
Frontiers in Psychology | www.frontiersin.org 1 November 2020 | Volume 11 | Article 585437

TECHNOLOGY AND CODE
published: 02 November 2020

doi: 10.3389/fpsyg.2020.585437

Edited by:
Adele Diederich,

Jacobs University Bremen, Germany

Reviewed by:
Per Møller,

University of Copenhagen, Denmark
Tandra Ghose,

University of Kaiserslautern, Germany

*Correspondence:
Thomas Hartmann

thomas.hartmann@th-ht.de

Specialty section:
This article was submitted to

Cognitive Science,
a section of the journal
Frontiers in Psychology

Received: 20 July 2020
Accepted: 23 September 2020
Published: 02 November 2020

Citation:
Hartmann T and Weisz N (2020) An

Introduction to the Objective
Psychophysics Toolbox.

Front. Psychol. 11:585437.
doi: 10.3389/fpsyg.2020.585437

An Introduction to the Objective
Psychophysics Toolbox
Thomas Hartmann * and Nathan Weisz

Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron Universität Salzburg, Salzburg, Austria

The Psychophysics Toolbox (PTB) is one of the most popular toolboxes for the development
of experimental paradigms. It is a very powerful library, providing low-level, platform
independent access to the devices used in an experiment such as the graphics and the
sound card. While this low-level design results in a high degree of flexibility and power,
writing paradigms that interface the PTB directly might lead to code that is hard to read,
maintain, reuse, and debug. Running an experiment in different facilities or organizations
further requires it to work with various setups that differ in the availability of specialized
hardware for response collection, triggering, and presentation of auditory stimuli. The
Objective Psychophysics Toolbox (o_ptb) provides an intuitive, unified, and clear interface,
built on top of the PTB that enables researchers to write readable, clean, and concise
code. In addition to presenting the architecture of the o_ptb, the results of a timing
accuracy test are presented. Exactly the same MATLAB code was run on two different
systems, one of those using the VPixx system. Both systems showed
sub-millisecond accuracy.

Keywords: open source software, MATLAB, psychophysics, EEG, MEG, fMRI, reaction time, stimulus presentation

INTRODUCTION

Writing the source code for an experimental paradigm is one of the most crucial and critical
steps of a study. Open-Source software applications and libraries like PsychoPy (Peirce, 2007,
2009; Peirce et al., 2019) and the Psychophysics Toolbox (PTB; Brainard, 1997; Pelli, 1997;
Kleiner et al., 2007) have enabled researchers to develop experiments using Python or MATLAB
(The MathWorks Inc.), both popular programming languages within the scientific community.
Both PsychoPy and the Psychophysics Toolbox essentially provide an interface to the underlying
hardware, like the graphics card, the sound card, input devices (keyboards, mice, and button
boxes), and devices capable of sending triggers. The libraries are also designed to ensure
minimal latencies and – even more important – minimal jitter, which is a crucial requirement
for recording high-quality data.

The Psychophysics Toolbox in particular has been used by generations of researchers, acting
as a thin interface between MATLAB and various low-level libraries. Visual stimuli are drawn
via OpenGL (Woo et al., 1999), which is also used to control and return the time the stimuli
appear on screen. Auditory stimuli are controlled via PortAudio (Bencina and Burk, 2001) by
directly interacting with audio-buffers. Responses are acquired via low-level access through
Java. Besides standard PC hardware, the Psychophysics Toolbox supports a wide variety of

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2020.585437&domain=pdf&date_stamp=2020-11-02
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2020.585437
https://creativecommons.org/licenses/by/4.0/
mailto:thomas.hartmann@th-ht.de
https://doi.org/10.3389/fpsyg.2020.585437
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.585437/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.585437/full

Hartmann and Weisz The Objective Psychophysics Toolbox

Frontiers in Psychology | www.frontiersin.org 2 November 2020 | Volume 11 | Article 585437

specialized hardware like various eye-trackers as well as response
and triggering devices – each via a unique interface. This
low-level approach makes the Psychophysics Toolbox extremely
versatile and flexible.

However, this low-level approach makes it harder to create
source code that is easy to write, maintain, and understand.
The high level of knowledge required when interacting with the
hardware on this level increases the likelihood of errors in the
code, while at the same time decreasing the likelihood of errors
being identified. It also increases the amount of code that is
necessary to accomplish a task. These aspects also make it quite
difficult to learn how to use the software efficiently and correctly.

The “Objective Psychophysics Toolbox” (o_ptb, available at
https://gitlab.com/thht/o_ptb) is an open-source library for
MATLAB that attempts to overcome the aforementioned issues
by providing an abstraction layer on top of the Psychophysics
Toolbox as well as other libraries for specialized hardware. It
was designed to provide a generic, enhanced, and intuitive
interface to the underlying hardware while maintaining the
versatility of the Psychophysics Toolbox. In this article, we will
discuss common challenges and best practices for the development
of an experiment and how these influenced the design of the
o_ptb. In order to illustrate the benefits of the o_ptb, we wrote
source-code for a simple task, including visual and auditory
stimulus presentation, triggering and response collection that
runs with and without the VPixx system. The first version
uses the o_ptb while the second version does not (see
Supplementary Materials 1, 2). Throughout this article, sections
of these two files will be used to illustrate individual aspects
of the design and implementation of the o_ptb. To complement
the description of the toolbox, the timing properties (accuracy
and jitter) will be presented for two common hardware setups.

SOFTWARE DESIGN GOALS OF THE
o_ptb

During the planning stage of the o_ptb, we committed to the
following software design choices:

Write Code for Humans, not Computers
The major design goal of the o_ptb is that its “target audience”
is human beings, irrespective of previous software development
training or experience, and not computers. This is a fundamental
and important distinction. Code that is optimized for the
interpretation and execution by a computer describes how
something is done (e.g., load two values into CPU registers,
call multiplication method, transfer result back to RAM). Code
that is optimized for human brains, on the other hand, describes
what is done (multiply two numbers). In other words, the
human perspective is a high-level one, while the computer
perspective is a low-level one. The PTB, as already discussed,
uses a low-level approach, making it very powerful and versatile
but at the same time requiring the user to take on the “how”
rather than the “what” perspective.

The o_ptb, on the other hand, was designed as a high-level
toolbox, allowing the user to specify what needs to be done

and leaving the how it is done to the toolbox. Figure 1 illustrates
this difference using common tasks from an experimental
paradigm: the right hand side of each panel lists the necessary
low level steps to accomplish the respective task. The purpose
of the o_ptb is to enable the user to specify only the more
descriptive and in total fewer steps on the left hand side of
each panel. The “job” of the o_ptb is to translate these high
level commands to the low level commands of the PTB.

A toolbox designed for humans must also take into account
that errors in source code are common (Boehm and Basili,
2005). Many of those do not show up as an error message
and stop the execution of the script. In the context of a
neuroscientific/psychological experiment, examples include
mistakes in formulas processing a stimulus, errors in response
collection/processing or problems converting data coming from
or going to the underlying hardware. These errors are dangerous
as they might lead to severe problems, for example, concerning
the temporal accuracy, the randomization of stimuli and trials
or properties of stimuli, like their size, position, color, or
volume. A well designed high level interface reduces complexity
of the source code and provides well-tested code that can
be reused. These factors also increase the readability of the
source code. All three of these factors have been shown to
reduce the number of coding errors (Lim, 1994; Aggarwal
et al., 2002; Boehm and Basili, 2005; Buse and Weimer, 2010;
Börstler et al., 2016). Additionally, a high level interface, like
the o_ptb, can set sensible defaults that can be optimized to
the current hardware configuration and run automatic consistency
checks on parameters provided by the user.

Write Once, Run on Every Hardware
It is a common scenario that computers used for stimulation
are equipped with specialized hardware. This includes eye-trackers,
triggering devices, response boxes, sound equipment, tactile
stimulators, etc. These devices are not available on the computer
that is commonly used to develop the experiment. Another
scenario is that the same experiment should be conducted in
different laboratories with different equipment. As stated before,
the Psychophysics Toolbox supports a wide variety of general
purpose as well as specialized devices. But the commands to
control these different devices are specific to the hardware
attached. If, for instance, one lab is equipped with the VPixx
system (VPixx Technologies Inc., Saint-Bruno, Canada), sound
and triggers must be controlled via the “Datapixx” library. It
is also necessary to perform additional initialization steps at
the beginning of the experiment. Another lab might be equipped
with a high-end soundcard for auditory stimulation and a
Labjack device (Labjack Corporation, Lakewood, United States)
for triggering. In this case, sound needs to be controlled via
PortAudio (Bencina and Burk, 2001) while triggers are controlled
via the library specific to the device. The experiment is most
probably developed and tested on an ordinary desktop computer
or laptop without any specialized equipment.

If only the PTB is used, the user would face the following
two challenges: (1) the experiment would need to determine
what devices are connected to the computer and execute the
code specific to the hardware found and (2) in-depth knowledge

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://gitlab.com/thht/o_ptb

Hartmann and Weisz The Objective Psychophysics Toolbox

Frontiers in Psychology | www.frontiersin.org 3 November 2020 | Volume 11 | Article 585437

about how the devices work and differ, sometimes on a low
level, is needed to ensure a reliable and correct experiment.

A high level toolbox should enable the user to write source
code that is as agnostic as possible to the underlying hardware.
This not only increases the flexibility of the source code, but
also reduces the amount of code and its complexity, which
leads to higher quality, less error prone code (Lim, 1994;
Aggarwal et al., 2002; Boehm and Basili, 2005; Buse and
Weimer, 2010; Börstler et al., 2016).

Maintain the Flexibility of the Psychophysics
Toolbox Whenever Possible
One of the many strengths of the Psychophysics Toolbox is
its high flexibility. The user can freely interact with the underlying
system without any constraints imposed by the toolbox. A
high level toolbox like the o_ptb naturally trades some of this
flexibility in order to decrease complexity and increase readability.
However, the tradeoff between flexibility and ease-of-use must
be balanced carefully. If too many constraints are imposed by
the toolbox, it might be unusable for certain tasks. If the
complexity remains too high, the toolbox would be of very
limited benefit.

We thus chose to maintain the flexibility of the Psychophysics
Toolbox whenever possible by imposing only constraints that
are necessary in order to reach the other two main design goals.

IMPLEMENTATION OF THE DESIGN
GOALS IN THE o_ptb

The following implementation principles are direct consequences
of the design goals discussed in the previous section.

Organize Hardware and Devices Into
Logical Subsystems
As already discussed, the design and workflow of the o_ptb
is optimized for the way humans think and specifically how
they conceptualize the organization and workflow of an
experimental paradigm. Usually, an experimental paradigm can
be broken down to concrete tasks like: display an image at a
certain size at a certain location, play a certain sound 200 ms
later and then wait for the participant to respond with option
A or B. It is important to note that “low-level” aspects like
the specific video or sound device and how stimuli are transmitted
to these is irrelevant for the human perspective. In this “human
way of thinking,” it is only relevant that visual stimuli get
displayed, auditory stimuli are played and responses are collected.
It is not important how the individual devices achieve the tasks.

The o_ptb thus provides access to so-called subsystems (see
Figure 2). Each subsystem represents a modality (visual, auditory)
or high level task category (triggers, responses) as described
above. The respective subsystem automatically forwards the
commands to the underlying device, taking care of any
necessary conversions.

Currently, the o_ptb includes the following subsystems:

The Visual Subsystem
The visual subsystem provides only a thin layer on top of the
PTB. The user can choose to continue using the familiar
“Screen” command, which facilitates porting of pure PTB code.
Additionally, the o_ptb offers carefully designed classes for
common visual stimuli like images, movies, and geometric
forms. These classes provide a consistent interface to the user
to create, position, scale and otherwise manipulate the stimuli
(see Figure 3 for an example how to load and process a visual

A B C

FIGURE 1 | Flowchart of three common tasks from an experiment, employing a high level and a low level perspective. In all three cases: (A) play a sound at the
next screen flip initiated by the user; (B) load and present an image on the screen; and (C) collect responses via the keyboard or dedicated device. Using the high
level approach requires fewer steps which are also more intuitive.

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles

Hartmann and Weisz The Objective Psychophysics Toolbox

Frontiers in Psychology | www.frontiersin.org 4 November 2020 | Volume 11 | Article 585437

stimulus and Figure 5 for an example how to present the
stimulus synchronously with an auditory stimulus and a trigger).

Behind the scenes, o_ptb takes care of using the best available
method of synchronizing the visual subsystem with the other
ones, taking into account the hardware configuration used (see
Figure 2 for details).

The Audio Subsystem
The low-level commands to control sound hardware as well
as the format of the data that it can process vary a lot between
devices. It is thus not possible to design a common, transparent,
hardware-agnostic interface, while still allowing users to use
the low-level commands provided by the Psychophysics Toolbox.
Instead, the o_ptb provides a set of audio stimulus classes
providing the capability to load a stimulus from a wav or
mp3 file, use the content of a MATLAB matrix or generate
white noise or a sine wave. These sounds can be processed
in numerous ways, including frequency-filtering, windowing,
and vocoding (see Figure 4). The sound objects can then
be scheduled to play at a certain point in time. This reference
time can either be the next explicit screen flip to ensure
maximum audio-visual synchronization (see Figure 5).
Alternatively, the user can start the sounds at any suitable time.

The Trigger Subsystem
The trigger subsystem faces similar challenges like the audio
subsystem. The variety of hardware devices is quite high and
the low-level interface to those is highly diverse. From a
high-level perspective, on the other hand, the requirements
to the interface to the trigger subsystem are quite similar
to those of the audio subsystem. Both basically consist of
emitting an event at a specified point in time. This is reflected
in the design of the trigger subsystem of the o_ptb. The
user specifies what trigger value should be emitted at what
delay referenced to either the next explicit screen flip or the
execution of the same method used to start playing the sound
objects (see Figure 5).

The Response Subsystem
Designing an intuitive and unified interface for response
acquisition is a challenging task because the devices used
differ from the perspective of the user as well as from the
perspective of the participant. While a response box might
have a set of colored buttons, a computer keyboard, also
commonly used for this task, has keys labeled with letters,
numbers, etc. In the example of a simple reaction time
experiment, in which the participant would need to react

A B

FIGURE 2 | (A) Without the Objective Psychophysics Toolbox (o_ptb), the source code needs to access the underlying hardware directly and also needs to use
different code depending on the hardware that is available. (B) The o_ptb provides a layer between the source code from the experiment and the underlying
hardware so the source code can focus on what should be done and not how it is done for a specific hardware configuration.

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles

Hartmann and Weisz The Objective Psychophysics Toolbox

Frontiers in Psychology | www.frontiersin.org 5 November 2020 | Volume 11 | Article 585437

to a stimulus, he/she might need to press the “Space” key
if a keyboard was used or the “Red” button if a response
box is used. The o_ptb solves this by mapping semantic,
meaningful labels to keys or buttons. For instance, if an
experiment requires the participant to answer with “Yes”
or “No,” the user would map the response label “Yes” to
the right arrow key on a keyboard and to the red
button on the response pad. The label “No” would be mapped
to the left arrow key and the green button (see code
lines 32–40 in the left panel of Figure 7 for an example).
It is now possible to query whether the participant has
pressed “Yes” or “No” within the code without taking care
if responses are physically provided via keyboard or button
box (see Figure 6).

Additional Subsystems
Besides the aforementioned subsystems, the o_ptb includes
preliminary support for eye-tracking hardware (currently only

VPixx TRACKPixx) and somatosensory stimulators (currently
only CorticalMetrics).

Stimuli Are Objects
One of the most common tasks of an experiment script is
the presentation of stimuli. For instance, a visual stimulus
might be an image or movie loaded from the hard drive, a
geometric shape or a text. An auditory object might be a
sine-wave, white noise, the sound-data read from a wav or
mp3 file or a MATLAB matrix. After some manipulation or
processing, they are either placed on the screen for a specified
amount of time or played via the audio subsystem. It thus
seems natural to think of stimuli as objects and an intuitive
toolbox written for humans should thus match that representation.
Object-oriented programming is a software development
paradigm that is ideally suited for this kind of representation.
Within the realm of the o_ptb, every visual and auditory
stimulus is represented by an object. Visual objects can be moved

FIGURE 3 | Comparison of source code needed to load an image file from disk, scale and move it. The left panel shows the source code using the o_ptb, the
source code in the right panel has the same result but does not use the o_ptb.

FIGURE 4 | Comparison of the source code needed to create a white noise stimulus, attenuate it to −40 dB and apply a hanning window to it. The left panel
shows the source code using the o_ptb, the source code in the right panel has the same result but does not use the o_ptb.

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles

Hartmann and Weisz The Objective Psychophysics Toolbox

Frontiers in Psychology | www.frontiersin.org 6 November 2020 | Volume 11 | Article 585437

across the screen and scaled (see Figure 3). Auditory objects
provide methods to set the volume using various metrics, apply
filters and ramps and other post-processing (see Figure 4).
Finally, these objects are submitted to the o_ptb to display or
play via the underlying audio device (see Figure 5). Any
necessary hardware-specific processing like adjusting the
sampling-rate is done internally.

One important aspect of the object-oriented approach is
that a concrete stimulus class like a rectangle or a sine

wave is hierarchically connected to a so-called “base” class.
This base class implements all common methods. The visual
base class, for instance, provides methods to scale and position
the stimulus (see Figure 3). The auditory base class provides
a great variety of processing methods like volume control,
window functions, filters, and vocoding. These common
methods are inherited by all concrete stimulus classes. This
leads to two important benefits: (1) new stimulus classes
only need to implement how to construct the specific stimulus.

FIGURE 5 | Comparison of source code needed to present the visual and auditory stimuli and send a trigger. The left panel shows the source code using the
o_ptb, the source code in the right panel has the same result but does not use the o_ptb.

FIGURE 6 | Comparison of source code needed to display a prompt and wait for the participant to press a button or key, depending on whether a VPixx/ResponsePixx
system is available or not. The left panel shows the source code using the o_ptb, the source code in the right panel has the same result but does not use the o_ptb.

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles

Hartmann and Weisz The Objective Psychophysics Toolbox

Frontiers in Psychology | www.frontiersin.org 7 November 2020 | Volume 11 | Article 585437

All methods of the base class are instantly available to it
and (2) when a new method is implemented in the base
class, all existing stimulus classes can instantly use it.

Provide Central and Fault Tolerant
Configuration With Sensible Defaults
The configuration of the devices and the environment used to
run the experiment is highly crucial. Non-optimal configuration
can lead to poor temporal accuracy, reduced stimulus quality
and issues with connected devices and their possible interaction
with each other. This is further complicated by the fact that
some important optimizations rely on correct configuration, which
can be different depending on the hardware used. Additionally,
configuration options during development are different than when
the experiment is actually run. Without the o_ptb, individual
devices need to be configured using commands and configuration
options specific to the respective device. The o_ptb not only
consolidates the configuration of all supported devices in a single
and well documented configuration structure. It also provides
sensible defaults for most settings and runs plausibility checks
to prevent common errors (see Figure 7).

In the remainder of this article, the o_ptb will be used to
assess the temporal accuracy of two different hardware setups
available at the University of Salzburg. While one of these
setups provides the complete set of VPixx products for visual
and auditory stimulation as well as triggering, the second
system uses the internal video and soundcard of a PC running
on Linux and a Labjack U3 USB device (Labjack Corporation,
Lakewood, United States) for the triggers.

GENERAL REQUIREMENTS AND
INSTALLATION

The o_ptb is a toolbox running on MATLAB 2016b or higher
(The MathWorks Inc.). It requires a current version of the
Psychophysics Toolbox. It only uses functions provided by
MATLAB and the PTB at its core. It thus works on Windows,
Mac, and Linux. Certain devices that can be used with the
o_ptb might need further software and/or drivers installed on
the system. As these drivers might not be available for all
platforms, some restrictions might apply.

The o_ptb is released under the General Public License 3
(GPL; Free Software Foundation, 2007). The latest version can
be downloaded at https://gitlab.com/thht/o_ptb. Assuming that
MATLAB and the PTB have already been installed on the
computer, it is sufficient to copy the contents of the o_ptb to
an arbitrary folder on the computer’s hard drive. More detailed
instructions are available in the documentation at https://o-ptb.
readthedocs.io/en/latest/install.html.

TIMING ACCURACY SETUP

In order to demonstrate the capabilities and limitations
of the o_ptb and different hardware configurations,

we measured latency and jitter between visual stimulation,
auditory stimulation, and the trigger output. The timing
was measured using the Blackbox2 Toolkit, (The Black
Box ToolKit Ltd., Sheffield, UK) which is an
independent device capable of measuring onset times of
visual and auditory stimuli as well as triggers with
sub-millisecond precision.

The paradigm was kept very simple: in each trial, a white
circle would appear on the otherwise gray screen for 200 ms.
At the same time, white noise was emitted for 100 ms and
a trigger was sent. The inter-trial-interval was set to an average
of 1 s uniformly jittered by 200 ms. Around 100 trials
were recorded.

The paradigm was written using the o_ptb as introduced
here running on top of the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007).

The stimulation was run on MATLAB 2019b installed on
Debian Buster. We tested two hardware setups:

The first was a HP 802E with a NVidia Quadro K620
graphics card running at a refresh rate of 120 Hz. This
computer was attached to a VPixx System (DATAPixx2 display
driver, PROPixx DLP LED Projector by VPixx Technologies,
Canada). The VPixx devices were thus used for auditory
stimulation and triggering as well as the synchronization of
those to the visual stimulation. As the system is used to
conduct experiments during which data is acquired by a
magnetoencephalograph (MEG), sound was delivered via
air-tubes (approximately 5.6 m length), introducing a physical
delay of 16.5 ms.

The second was an HP Elitedesk 800 with a NVidia GeForce
GT 730 graphics card connected to a ASUS VG258 Monitor
running at 120 Hz. Sound was emitted via an Intel 8 Series
C220 internal sound card. Trigger emission was done using
a Labjack U3 device (Labjack Corporation, Lakewood,
United States).

Despite the highly different hardware configuration of the
two systems, the o_ptb allowed us to use exactly the same
script on both machines.

The data were analyzed using pandas (Reback et al., 2020)
running on Python 3.7. For each trial, the difference between
all three onsets (visual, auditory, and trigger) was calculated.
Finally, the mean and the SD for the differences of each pair
were calculated.

TIMING ACCURACY RESULTS

Setup 1 (With VPixx)
The average delay between the onset of the trigger and the
onset of the sound was 16.74 ms. As mentioned above, this
includes the 16.5 ms delay introduced by the sound having
to travel through the air-tubes. The standard deviation was
0.065 ms.

The average delay between the onset of the trigger and the
onset of the visual stimulus was 8.44 ms, i.e., the visual stimulus
appeared one screen refresh later than the trigger. The standard
deviation of this delay was 0.10 ms.

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://gitlab.com/thht/o_ptb
https://o-ptb.readthedocs.io/en/latest/install.html
https://o-ptb.readthedocs.io/en/latest/install.html

Hartmann and Weisz The Objective Psychophysics Toolbox

Frontiers in Psychology | www.frontiersin.org 8 November 2020 | Volume 11 | Article 585437

FIGURE 7 | Comparison of the source code needed to configure the Psychophysics Toolbox (PTB) as well as all necessary hardware. The left panel shows the
source code using the o_ptb, the source code in the right panel has the same result but does not use the o_ptb.

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles

Hartmann and Weisz The Objective Psychophysics Toolbox

Frontiers in Psychology | www.frontiersin.org 9 November 2020 | Volume 11 | Article 585437

Setup 2 (Without VPixx)
In this setup, the sound preceded the trigger by 0.17 ms on
average with a standard deviation of 0.18 ms. The average
delay between the onset of the trigger and the onset of the
visual event was 1.36 ms with a standard deviation of 0.86 ms.

In comparison the accuracy of both systems is in the
sub-millisecond range making them both acceptable for standard
psychophysiological and neuroscientific research.

DISCUSSION

The development of experiments is a challenging task for a
researcher. The o_ptb presented here not only simplifies this
important task by providing a unified interface to hardware
used in the experiment. It also adheres to proven principles
like code reuse, high level of abstraction, and easy to read
code that has been shown to reduce the likelihood of errors
that could jeopardize the validity of the results and interpretations
of a study (Lim, 1994; Boehm and Basili, 2005; Buse and
Weimer, 2010; Börstler et al., 2016). This is achieved by adding
an additional layer of abstraction between the source code of
the experiment and the Psychophysics Toolbox (Brainard, 1997;
Pelli, 1997; Kleiner et al., 2007) and further low-level libraries,
like PortAudio (Bencina and Burk, 2001), the VPixx interface
(VPixx Technologies, Canada), and the Labjack exodriver
(Labjack Corporation, Lakewood, United States; see Figure 2).
This means that the source code does not interact with the
devices and their libraries directly. Instead, it interacts with
the unified high-level interface provided by the o_ptb that
then takes care of the low-level interaction. Additionally, the
o_ptb provides stimulus classes for the auditory and visual
subsystem providing common operations like frequency filters
for the auditory and scaling and positioning for the
visual subsystem.

The source code comparisons shown in Figures 3–7 illustrate
the advantage of the high level approach of the o_ptb. The
source code is shorter and less complex when the o_ptb is
used because hardware differences are processed “behind the
scenes.” It is also easier to read the source code and infer the
intention of the user because intuitive names are used.

The MATLAB source code used to assess the accuracy of
stimulus presentation (available online, see Methods) is another
ideal showcase of the benefits of the o_ptb. Although both
stimulation systems use different hardware – one providing a
VPixx based setup, the second one running on standard PC
components plus a LabJack for triggering – the exact same
code was used to run the test stimulation.

The results of these tests show that both systems offer
sub-millisecond accuracy. Using the VPixx system leads to a
further increase of accuracy by a factor of 3–8. Yet, these
results are not directly comparable because the availability of
the VPixx system was not the only difference between them.
Besides differences in the hardware of the computers, the most
significant differences between the systems are (a) the use of
a projector vs. an LCD monitor and (b) sound delivery via
air-tubes. The purpose of this test was thus not to compare

these two systems but to show that adequate accuracy can
be achieved with and without specialized hardware as long as
the configuration and the code of the experiment is of optimal
quality, as ensured by the o_ptb.

After almost 4 years of active development and use in peer-
reviewed studies (Hartmann and Weisz, 2019; Hauswald et al.,
2020; Sanchez et al., 2020) and current pre-prints (Suess et al.,
2020; Weise et al., 2020), the o_ptb has evolved into a stable,
mature toolbox. It is extensively documented1 and includes
tutorials to provide a smooth experience from the beginning.

To summarize, the o_ptb facilitates and optimizes the
development of experiments, leads to better readable and more
reusable source code and thus reduces the probability of errors.
It enables users to create experiments that run on a variety
of platforms without changes to the code and without any
device specific sections in the code.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found in the
article/Supplementary Material.

The code of the timing experiment can be accessed at:
https://gitlab.com/thht_experiments/blackbox_tester/-/tree/article
and the data and the analysis code of the timing experiment
can be accessed at: https://gitlab.com/thht/blackbox_tester_
usbstim/-/tree/article.

AUTHOR CONTRIBUTIONS

TH planned, designed, and wrote the software described in
the article. TH also wrote the first draft of the manuscript.
NW contributed to the planning and the design of the software.
NW also contributed to the final structure of the manuscript
and provided extensive review and editing. All authors contributed
to the article and approved the submitted version.

ACKNOWLEDGMENTS

The authors wish to thank Kimberly Scherer for proofreading
the manuscript. We would also like to thank the early adopters
of the o_ptb for their valuable feedback that led to the addition
of new features, elimination of bugs, and improvements of
the documentation.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpsyg.2020.585437/
full#supplementary-material

1 https://o-ptb.readthedocs.io

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://gitlab.com/thht_experiments/blackbox_tester/-/tree/article
https://gitlab.com/thht/blackbox_tester_usbstim/-/tree/article
https://gitlab.com/thht/blackbox_tester_usbstim/-/tree/article
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.585437/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.585437/full#supplementary-material

Hartmann and Weisz The Objective Psychophysics Toolbox

Frontiers in Psychology | www.frontiersin.org 10 November 2020 | Volume 11 | Article 585437

REFERENCES

Aggarwal, K. K., Singh, Y., and Chhabra, J. K., (2002). An integrated measure
of software maintainability, in annual reliability and maintainability symposium.
2002 proceedings (cat. No.02CH37318). Presented at the annual reliability
and maintainability symposium. 2002 proceedings (cat. No.02CH37318);
January 28-31, 2002; 235–241.

Bencina, R., and Burk, P. (2001). PortAudio-an open source cross platform
audio API., in ICMC.

Boehm, B., and Basili, V. R. (2005). “Software defect reduction top 10 list” in
Foundations of empirical software engineering: The Legacy of Victor R. Basili.
eds. B. Boehm, H. D. Rombach and M. V. Zelkowitz (Springer-Verlag Berlin
Heidelberg), 426–431.

Börstler, J., Caspersen, M. E., and Nordström, M. (2016). Beauty and the
beast: on the readability of object-oriented example programs. Softw. Qual. J.
24, 231–246. doi: 10.1007/s11219-015-9267-5

Brainard, D. H. (1997). The psychophysics toolbox. Spat. Vis. 10, 433–436. doi:
10.1163/156856897X00357

Buse. R. P. L., and Weimer, W. R. (2010). Learning a metric for code readability.
IEEE Trans. Softw. Eng. 36, 546–558. doi: 10.1109/TSE.2009.70

Free Software Foundation (2007). General public license version 3.
Hartmann, T., and Weisz, N. (2019). Auditory cortical generators of the frequency

following response are modulated by intermodal attention. Neuroimage
203:116185. doi: 10.1016/j.neuroimage.2019.116185

Hauswald, A., Keitel, A., Chen, Y. -P., Rösch, S., and Weisz, N. (2020).
Degradation levels of continuous speech affect neural speech tracking and
alpha power differently. Eur. J. Neurosci. 1–15. doi: 10.1111/ejn.14912

Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., and Broussard, C.
(2007). What’s new in psychtoolbox-3. Perception 36, 1–16.

Lim, W. C. (1994). Effects of reuse on quality, productivity, and economics.
IEEE Softw. 11, 23–30. doi: 10.1109/52.311048

Peirce, J. W. (2007). PsychoPy—psychophysics software in Python. J. Neurosci.
Methods 162, 8–13. doi: 10.1016/j.jneumeth.2006.11.017

Peirce, J. W. (2009). Generating stimuli for neuroscience using PsychoPy.
Front. Neuroinform. 2:10. doi: 10.3389/neuro.11.010.2008

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H.,
et al. (2019). PsychoPy2: experiments in behavior made easy. Behav. Res.
Methods 51, 195–203. doi: 10.3758/s13428-018-01193-y

Pelli, D. G. (1997). The videotoolbox software for visual psychophysics:
transforming numbers into movies. Spat. Vis. 10, 437–442. doi: 10.1163/
156856897X00366

Reback, J., McKinney, W., Jbrockmendel, Bossche, J. V. D., Augspurger, T.,
Cloud, P., et al. (2020). Pandas-dev/pandas: pandas 1.0.3. Zenodo. doi:
10.5281/ZENODO.3509134

Sanchez, G., Hartmann, T., Fuscà, M., Demarchi, G., and Weisz, N. (2020).
Decoding across sensory modalities reveals common supramodal signatures
of conscious perception. Proc. Natl. Acad. Sci. U. S. A. 117, 7437–7446. doi:
10.1073/pnas.1912584117

Suess, N., Hartmann, T. , and Weisz, N. (2020). Differential attention-dependent
adjustment of frequency, power and phase in primary sensory and frontoparietal
areas. bioRxiv 697615 [Preprint]. doi: 10.1101/697615

Weise, A., Hartmann, T., Parmentier, F., Ruhnau, P., and Weisz, N. (2020).
Increases in parieto-occipital alpha-band power reflect involuntary spatial
attention due to a task-distracting deviant sound. bioRxiv [Preprint]. doi:
10.1101/2020.06.29.161992

Woo, M., Neider, J., Davis, T., and Shreiner, D. (1999). OpenGL programming
guide: The official guide to learning OPENGL, version 1.2. 3rd Edn. USA:
Addison-Wesley Longman Publishing Co., Inc.

Conflict of Interest: The authors declare that the research was conducted in
the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Copyright © 2020 Hartmann and Weisz. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://doi.org/10.1007/s11219-015-9267-5
https://doi.org/10.1163/156856897X00357
https://doi.org/10.1109/TSE.2009.70
https://doi.org/10.1016/j.neuroimage.2019.116185
https://doi.org/10.1111/ejn.14912
https://doi.org/10.1109/52.311048
https://doi.org/10.1016/j.jneumeth.2006.11.017
https://doi.org/10.3389/neuro.11.010.2008
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.1163/156856897X00366
https://doi.org/10.1163/156856897X00366
https://doi.org/10.5281/ZENODO.3509134
https://doi.org/10.1073/pnas.1912584117
https://doi.org/10.1101/697615
https://doi.org/10.1101/2020.06.29.161992
http://creativecommons.org/licenses/by/4.0/

	An Introduction to the Objective Psychophysics Toolbo x
	Introdu ction
	Software Design Goals of the o_ptb
	Write Code for Humans, not Computers
	Write Once, Run on Every Hardware
	Maintain the Flexibility of the Psychophysics Toolbox Whenever Possible

	Implementation of the Design Goals in the o_ptb
	Organize Hardware and Devices Into Logical Subsystems
	The Visual Subsystem
	The Audio Subsystem
	The Trigger Subsystem
	The Response Subsystem
	Additional Subsystems
	Stimuli Are Objects
	Provide Central and Fault Tolerant Configuration With Sensible Defaults

	General Requirements and Installation
	Timing Accuracy Setup
	Timing Accuracy Results
	Setup 1 (With VPixx)
	Setup 2 (Without VPixx)

	Discussion
	Data Availab ility Statement
	Author Contributions

	References

