithms to minimise computational time, these methods are too

slow to deal with the size of problem presented by modern SNP

chips. Furthermore, these methods have dealt with the computa-

tionally easier problem of a continuous outcome.

We assign continuous prior distributions with a sharp mode at

zero, often referred to as ‘‘shrinkag’’ priors, to the regression

coefficients. Our approach is Bayesian-inspired rather than fully

Bayesian, since we seek only the posterior mode(s) rather than the full

posterior distribution of the regression coefficients. If the signal of

association at a SNP is weak or non-existent, the posterior mode for

the corresponding covariate will remain at zero. By using continuous

shrinkage priors the resulting posterior density is continuous and can

thus be maximised using standard algorithms. Our stochastic search

maximisation algorithm seeks the (small) subset of SNPs for which the

posterior mode is non-zero, corresponding to a signal of association

that is strong enough to overcome the prior preference for zero effect.

The algorithm can be set to include only additive effects, or it can also

consider dominant and recessive terms: only one of these terms is

permitted to be non-zero.

PLoS Genetics | www.plosgenetics.org 1 July 2008 | Volume 4 | Issue 7 | e1000130



We consider two shrinkage prior distributions, the Laplace, or

double exponential distribution (DE) and a generalisation of it, the

normal exponential gamma distribution (NEG), which has a

sharper peak at zero and heavier tails, Figure 1. The sharp peak of

the NEG at zero favours sparse solutions which is preferable for

variable selection when we believe that there are few true causal

variables. Further, the heavy tails result in variables being

minimally shrunk once included in the model. The NEG is

characterised by a shape and a scale parameter. The smaller the

shape parameter the heavier the tails of the distribution and the

more peaked at zero. Conversely as the shape parameter increases

the NEG approaches the DE. For both prior distributions we

obtain an explicit expression for the approximate type-I error of

our method, so that it can be calibrated without recourse to

permutation techniques.

With both the NEG and DE prior for n,k, the posterior density

can be multi-modal [11] and the mode identified by each run of

our algorithm depends on the initial values of the parameters and

the order in which they are updated. We implement multiple runs

of the algorithm, always starting with all regression coefficients

equal to zero but permuting the order in which they are updated,

and report the highest of the modes identified. Our checks using

more extensive searches in test datasets indicate that typically the

largest mode identified in our search corresponds to a model that

is very similar to the global optimum model, differing for example

in which of two highly-correlated SNPs is included. We

demonstrate this in our analysis of a real GWA study and show

how the multiple modes found can be utilised to infer a group of

SNPs that identify the same signal.

As a consequence of modelling all SNPs simultaneously, a SNP

will only be included in the model if it significantly improves

prediction of case-control status beyond that obtained from the

SNPs already included. Thus a SNP with strong marginal effect can

be overlooked by our analysis if other SNPs better explain most of its

effect. We typically find that our analysis returns only the best SNP

characterising the effect of a single detectable causal variant, and

when multiple SNPs in close proximity are selected this is an

indication of multiple distinct causal variants. Thus, the number of

SNPs in the best fitting model gives an estimate of the number of

causal variants. This feature of the method also makes it suitable for

fine mapping using dense SNP sets, such as those that can arise from

imputation methods or re-sequencing, in contrast with single-SNP

analyses in which many tightly-linked SNPs may show signs of

association, leaving open the problem of locus refinement.

Haplotype and interaction effects could be readily implemented

using our approach, but these would substantially increase the size

of the model space to be explored for genome-wide datasets and

we have not pursued these possibilities here. Our software deals

with quantitative phenotypes, but here we focus on main effect

terms for case-control phenotypes with up to half a million SNPs,

and demonstrate that our method improves on single-SNP

analyses in terms of false-positive rate, power and interpretability.

Results

Main Simulation Study
Our main simulation study used the FREGENE software [12]

to simulate 20 Mb of sequence data in a population of 10 K

individuals with mutation, cross-over and gene-conversion rates

similar to those in humans [13]. From this population we sampled

500 case-control data sets each with six causal variants and 1,000

cases and 1,000 controls. For each simulation we added a further

nineteen 20 Mb chromosomes devoid of causal variants. Thus, in

effect we analysed 400 Mb genomes consisting of twenty equal-

length chromosomes, with all the causal variants concentrated on

one chromosome. Marker SNPs were sampled to give an

approximately uniform minor allele frequency (MAF) distribution

with SNPs spaced on average every 5 Kb, giving 80 K SNPs per

data set. The selection ignored causal status, so that the marker

SNPs usually included few if any of the causal SNPs.

The above data sets were analysed using (i) our algorithm with

an NEG shrinkage prior, (ii) our algorithm with a DE shrinkage

Figure 1. Logarithms of NEG and DE densities. Fixed to have the
same density at the origin.
doi:10.1371/journal.pgen.1000130.g001

Author Summary

Tests of association with disease status are normally
conducted one SNP at a time, ignoring the effects of all
other genotyped SNPs. We developed a computationally
efficient method to simultaneously analyse all SNPs, either
in a genome-wide association (GWA) study, or a fine-
mapping study based on re-sequencing and/or imputa-
tion. The method selects a subset of SNPs that best
predicts disease status, while controlling the type-I error of
the selected SNPs. This brings many advantages over
standard single-SNP approaches, because the signal from a
particular SNP can be more clearly assessed when other
SNPs associated with disease status are already included in
the model. Thus, in comparison with single-SNP analyses,
power is increased and the false positive rate is reduced
because of reduced residual variation. Localisation is also
greatly improved. We demonstrate these advantages over
the widely used single-SNP Armitage Trend Test using
GWA simulation studies, a real GWA dataset, and a
sequence-based fine-mapping simulation study.

Simultaneous Analysis of GWAs
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prior, and (iii) the Armitage trend test (ATT). When using the

NEG and DE we standardised the genotype data to have mean

zero and variance one. The ATT is the natural univariate

comparison for our multivariate method being a score test for a

regression coefficient in a logistic regression model [14] and we

show in Text S1 that our search procedure, when applied

univariately to standardised data, is asymptotically equivalent to

the ATT. Detailed analyses on a subset of the data identified 0.05

as the most suitable value of the NEG shape parameter l for the

selection of truly causal variants; smaller values gave rise to

computational problems. With l = 0.05 the heavy tails of the prior

density (Figure 1), reflect little prior knowledge of effect sizes.

However, standardising the genotypes has the effect of incorpo-

rating a prior belief that effect sizes may be larger at alleles with

smaller MAF [15]. The per-SNP type-I error rate was set at

a = 1025 for all three analyses; see Methods for setting the DE and

NEG parameters to achieve this. The results for the NEG and DE

were based on the highest posterior mode found from 100

permutations of the search order using the optimisation algorithm

described in the Methods.

The definition of true and false positives can be problematic

when, as here, the causal variant is typically not included among

the SNPs analysed. In practice, when a significant result is

obtained all SNPs in strong linkage disequilibrium (LD) with it are

considered as potential sources of the positive signal. For unlinked

SNPs with uniform MAF distribution and typed in 2 K

individuals, the upper 99.9% percentile of the null distribution

of r2 is about 0.005, and so most SNPs having r2.0.005 with a

causal variant are in some sense true associations. However, due to

the variable pattern of LD in the human genome, SNPs showing

0.005,r2,0.05 with a causal variant can sometimes be hundreds

of Kb distant from it, and are likely to be difficult to replicate.

Therefore we chose to classify a positive signal as ‘‘true’’ if it has

r2.0.05 with any causal SNP. Furthermore, a cluster of tightly

linked false positives might be considered as essentially just one

false positive, and in Table 1 false positives were only counted if

they were further than a specified distance (between 0 Kb and

100 K) away from any other false positive that had already been

recorded.

A feature of both the NEG and DE results is the reduction in

the number of false positives relative to the ATT, despite the fact

that the type-I error rate was set to be the same for all analyses

(Table 1). This reflects one of the principal effects of analysing

SNPs simultaneously: the signal at a SNP that shows spurious

association when analysed singly is often weakened by inclusion in

the model of true positives, which may or may not be tightly linked

with it.

If several SNPs are mutually in high LD, typically at most one of

them will be included in the model. Thus the NEG analysis picked

2,097 SNPs over the 500 data sets, many fewer than the 6,810

SNPs selected using the ATT (Table 1). If a causal SNP is detected

by the NEG method then typically (87% of the time) it will be

tagged by just one selected SNP (Figure 2). In contrast ATT often

picks multiple SNPs for each causal variant and picks one SNP just

31% of the time. The higher number of false positives for ATT

can be attributed in part to the way the ATT picks many more

SNPs per causal variant than the NEG or DE; some of these are

remote from, and in low LD with, the nearest causal variant, and

fail to reach our threshold of r2.0.05 for useful tagging. However,

the fact that ATT selects many more SNPs than DE or NEG can

spuriously inflate its true power, because some of these additional

significant SNPs will by chance be in LD with one or more causal

variants. In the case of several causal variants, the ATT may

produce what appears to be a single signal.

Of the 3,000 causal SNPs in the simulations, 1,402 are detected

by both the NEG and ATT analyses, 54 are only detected by NEG

and 32 are only detected by ATT. Although this difference in

empirical power is small (0.7%), a p-value for the null hypothesis

that the NEG and ATT are equally powerful is 0.011 (binomial

probability of #32 successes, given 86 trials and success

probability 0.5). Moreover, the NEG empirical power equals or

exceeds that of ATT for all six combinations of MAF and allelic

risk ratio (Table 2). Thus we have evidence of improved power of

NEG over ATT, in addition to its lower false positive rate.

Table 1. Main simulation study: the results shown are
summed over the 500 datasets each with 6 causal variants; a
causal variant is ‘‘tagged’’ if $1 selected SNP has r2.0.05 with
it.

Method
SNPs
selected

Causal SNPs
tagged

False positives minimum
separation (Kb)

0 20 40 100

NEG 2097 1576 368 368 368 366

DE 2622 1501 297 277 276 271

ATT 6810 1554 696 536 486 441

doi:10.1371/journal.pgen.1000130.t001

Figure 2. Main simulation study. Histograms of the number of
selected SNPs tagging (at r2.0.05) each causal SNP for (A) NEG and (B)
ATT analyses.
doi:10.1371/journal.pgen.1000130.g002

Simultaneous Analysis of GWAs
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DE shows fewer false positives than NEG, but it tags fewer

causal SNPs even though it selects 2,622 SNPs, many more than

NEG (Table 1). The lighter tails of the DE distribution in

comparison with the NEG result in informative variables being

shrunk closer to zero. This can result in other correlated SNPs

being brought into the model to explain the full effect of the over-

shrunk SNP coefficients.

Our preliminary analyses varying l showed that as l increased

the false positive rate decreased but the power also decreased and

in doing so approached the results obtained with the DE prior.

With l = 10 the results were very similar to the DE results.

Null Simulation
To validate our type-I error rate approximation, and to assess

the effect on type-I error of allowing for dominant and recessive

effects, we permuted the case-control status in one of the 80 K

data sets to generate 1,000 data sets representing samples from the

null of no genetic effects. The resulting per-SNP type-I error rates

of the NEG, DE and ATT methods are shown in Table 3. False

positives were only counted if they were further than 20 Kb away

from any other false positive that had already been recorded,

however the results were the same when the minimum separation

was 100 Kb. The type-I error rate was highest for ATT although

the differences are not significant. All three analyses result in

noticeably fewer false positives than the nominal rate of a = 1025.

Because of LD between SNPs it is not easy to decide if this

difference is significant, but it suggests that our type-I error

approximation is as conservative as that of the ATT, which is

based on the x2
1 approximation.

When dominant and recessive effects are considered in addition

to additive terms, the false positive rate approximately doubles.

Thus parameter settings that control the type-I error at 2.5% for

additive effects will approximately control the type-I error at 5%

when dominant and recessive effects are also included. Recall that

our simulations generated an approximately uniform MAF

distribution of the marker SNPs, and this result may vary with

different MAF distributions.

Whole Genome Simulation Study
We also generated a data set corresponding to a genome-wide

association study consisting of 480 K SNPs, derived from 120

independent 20 Mb chromosomes using the same SNP ascertain-

ment strategy as used in the previous simulation. We chose one

20 Mb chromosome to have ten causal variants each with MAF of

15% and allelic risk ratio of 2. This disease model is unrealistic but

was chosen to permit detection of the majority of the causal

variants and thus make general comments on the relative merits of

the NEG and ATT in one simulation.

We analysed this data set as before using the NEG and ATT but

with a significance threshold of a = 561027 [16]. As before, we

chose the highest posterior mode from 100 permutations of the

search order.

Figure 3(A) shows the locations along the 20 Mb chromosome

of the ten causal variants, as well as all the SNPs selected by the

NEG and ATT analyses. Both methods have detected all ten

causal variants, however the NEG analysis selected just 14 SNPs,

whereas the ATT identified 35 significant SNPs. We see in

Figure 3B that the NEG analysis has improved localisation, it

ignores SNPs remote from causal variants that were significant

under the ATT, in particular at 8.3 Mb, and has selected SNPs as

close to the causal variant as the ATT has. In Figure 3C the

improvement in localisation is less clear, the ATT has selected

SNPs closer to causal variant, but at the expense of selecting many

more SNPs. In particular the ATT has selected SNPs at 11.5 Mb,

about 400 Kb from the causal variant.

Re-Sequencing Simulation Study
Fine mapping of causal variants currently uses very high density

markers, obtained either directly from resequencing or from

imputation following limited resequencing or from high-density

SNPs in public databases [17,16,18]. To illustrate the utility of our

method for the analysis of imputed and/or sequence data we took

the simulated 20 Mb sequences of 10 K individuals used in the

previous analyses, which had 192 K polymorphic sites, and sampled

10 case-control datasets using the same sample sizes and disease

model as used in the main simulation. All polymorphic sites were

included in our analyses. The data sets were analysed with the NEG

and ATT with a per-SNP false positive rate of a = 1025.

The ATT and NEG analyses showed similar power over the ten

sequence-level datasets. Both methods detected 54 of the 60 causal

variants with r2.0.3, five causal SNPs were missed entirely by

both methods and one causal SNP was tagged by both methods at

r2<0.01. However, NEG showed markedly better localisation than

ATT. Figure 4 shows the distribution of the highest r2 value for

each selected SNP with a causal variant using the two methods.

The NEG selected just 64 SNPs in comparison with 599 selected

by the ATT, and a greater proportion of the selected SNPs were in

high LD with a causal variant. Of the 60 causal variants, only nine

were tagged twice by NEG, in contrast, it is evident from Figure 4

that the ATT often multiply tags causal SNPs. In no simulation

did a SNP selected by NEG tag two causal SNPs.

The NEG analysis identified two false positive SNPs at the less

stringent r2 = 0.01 threshold for tagging a causal SNP. The ATT

analysis generated 14 false positives at this threshold; 11 of these

SNPs spanned a 230 Kb region including one of the NEG false

positives, while two spanned a 103 Kb region including the other

Table 2. Main simulation study: numbers of causal SNPs
tagged, out of the 500 for each MAF and risk ratio.

Method MAF and allelic risk ratio

15% 5% 2%

1.4 1.5 1.8 2.2 2.5 3.0

NEG 252 360 209 370 146 239

DE 233 347 194 366 135 227

ATT 244 353 209 370 143 235

doi:10.1371/journal.pgen.1000130.t002

Table 3. Null simulation: empirical per-SNP type-I error rates
from 1,000 permutations of case-control labels of 2 K
individuals genotyped at 80 K SNPs.

Method Error rate (per million SNPs)

Additive only
Additive, dominant
and recessive terms

NEG 6.44 12.8

DE 6.39 12.7

ATT 6.48 -

In each case the nominal per-SNP type-I error rate for the additive-only model
was 1025 ( = 10 per million SNPs).
doi:10.1371/journal.pgen.1000130.t003

Simultaneous Analysis of GWAs
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NEG false positive. The 14th ATT false positive had r2 = 0.009

with a causal variant.

Analysis of Type 2 Diabetes GWA Data Set
From a genome-wide scan on 694 type 2 diabetes cases and 654

controls [19], we reanalyse here genotype data from the Human

Hap300 BeadArray, but not the Human Hap100 BeadArray. After

removing SNPs with Hardy-Weinberg equilibrium p-value ,1023

or with call rate ,0.95, there were 300,535 SNPs analysed.

In the original analysis [19], SNPs were tested for additive,

dominant and recessive effects and 42 were significant (permuta-

tion p-value ,561025), tagging 32 distinct loci (defined here to

denote a 1 Mb flanking region). These SNPs, together with 15

SNPs identified using the Human Hap100 BeadArray, were

carried forward to a replication analysis using 2,617 cases and

2,894 controls [19] that confirmed eight SNPs tagging five loci.

Our NEG reanalysis used l = 0.05, while c was set such that

a = 2.561025 if additive effects only were considered, thus

approximately controlling the type-I error rate at 561025 for

our actual analysis which also considered dominant and recessive

terms. The resulting best-fitting model included 26 SNPs, tagging

25 distinct loci including the five previously-replicated loci

(Table 4). Four of our SNPs matched those previously reported

while the fifth locus had been tagged by Human Hap100

Figure 3. GWA simulation. (A) locations of the ten causal variants (vertical blue line) on the 20 Mb chromosome; also shown are the SNPs selected
by NEG (red dots), and the SNPs with ATT p-value 561027 (black dots) plotted against 2log10 (p-value). (B) and (C) show zooms of two sub-intervals
of (A).
doi:10.1371/journal.pgen.1000130.g003

Simultaneous Analysis of GWAs
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BeadArray SNPs not included in our reanalysis, but instead we

identified rs729287 only 20 Kb distant.

We also looked at the seven other best-fitting modes with

posterior density within a factor of 10 of the maximum. These

modes included 29 unique SNPs. The three extra SNPs in this

combined list not included in the best fitting mode were all within

50 Kb of SNPs included in the best fitting mode. In modes which

included one of these extra SNPs, the SNP close by was not

included. Thus, examining sup-optimal modes can identify

alternate SNPs tagging the same causal variants, which can be

useful to include in follow-up genotyping when some redundancy

is beneficial, or to consider alternative possibilities for the SNP in

strongest LD with the causal variant. The SNPs tagging the five

previously replicated loci were included in all seven modes

suggesting that these are the best tagging SNPs for the causal loci.

These results are consistent with the conclusions from our

simulation study: we captured the same significant loci as the

single-SNP analysis but at the cost of many fewer false positives. In

addition, our NEG analysis has picked one SNP from each of the

replicated loci, suggesting that there is just one distinct causal

variant in each locus tagged by the genotyped SNPs.

Discussion

Our NEG shrinkage-based algorithm provides a computation-

ally-efficient tool for the simultaneous analysis of either genome-

wide SNPs or resequencing or hyper-dense SNPs from large

regions. The NEG analysis improves on the single-SNP ATT

analysis, most notably in terms of false positives, and also in terms

of power. It is also superior to the DE analysis in terms of of

power, at the expense of a higher false positive rate. The NEG

method typically selects one SNP for each causal variant and thus

gives a measure of the number of underlying causal SNPs

genotyped in the data set under study, as well as improving

localisation in comparison with the ATT.

The advantages of the NEG analysis are even greater for

sequence or very-high density genotype data, such as can be

obtained via imputation: it identifies a much smaller subset of

SNPs without a reduction of power, and tags the causal variants

with higher r2 on average. This reflects the natural advantage of a

regression-based approach when causal variants are included in

the analysis rather than merely tagged by markers.

Significant SNPs from a GWA are usually genotyped in another

sample. With cheaper genotyping experimenters may be able to

afford to replicate more SNPs than the minimal set suggested by the

NEG or DE methods. Candidates for redundant/alternative SNPs

can be obtained by considering local modes found by our algorithm.

A full Bayesian analysis such as that suggested in [20] would also be

possible if limited to a subset of SNPs, and would explore the

posterior distribution more completely for that SNP-set.

Since we take a regression approach it would be straightforward

to include other individual level covariates such as age and sex, as

well as covariates to control for population stratification such as

eigenvectors from a principal component analysis [21]. Our

software can analyse quantitative traits and could be extended to

search for haplotype or interaction effects. In the latter case the

size of the model space would need to be reduced, perhaps by a

strategy of seeking interactions of all SNPs with those SNPs

showing marginally significant association. There is growing

interest in predicting phenotypes from genotypes in both human

genetics [22] and livestock genetics, in which there is interest in

predicting breeding values [9]. Since our method is regression

based and considers all SNPs simultaneously and will thus account

for the LD between SNPs [23], it can also address this application;

a weaker significance threshold is often considered appropriate for

prediction rather than SNP selection.

Software can be downloaded from http://www.ebi.ac.uk/

projects/BARGEN/.

Methods

Shrinkage Priors
For each regression coefficient we assign independent shrinkage

priors with a density that is sharply peaked at zero. The DE is a

one-parameter distribution that is widely used as a shrinkage prior

Figure 4. Re-sequencing simulation. Histograms of the maximum
r2 for each selected SNP with a causal variant for (A) NEG and (B) ATT
analyses.
doi:10.1371/journal.pgen.1000130.g004

Table 4. SNPs included in the best-fitting model for
association with type 2 diabetes from the NEG analysis of
Human Hap300 BeadArray genotype data that were validated
in a second stage analysis [19].

SNP Chromosome Position Closest gene Model

rs13266634 8 118,253,964 SLC30A8 Dominant

rs7923837 10 94,471,897 HHEX Additive

rs7903146 10 114,748,339 TCFL2 Additive

rs7480010 11 42,203,294 LOC387761 Dominant

rs729287 11 44,236,666 EXT2 Dominant

doi:10.1371/journal.pgen.1000130.t004

Simultaneous Analysis of GWAs

PLoS Genetics | www.plosgenetics.org 6 July 2008 | Volume 4 | Issue 7 | e1000130



[1]. It can be represented as a scale mixture of a normal

distribution:

DE b jjð Þ~ð?
0

N b 0,s2
��� �

Ga s2 1,j2
�

2
��� �

ds2~
j

2
exp {j bj jf g,

ð1Þ

where N(a,b) is the normal density with mean a and variance b and

Ga (c,d) is the gamma density with shape parameter a and scale

parameter b.

The normal exponential gamma distribution [2] is a general-

isation of the DE that has the following scale mixture

representation:

NEG b l,cjð Þ~
ð?

0

ð?
0

N b 0,s2
��� �

Ga s2 1,yj
� �

Ga y l,c2
��� �

ds2dy

~k exp
b2

4c2

 !
D{2l{1

bj j
c

� �
,

ð2Þ

where l and c can be interpreted as shape and scale parameters

respectively, k is the integrating constant and D is the parabolic

cylinder function [24]. We can see from (1) and (2) that the NEG

can be generated by sampling from a DE distribution with

parameter drawn from a gamma distribution. There is a fast

algorithm for computing D and its derivatives [25], and Fortran

code is available from http://jin.ece.uiuc.edu/routines/routines.

html.

As l and c both increase such that j~
ffiffiffiffiffi
2l
p .

c remains constant,

the NEG converges to the DE distribution with parameter j.

Figure 1 shows the log densities of the DE and three NEG

distributions, all with the same density at zero. From the plot we

see that as l decreases the NEG density is steeper near zero and

flatter elsewhere, thus shrinking non-zero coefficients less than the

DE. For further details of the NEG see Text S1.

The Optimisation Algorithm
We seek to maximise the posterior density p (b | x,y) over

b = (b1,…, bk), where x = (x11,…,xnk) is the normalised genotype

data and y = (y1,…,yn) denotes the case-control status coded as 1

for cases and 21 for controls. Taking logarithms in Bayes

Theorem we can write

log p b x,yjð Þ~L bð Þ{f bð Þzconst, ð3Þ

where L denotes the log-likelihood for the logistic regression model

and f is minus the log-prior density. The negative sign is

introduced to allow f to be interpreted as a penalty function,

and so our estimation procedure can be thought of as maximising

a penalised log-likelihood. With the DE prior, the maximisation of

(3) is equivalent to the Lasso procedure [26]. The EM algorithm

has been used for the analogous optimisation problem for linear

regression [2] but we found it to converge slowly for binary

regression. Instead we use the CLG algorithm [27] which

optimises each variable in turn, making multiple passes over the

variables until a convergence criterion is met. This algorithm has

been implemented for the logistic regression model [1], but not

previously with the NEG prior.

There is no closed form solution for the univariate optimisation

problem in logistic regression, but Newton’s method can be

applied using the formula

bnew
j ~bj{

L0 bð Þ{f 0 bj

� �
L00 bð Þ{f 00 bj

� � , ð4Þ

where each 9 denotes a derivative with respect to bj, and

f 0 bð Þ~
D{ 2lz2ð Þ

bj j
c

� 	
D{ 2lz1ð Þ

bj j
c

� 	
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where gi~yi b0z
Pk

j~1 bjxij

� 	
. See Text S1 for justifications.

We avoid taking large steps by replacing the L0 with an upper

bound [1]. We also disallow any update proposed according to (4)

that would change the sign of b: instead, bnew
j is set to zero. When

bj = 0 the algorithm attempts an update in both directions, taking

limits as bj approaches zero from above and below, and accepting the

move if bnew
j is, respectively, positive or negative. Since the

denominator in (4) is always negative at bj = 0, and f is symmetric

about zero so that f 9(0+) = 2f 9(02), where 0+ and 02 denote the limits

from above and below, it follows that a move of bj away from the

origin occurs whenever

L0 bj~0
� ��� ��wf 0 bj~0z

� �
: ð6Þ

The calculation of L9 involves a sum over all individuals and is

computationally expensive. Moreover, recall that the 9 denotes

derivative with respect to bj and so L9 is required for each j. However,

computationally-fast upper and lower bounds for L9 can be derived

(see Text S1), which in conjunction with (6), determine whether a

move from bj = 0 is possible. Checking this bound avoids the necessity

to compute L9 for all but a small proportion of values of j.

Assigning Prior Parameters to Control Type-I Error
From (6) we can derive an explicit approximation for the type-I

error rate of our procedure. We reject the null if the posterior mode

is not at b = 0. By standardising the genotype data to have mean

zero and variance one, the type-I error probability is the same for

each SNP, regardless of MAF. By writing |L9(b)| in terms of b̂b, the

maximum likelihood estimate of b, and assuming asymptotic

normality of b̂b, the per-SNP type-I error rate will be a if

f 0 b~0zð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0n1

n0zn1

r
W{1 1{a=2ð Þ, ð7Þ
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where n0 and n1 are the numbers of cases and controls and W21 is

the inverse normal distribution function; see Text S1 for the

derivation. To maintain the same type-I error the prior must be

chosen such that the penalty f 9 increases as the sample size

increases. It can be shown that this criterion for controlling the type-

I error, when applied multivariately to equal numbers of cases and

controls, gives rise to a smaller type-I error rate once one or more b’s

are non-zero; see Text S1.

For the DE prior f 9(b) = j for all b.0, thus to control the type-I

error at a we assign j to equal the right hand side of (7). For the

NEG prior, the value of f 9 (b) is given in (5). The NEG has two

parameters, whereas (7) imposes only one constraint. We

considered a range of values for the shape parameter l from

0.01 to 10 and then assign c by substituting (7) into (5) and

rearranging.

Both the NEG and DE behave similarly when they have been

set to have the same type-I error, when their derivative at the

origin is the same, and when b = 0. Solutions diverge however

once SNPs are included in the model, since included SNPs are

penalised less by the NEG than by the DE. This results in larger

parameter estimates using the NEG, and affects how likely a

variable is to be pushed out of the model once it has been

included.

Including Dominant and Recessive Effects
So far, the genotype variable xij is the allele count, standardised

to have mean zero and variance one. This corresponds to a model

that is additive on the logistic scale. To implement a search for

dominant or recessive effects, we simply recode this variable

accordingly. For example, to seek a recessive effect, we assign

xij = 2u if individual i is heterozygote or major-allele homozygote

at SNPj, and xij = v otherwise, where u and v are chosen to

standardise xij. When dominant and recessive effects were included

in the model they were considered in the following order: (1)

additive, (2) dominant, (3) recessive; terms (2) and (3) are only

considered if no preceding term is already included in the model at

that SNP.

Simulation Study
The allelic risk ratios were multiplicative within and across loci

and the disease prevalence was 12%; the multiplicative disease

model is similar to, but not the same as, the logistic regression

model on which our analyses are based. Two causal SNPs were

chosen with each of the following approximate MAF values: 2%,

5%, and 15%. The two allelic risk ratios for each MAF were

chosen so that the power to detect an association was around 25%

and 75% using the ATT at a significance threshold of 1025, see

Table 2 for the effect sizes. With this disease model, the

background disease risk is typically <6% for individuals carrying

no causal alleles, and this risk can be attributed either to polygenic

or environmental effects. Thus, although we explicitly simulate six

causal alleles, this does not exclude multiple weaker causal alleles

that are unlikely to be detected.

Marker SNPs were sampled randomly from disjoint 5 Kb

regions on each chromosome with probability proportional to

MAF(1–MAF), resulting in an approximately uniform MAF

distribution.

Supporting Information

Text S1 Simultaneous Analysis of all SNPs in a Genome-Wide

Association Study.

Found at: doi:10.1371/journal.pgen.1000130.s001 (0.07 MB PDF)
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