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Abstract
The level of sedation in patients undergoing medical procedures evolves continuously, af-

fected by the interaction between the effect of the anesthetic and analgesic agents and the

pain stimuli. The monitors of depth of anesthesia, based on the analysis of the electroen-

cephalogram (EEG), have been progressively introduced into the daily practice to provide

additional information about the state of the patient. However, the quantification of analge-

sia still remains an open problem. The purpose of this work is to improve the prediction of

nociceptive responses with linear and non-linear measures calculated from EEG signal fil-

tered in frequency bands higher than the traditional bands. Power spectral density and

auto-mutual information function was applied in order to predict the presence or absence of

the nociceptive responses to different stimuli during sedation in endoscopy procedure. The

proposed measures exhibit better performances than the bispectral index (BIS). Values of

prediction probability of Pk above 0.75 and percentages of sensitivity and specificity above

70% were achieved combining EEGmeasures from the traditional frequency bands and

higher frequency bands.

Introduction
To determine appropriate requirements for administration, monitoring and control of sedation
and / or analgesia in invasive medical procedures is necessary in order to minimize the impact
of the aggression in the patient and the implications on the outcome of the process. Hypnotic
drugs (intravenous or inhaled) are used in order to achieve an accurate level of hypnosis, while
fundamentally strong opioids are used in order to achieve the desired level of analgesia. The
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proper implementation of proposed model to monitor the anesthetic state is based on a quanti-
fication of the pharmacological effects for reaching a perfect set respect to the requirements of
each patient. This involves the development of models connected directly in real-time with
physiological variables of the patient. For several years, various methods have been developed
for the noninvasive assessment of the level of consciousness during general anesthesia [1–6].
Since the main action of anesthetic agents occurs in the brain, a reasonable choice is to monitor
the electroencephalographic signal (EEG). Changes on the EEG signal are directly related to
biochemical variations of a drug induced in the brain and the effects on individual behavior.
For this reason, different EEG monitors have been developed [7–12]. Analysis of the Bispec-
trum of the EEG signal, entropy analysis, and auditory evoked potentials extracted from the
EEG or automated neurofuzzy inference systems are some of the methods applied to the com-
plex EEG signal to design clinically relevant indicators of hypnotic effect.

However, it has not been possible to develop a system capable of quantifying analgesia. The
most used methods [13–16] include hemodynamic response, analysis of electrocardiographic
waveforms variability, degree of respiratory sinus arrhythmia, plethysmographic response,
pulse wave, heart rate variability and skin conductance. None of them has proven to be clinical-
ly useful methods because they are influenced by the response of the autonomic nervous system
(ANS) and they are sensitive to other disturbances, such as changes in blood pressure or heart
rate due to patient's baseline condition (hypertension, arrhythmias of diverse etiology), sympa-
thomimetic drug delivery or unpredictable situations such as perioperative bleeding. Recently,
two studies based on time-frequency representation [17] and auto-mutual information func-
tion [18] demonstrated that changes associated to EEG spectrum and EEG complexity in the
traditional bands permitted to improve the prediction of the Ramsay sedation scale (RSS) and
the response to tube insertion during endoscopy procedure. However, the discrimination be-
tween deep sedation level with no response to any stimulation (RSS = 6) and sluggish response
to painful stimulation (RSS = 5) still remains an open problem. Some studies indicated that the
EEG-based monitors cannot reliably distinguish between light sedation and deep sedation, as
these are designed to measure levels of general anesthesia that handle very different levels of
hypnosis to those used in sedation procedures. Therefore still remains the need for an objective
measurement to quantify the level of sedation in patients undergoing invasive procedures. Ad-
ditionally, during sedation procedures patients develop a greater degree of muscular activity
compared to patients undergoing general anesthesia procedures [19]. A biopotential signal
measured from the forehead of a patient includes a significant EMG component, which is cre-
ated by muscle activity. The EMG signal has a wide noise-like spectrum and during anesthesia
typically dominates at frequencies higher than 30 Hz. Sudden appearance of EMG signal data
often indicates that the patient is responding to some external stimulus, such as a painful stim-
ulus, due to some surgical event. Such a response may result if the level of analgesia is insuffi-
cient. If stimulation continues and no additional analgesic drugs are administered, it is highly
likely that the level of hypnosis starts to reduce. Thus, EMG can help to provide a rapid indica-
tion of imminent arousal [9].

In this work, we assume that the prediction of the responses to pain stimulation during en-
doscopy procedure can be improved by using measures calculated in the recorded EEG taking
into account also the EMG frequency bands derived from scalp and facial muscles. In this
sense, it might be possible to associate an increased activity in the facial muscles with a greater
possibility of pain, obtaining better prediction of responsive states. To achieve our goal, linear
and non-linear measures were calculated on the EEG signal in the traditional bands δ, θ, α,
β and in higher frequency bands (HF: 60–95 Hz and VHF: 105–145 Hz). Several measures
based on power spectral density and auto-mutual information function were defined in order
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to evaluate the prediction of responding to the application of painful stimuli such as nail bed
compression or endoscopy tube insertion.

Materials and Methods

Database
The analyzed database belongs to the Department of Anesthesiology, Hospital Clínic of Barce-
lona (Spain). This database contains data recorded from 378 patients (mean age 63±23 years,
247 men) undergoing ultrasonographic endoscopy of the upper gastrointestinal tract under se-
dation and analgesia with propofol and remifentanil. All the patients belong to 1–3 ASA classi-
fication. Patients with altered central nervous system, medicated with analgesics or drugs with
central effects on the perception of pain, from moderate to severe cardiomyopathy, neuropathy
or hepatopathy that needed control during the anesthetic process were not included in the da-
tabase. The study received approval from the Ethics Committee of Hospital Clinic de Barcelona
and all the patients signed informed consent.

For each patient, the following information is available: predicted effect site concentrations
of propofol (CeProp) and remifentanil (CeRemi); bispectral Index (BIS) and electroencephalo-
gram (EEG) signal. The observed categorical responses after applied nociceptive stimuli in-
clude the evaluation of the RSS (see Table 1) [20] after nail bed compression and the presence
of gag reflex during endoscopy tube insertion (GAG). Specifically, RSS 2, 3, 4 and 5 corre-
sponds to a patient who responded with purposeful movement after nail bed compression
while patients in the RSS 6 category did not respond. GAG corresponds to a positive nausea re-
flex during endoscopy tube insertion, a nociceptive stimulus as well. The RSS score was evalu-
ated at random times during the procedure in order to avoid those factors correlated with time,
which could confound the results of the RSS measurements. The whole database contains an-
notated RSS scores from 2 to 6.

The EEG was recorded with a sampling frequency of 900 Hz, with a resolution of 16 bits
and a recording time of about 60 min using AEP monitor/2 (Danmeter, Odense, Denmark). A
3-electrode montage was used: middle forehead (+), malar bone (-), and left forehead electrode
used as reference. Propofol and remifentanil were infused using a TCI system (FreseniusVial;
Chemin de Fer, Béziers, France). All information CeProp, CeRemi, BIS, RSS and GAG were anno-
tated with a resolution of 1 second.

EEG Preprocessing
The traditional bands analysis was performed on EEG signals filtered between 0.1–45 Hz and
resampled at 128 Hz, while high frequency analysis was performed on EEG filtered between
0.1–145 Hz and resampled at 300 Hz. After the resampling process, the EEG signals were seg-
mented in windows of length of 1 minute taken between 30 s and 90 s before the response

Table 1. Ramsay sedation scale.

Score Response

1 Anxious and/or restless

2 Cooperative, orientated and calm

3 Responding to instructions

4 Brisk response to stimulus

5 Sluggish response to stimulus

6 No response to stimulus

doi:10.1371/journal.pone.0123464.t001
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annotation of RSS or GAG, in order to avoid the effect of the stimulation on the signal. The se-
lected windows were filtered into the following frequency bands: δ, 0.1–4 Hz; θ, 4–8 Hz; α,
8–12 Hz; β, 12–30 Hz; HF; 60–95 Hz and VHF; 105–145 Hz; TB, 0.1–145 Hz. The frequencies
round 50 Hz and 100 Hz were not taken into account in order to avoid the power line noise
and the interferences caused by the self-test impedance device that produce a peak in the spec-
trum. Finite impulse response (FIR) filter of 50th order was used in the present work. The order
of the FIR filter was fixed to 50 in order to ensure the attenuation and the ripple in the stop
band to be less than 5%.

The annotated RSS was assigned to the previous 1 minute length window if the differences
ΔCeRemi and ΔCeProp between the first and the last second of the window were ΔCeRemi<0.1 ng/ml
and ΔCeProp<0.1 μg/ml. Otherwise, the window was taken till the sample where the conditions
were satisfied.

Firstly, a visual analysis was performed in order to eliminate EEG recording affected by
strong noise of different types. Then, windows of EEG containing high amplitude peak noise
were processed with a filter based on the analytic signal envelope (ASEF) [21]. This permitted
to eliminate the peak noise, preserving the EEG frequency content. The FIR filter permitted to
eliminate noise that have different frequency band from EEG signal. Another algorithm were
applied in order to detect if adjacent samples differ more than 10% of the mean of the previous
samples differences. In that case, those samples and the subsequent ones were not taken into
account. In this way, the smallest analyzed window resulted to be of 50 s.

Traditional EEG analysis
The following measures were calculated in each EEG window:

• Standard deviation (std) of the EEG windows filtered in each band.

• Power spectral density (PSD) for each EEG window in TB band using the Welch method.

• Spectral power in each band (Pδ, Pθ, Pα, Pβ, PHF, PVHF) as the area under the PSD curve nor-
malized by the total PSD area.

• Weighted mean frequency (mF) in each band (TB, δ, θ, α, β,HF, VHF) as the centroid of the
PSD curve.

• Spectral edge frequencies SEF50, SEF75 and SEF90 in each band.

• Autocorrelation function (Ac)

The PSD was computed using Welch’s method of averaged modified periodograms. EEG
segments were divided into one-second segments with 25% of overlap; Hamming window was
applied to each segment. The final spectral density was achieved as the average of spectral den-
sities of all the segments.

Auto-Mutual Information Measures
Mutual information (MI) can measure the nonlinear as well as linear dependence of two vari-
ables. It is a metric derived from Shannon’s information theory to estimate the information
gained from observations of one random event on another [22,23]. Usually, MI is measured be-
tween two different systems X and Y. Let X and Y be discrete random variables which take a finite
number of possible values xi and yj with probabilities Px(xi) and Py(yj) respectively,� 0, i = 1, 2,
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3. . .n and j = 1, 2, 3. . .n, MI between X and Y is given by [22,23]

MIxy ¼
X
ij

Pxyðxi; yjÞlog2
Pxyðxi; yjÞ
PxðxiÞPyðyjÞ

 !
ð1Þ

Auto-mutual information function (AMIF) (2) is calculated as the MI between two measure-
ments xi and xi+τ taken from a single time series.

AMIF ShðtÞ ¼
X
xi�X

X
xiþt�X

Pxxðxi; xiþtÞlog2
Pxxðxi; xiþtÞ
PxðxiÞPxðxiþtÞ
� �

ð2Þ

AMIF function describes how the information of a signal (AMIF value at τ = 0) decreases over
a prediction time interval (AMIF values τ>0). Increasing information loss is related to decreasing
predictability, and increasing complexity of the signal [24].

AMIF can be also defined from Rényi entropy as

AMIF ReqðtÞ ¼
1

q� 1
log2

X
xi�X

X
xiþt�X

Pxx
qðxi; xiþtÞ

Px
q�1ðxiÞPq�1

x ðxiþtÞ
ð3Þ

where q is the control parameter of Rényi entropy.
In Eq (3), the largest probabilities most influence the AMIF_Req when q>1 and the smallest

probabilities most influence the values of AMIF_Req when 0<q<1. The AMIF_Req converge
to the Shannon AMIF when q! 1. In this work, different values of the control parameter of
Re: q = {0.1, 0.2, 0.5, 2, 3, 5, 10, 30, 50, 100} were taken into account.

The probabilities Pxy, Px and Py were constructed on the series xi or yj and their delayed se-
ries xi+τ or yj+τ for τ = {1,2,. . .,300} samples. The amplitude range of the data series was quan-
tized using 32 equidistant partitions. This made the maximum possible value of AMIF equal to
log2 32 = 5 bits. The number of bins was fixed following the recommendation of a previous
work [25] which demonstrated that AMIF indexes applied to EEG were more stable and
showed the less variability using 32 partitions. The τ limit was fixed to 300 samples that
correspond to 1 s in order to find a compromise between the considered EEG frequency bands,
the non-stationary characteristics of the EEG and the computing time. In this way, also the
lowest frequency band (δ = 0.1–4 Hz) could be explored with a significant sample resolution
(τδ> fs/ fδ, fs = 300 Hz, fδ <4 Hz: τδ >75 samples). Furthermore, the assumption of the EEG
signal stationarity is ensured in the time delay of τ = 1 s and a reasonable computational cost
is guaranteed.

The q range was chosen in order to have a distribution of q<1, q = 1 and q>1 values.
Previous studies [26,18] demonstrated that AMIF has significantly changes if those partitions
of q were taken into account and that the statistical results did not change in a significantly way
in the range 50>q>100. We recognize that it would be more interesting and useful to analyze a
fine partition of q values. However, the optimization of q value for AMIF would involve further
analysis that are out of the purpose of this study. This can be considered as a future step in
order to optimize the performance of a clinical indexes based on AMIF.

AMIF was normalized by the maximum value (AMIF(0)).

Data Analysis
The AMIF function was analyzed with respect to τ in order to define measures able to discrimi-
nate between RSS scores. Then, several tests were performed on the EEG measures focusing on
the discrimination between no-response (RSS = 6), sluggish responses (RSS = 5) and stronger
responses (RSS<5). Firstly, EEG windows associated with sluggish responses (RSS = 5) were
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compared with no-responses (RSS = 6) in order to find measures that can—distinguish be-
tween adjacent sedation levels, trial1. Then, EEG windows associated with unresponsive states
(RSS = 6), were compared with windows associated to all the responsive states (RSS<6), trial2,
in order to discriminate between unresponsive and all the responsive states. In the following
RSS tests, the measures calculated on EEG windows associated with the stronger stimuli re-
sponses (RSS<5) were compared with sluggish responses (RSS = 5), trial3, then with no-re-
sponses (RSS = 6), trial4, and finally with both sluggish and no-responses (RSS�5), trial5.
These last trials might help to improve the discrimination between stronger responses associat-
ed with low sedation levels and sluggish and no-responses associated with deeper sedation lev-
els. In all the trials the unresponsive state is caused by an interaction between hypnotic and
analgesic effects, while the responsive states are characterized by an insufficient presence of an-
algesic effect in the drug combination administered, especially when 2�RSS<5.

Finally, the proposed variables that gave the highest Sen, Spe and Pk in the RSS prediction
were used in GAG assessment, in order to evaluate their applicability on the prediction of the
response to a different type of stimulus.

Statistical Analysis
The U of Mann-Whitney test, was applied and a significance level p-value<0.05 was taken
into account. Bonferroni correction was applied in case of multivariate comparison. Measures
that showed statistical significance were considered for building univariable and multivariable
discriminant functions.

The leaving-one-out method was performed as validation. Sensitivity (Sen) was used to
measure the ratio between correctly classified windows associated with pain responses (RSS<6
and GAG 1) and the whole number of windows associated with pain responses; while specifici-
ty (Spe) was used to measure the ratio between correctly classified windows associated with no
response (RSS = 6 and GAG 0) and the whole number of windows associated with no response.

The ability of the variables to describe pain responses was also evaluated using prediction
probability (Pk), a statistic commonly used to compare the performance of indicators [27]. The
standard error (SE) of the estimated Pk was also calculated in order to assess its accuracy. For
the comparison between the Pk values obtained from the BIS and the EEG measures, a T-Stu-
dent with significance level of 5% was performed. In order to build the multivariate model, an
algorithm of feature selection was developed and applied to all the calculated measures that
showed statistical significance (p-value<0.05) in at least one of the trial. The algorithm ran-
domly selects a maximum of 4 not correlated measures and performed the multivariable dis-
criminant analysis. More than 1000 iterations of the algorithm were performed in order to
maximize the Pk under the condition of both Sen and Spe>60%. The best obtained combina-
tion are shown in the results section.

Results
As examples, Figs 1 and 2 show the averaged functions AMIF_Re05(τ) in VHF band and AMI-
F_Re50(τ) in θ band for different RSS levels, these two functions gave the most significant re-
sults in this first analysis. The τ delays in which those functions were able to yield p-value
<0.05 and Pk>0.7 when discriminating between RSS<6 and RSS = 6, between RSS = 5 and
RSS = 6, between RSS<5 and RSS = 5 and between RSS<5 and RSS = 6 are also represented. As
it can be noted from Fig 1 and Fig 2, AMIF profiles exhibited an initial fast decrease at short
time scale followed by a slow increase, then they decreased to nonzero stable values at longer
time scales. Comparing RSS<6 and RSS = 6, few differences at short time-scale can be observed
in VHF band (Fig 1A and Fig 1B) and at long time-scale in θ band (Fig 2A and Fig 2B),
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denoting different complexity behavior. Several statistical differences between RSS<5 and
RSS = 5 or RSS = 6 are observed in θ band (Fig 2C and Fig 2D) both at short and long time-
scales. From this first analysis it was deduced that the most appropriate measures with respect
to delay τ that might quantify and extract the essential information contained on AMIF were:
mean (m), first relative maximum (maxL), absolute minimum (min), and first decay (FD). The
FDmeasure was calculated as the difference between the AMIF(0) and the AMIF(1). In this
way, the values of the AMIF measures describe the complexity of the EEG signal: higher values
ofm,maxL andmin are associated with less complexity, more regularity of the signal; contrari-
ly higher values of FD are associated with more complexity and more irregularity of the signal.
The same measures applied to AMIF were calculated on Ac. The EEG measures calculated on
AMIF and PSD are summarized in Fig 3.

Fig 4 shows the values of the measures that gave the highest Sen, Spe and Pk in both univari-
able and multivariable discriminant functions.

From Fig 4 it can be noticed that when smallest probabilities predominate (q = 0.2, q = 0.5),
RSS = 6 presents less complexity behavior than RSS = 5 in VHF (Fig 4A and 4B). The weighted

Fig 1. Auto-Mutual Information Function (AMIF). Averaged AMIF functions in VHF (105–145 Hz) band q = 0.5 of all windows of (a) RSS<6 and RSS = 6,
(b) RSS = 5 and RSS = 6, (c) RSS<5 and RSS = 5, (d) RSS<5 and RSS = 6. The p-values were corrected using Bonferroni equation.

doi:10.1371/journal.pone.0123464.g001
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mean frequency in α band is lower for RSS = 6 (Fig 4D) than RSS = 5. Furthermore, it can be
observed that EEG windows of RSS<5 present less complexity behavior in θ band and higher
power in β band than windows of RSS = 5 and RSS = 6.

Table 2 shows the results of the measures that gave the highest Sen, Spe and Pk using univar-
iate discriminant function in trial 1 and trial 2. It can be noted that measures of AMIF in VHF
are able to discriminate between RSS = 5 and RSS = 6 with Sen, Spe and Pk higher than BIS (T-
student test, p-value<0.0001). However, only measures in VHF band permitted to discriminate
between RSS = 5 and RSS = 6 with Pk>0.7.

Table 3 shows the results of the measures that gave the highest Sen, Spe and Pk using multi-
variate discriminant function in trial 1 and trial 2. The combination of four measures permitted
to yield Sen, Spe and Pk higher than BIS (T-student test, p-value<0.01) when discriminating
between RSS<6 and RSS = 6. Table 4 shows the results of the measures that gave the highest
Sen, Spe and Pk using multivariable discriminant function in trial 3, 4 and 5.

Table 5 shows the results of the prediction of GAG using the variables that gave the highest
Sen, Spe and Pk in the previous trials. In general, combination of measures capable to discrimi-
nate between RSS<5 and RSS�5 gave high discrimination performances in GAG assessment.

Fig 2. Auto-Mutual Information Function (AMIF). Averaged AMIF functions in θ band q = 50 of all windows of (a) RSS<6 and RSS = 6, (b) RSS = 5 and
RSS = 6, (c) RSS<5 and RSS = 5, (d) RSS<5 and RSS = 6. The p-values were corrected using Bonferroni equation.

doi:10.1371/journal.pone.0123464.g002
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The combination betweenmFα, FD(Re05)VHF,maxL(Re2)HF,min(Re30)δ gave the highest perfor-
mances in the discrimination between RSS = 5 and RSS = 6 (Pk> 0.75, Sen and Spe>70%) and
yield Pk>0.8 in the discrimination between RSS<6 and RSS = 6. However, it was not able to
predict the GAG responses (Pk<0.7). The combination betweenm(Re50)θ, Pβ, PVHF, FD
(Re05)VHF yielded Pk>0.75 in all the trials and in the GAG prediction.

As an example, Fig 5 shows the evolution of BIS, CeRemi, CePropo,m(Re50)θ, Pβ, PVHF, FD
(Re02)VHF and FD (Re05)VHF with respect to the entire recording time; the RSS annotation and
the tube insertion are also shown. The EEG measures were calculated by sliding 60 s windows
with steps of 1 s. As it can be noted, Pβ, PVHF FD (Re02)VHF and FD(Re05)VHF values are lower in
the central part of the recording, when RSS = 6, while they increase when RSS<6. This implies
less power and less complexity in high frequencies when the level of sedation is higher. The
trend ofm(Re50)θ denotes higher complexity in θ band for unresponsive state compared with
RSS<5.

Discussion
The proposed work reported a methodology for the prediction of pain responses during seda-
tion based on EEG filtered in the traditional frequency bands and in higher frequency bands.
In general, the combination of four measures in the traditional EEG bands is enough to yield
Pk>0.8 when discriminating between RSS<5 and RSS�5 (Table 4) and when predicting the
gag reflex (Table 5). However, when discriminating between RSS<6 and RSS = 6 or between
RSS = 5 and RSS = 6, only by using measures from EEG filtered at high frequency bands (HF;
60–95 Hz and VHF; 105–145 Hz) values ofPk>0.75 are obtained. In all the trials combinations
of four EEG measures yielded discrimination performances better than BIS (T-student test, p-
value<0.0001) in the prediction of pain responses. It is worth noting that the BIS index inte-
grates several EEG measures such as time domain, frequency domain, and high order spectral
parameters into a single variable. In this way, in order to make an appropriate comparison be-
tween the BIS and the results of the present study, the multi-variable analysis of EEG measures
should be taken into account. However, it can be noted that, when discriminating between

Fig 3. Measures extracted from Auto-Mutual Information Function (AMIF) and Power spectral density (PSD). Example of the measure calculation from
(a) AMIF and (b) PSD.

doi:10.1371/journal.pone.0123464.g003
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RSS = 5 and RSS = 6,BIS is outperformed by single measures calculated on EEG filtered in VHF
(Table 2). It is well known that BIS is able to describe hypnotic effect as it is confirmed by re-
sults of trial 2, 4 and 5, since the responsive states of these trials is characterized by an insuffi-
cient presence of analgesic effect in the drug combination administered. In this case, the
discrimination is performed between sedation levels characterized by different hypnotic states
at low analgesic effect. However, as it was seen in trial 1, 3 and GAG the proposed multi vari-
able functions showed a better capability than BIS to describe the analgesic effect. The presence

Fig 4. Values of EEGMeasures with Ramsey score (RSS). Distribution of the values of (a) first decay of Auto-Mutual Information Function (AMIF) in VHF
(105–145 Hz) band for q = 0.2, (b) first decay of AMIF in VHF (105–145 Hz) band for q = 0.5, (c) weighted mean frequency in α band, (d) mean value of AMIF
in θ band for q = 50, (e) power spectral density in β band, (f) power spectral density in VHF (105–145 Hz) band. On each box, the central mark is the median;
the edges of the box are the 25th and 75th percentiles. The whiskers are lines extending from each end of the boxes to show the extent of the rest of the data.
Values beyond the end of the whiskers are considered outliers and marked with a +.

doi:10.1371/journal.pone.0123464.g004
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of analgesic, remifentanil in this case, causes that the patient can not react to painful stimuli
even with a low level of hypnotic agents (i.e. a high BIS value). If, instead of analgesic, only pro-
pofol were dispensed, its concentration would have to be higher in order to block painful sti-
muli and that would produce very low BIS values. The hardest challenge is the discrimination
between sluggish response (RSS = 5) and no response (RSS = 6). In general, the major benefits
in the discrimination of these two RSS levels were provided by studying changes in the power
spectral density in α and β bands of EEG and in the complexity behavior of EEG filtered in
high frequency band (60–95 Hz and 105–145 Hz). In order to yield high performances in the
prediction of different stimuli responses, the complexity behavior of δ and θ bands and the
power spectral density in VHF should also be taken into account.

In a previous work, spontaneous frontal electromyography (SEMG) has been shown to be a
useful indicator of pending arousal [28]. Another study demonstrated that sudden increases in
the amplitude of SEMG activity in frontal muscles during surgery indicated enhanced patient
responsiveness [29]. This is due to the motor innervation of the upper facial muscles, which
arises from the brainstem, with connections to vigilance centers in the reticular formation.
Some successful applications of the SEMG on the detection of arousal during anaesthesia have
been published [28–30]. However, due to great inter-individual variability in the amplitude of
the SEMG, this technique has not gained wide clinical acceptance. In this work, the AMIF com-
putation normalized by the maximum value permits to obtain non-linear measures that might
limit the inter-individual variability.

Table 2. RSS assessment: trial 1 and 2.

RSS = 5 vs RSS = 6 (N1 = 297, N2 = 701) RSS<5 vs RSS = 6 (N1 = 1455, N2 = 701)

Variables PK Sen Spe PK Sen Spe

BIS 0.620 63.8 56.3 0.799 75.5 68.6

FD(Re02)VHF 0.719 61.6 70.0 0.715 64.4 69.5

FD(Re05)VHF 0.709 62.0 68.0 0.678 65.0 63.6

maxL(Re2)VHF 0.672 65.3 63.1 0.743 67.1 70.8

m(Re30)δ 0.561 46.5 65.3 0.738 60.7 78.5

Uni-variable discrimination between EEG windows taken 30 s before nociceptive stimulation: response (RSS = 5 and RSS<6) and no-response

(RSS = 6). N1 = number of analyzed windows RSS<6; N2 = number of analyzed windows RSS = 6; Pk: prediction probability; Sen: (%) sensitivity; Spe:

(%) specificity; p-value<0.05; Pk standard error: S.E. (Pk) < 0.02.

doi:10.1371/journal.pone.0123464.t002

Table 3. RSS assessment: trial 1 and 2.

RSS = 5 vs RSS = 6 (N1 = 297,
N2 = 701)

RSS<5 vs RSS = 6 (N1 = 1455,
N2 = 701)

Variables f(•) PK Sen Spe PK Sen Spe

mFα, FD(Re05)VHF, maxL(Re2)HF, min(Re30)δ 0.7633 70.7 70.5 0.8095 74.0 73.2

maxL(Re2)VHF, m(Re30)δ, m(Re05)α, maxL(Re2)θ 0.7036 63.0 65.5 0.8276 71.2 80.6

FD(Re2)δ, Pθ, Pα, maxL(Re10)α 0.6205 56.2 60.7 0.7555 60.1 78.9

m(Re50)θ, Pβ, PVHF, FD(Re05)VHF 0.7585 70.0 69.8 0.8338 72.2 79.3

Multi-variables discrimination between EEG windows taken 30 s before nociceptive stimulation: response (RSS = 5 and RSS<6) and no-response

(RSS = 6). N1 = number of analyzed windows RSS<6; N2 = number of analyzed windows RSS = 6; Pk: prediction probability; Sen: (%) sensitivity; Spe:

(%) specificity; U of Mann-Whitney test between RSS scores: p-value<0.05; Pk standard error: S.E. (Pk) < 0.02.

doi:10.1371/journal.pone.0123464.t003
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Recently, Mathews et al. [31] showed that measures of electroencephalogram and EMG var-
iability increased when intraoperative somatic events occurred and permitted to discriminate
between 10-minute segments that contained a somatic event and those segments that did not
contain an event. Their results have been demonstrated to be better than the methods based on
changes in HR and mean arterial blood pressure. The contraction strength of a frontals muscle
is linearly dependent on the firing rate of motoneurons, which innervate the frontals. As sur-
face electrodes measure the sum of signals from multiple motor units, the work of Rautee et al.
suggested that the complexity of the SEMG band is related to the level of desynchronization be-
tween firing rates among adjacent motor units. The results of spectral entropy in that study
demonstrated that increased firing rates seem to produce increased desynchronization between
motor units [32] associated with higher disorder of the system. In the present work, the EEG
filtered in VHF bands presents less complexity in RSS = 6 than RSS�5 being the value of the
AMIF first decay lower (Fig 4A and 4B). In this way, the less complexity behavior of the EEG
filtered at VHFmight be associated with a decrease of the firing rates of the SEMG induced by
the deeper level of sedation. This is corroborated by the lower values of the power in VHF ob-
served in unresponsive states (Fig 4F) and in the central part of the time evolution in Fig 5.

Regarding the traditional EEG bands, previous studies have been demonstrated that in-
creased sedation levels are marked by increased δ and θ power and frontal α with increased
peak frequency [33–36]. Then, increasing propofol concentration in human subjects shifts cor-
tical activity from a high-frequency, low-amplitude signal to a low-frequency, high-amplitude
signal. Specifically, β activity decreases and α and δ activities increase [37] with increasing lev-
els of propofol anesthesia. In Fig 4E it can be observed that Pβ is lower for the unresponsive

Table 4. RSS assessment: trial 3, trial 4 and trial 5.

RSS<5 vs. RSS = 5
(N1 = 1158, N2 = 297)

RSS<5 vs. RSS = 6
(N1 = 1158, N2 = 701)

RSS<5 vs. RSS�5
(N1 = 1158, N2 = 998)

Variables PK Sen Spe PK Sen Spe PK Sen Spe

BIS 0.7531 72.5 65.0 0.8381 78.5 71.0 0.8128 77.5 68.0

m(Re30)δ, maxL(Re02)α, Pβ, FD(Sh)β 0.8010 72.1 72.7 0.8590 77.3 78.5 0.8395 75.7 76.1

m(Re50)θ, Pβ, PVHF, FD(Re05)VHF 0.7680 66.3 75.1 0.8645 72.2 83.5 0.8303 69.3 81.9

Multi-variables discrimination between EEG windows taken 30 s before nociceptive stimulation: strong response (RSS<5) and sluggish (RSS = 5) and no-

response (RSS = 6). N1 = number of analyzed windows RSS<5; N2 = number of analyzed windows RSS�5; Pk: prediction probability; Sen: (%) sensitivity;

Spe: (%) specificity; U of Mann-Whitney test between RSS scores: p-value<0.05; Pk standard error: S.E. (Pk) < 0.02.

doi:10.1371/journal.pone.0123464.t004

Table 5. GAG assessment: multi-variable discrimination between EEGwindows taken 30 s before the
tube insertion: absence (GAG = 0) and presence of gag reflex.

GAG 0 vs. GAG 1 (N1 = 353, N2 = 107)

Variables PK Sen Spe

BIS 0.7118 61.9 71.1

m(Re30)δ, maxL(Re02)α, Pβ, FD(Sh)β 0.7633 63.7 73.8

FD(Re2)δ, Pθ, Pα, maxL(Re10)α 0.8027 74.2 71.3

m(Re50)θ, Pβ, PVHF, FD(Re05)VHF 0.7542 68.2 72.0

N1 = number of analyzed windows GAG = 1; N2 = number of analyzed windows GAG = 0; Pk: prediction

probability; Sen: (%) sensitivity; Spe: (%) specificity; U of Mann-Whitney test between RSS scores: p-

value<0.05; Pk standard error: S.E. (Pk) < 0.02.

doi:10.1371/journal.pone.0123464.t005
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state reflecting a higher level of sedation respect unresponsive states. Also the weighted mean
frequency in α band (Fig 4C) is lower for RSS = 6, this implies that the spectral power is higher
in lower frequencies. In this work, patients in deep sedation showed a more complex EEG ac-
tivity in low frequency bands than patients in lower sedation levels (Fig 4D). This can be related
with the fact that EEG activity becomes slower as the sedation level increases, and thus, it is ex-
pected that patients in unresponsive state present a slower EEG signal than responsive state, in-
creasing the signal complexity in low frequency bands. Power in the high-frequency
component of EEG signals corresponds to corticocortical activity [37], while power in the low-
frequency component of EEG signals primarily arises from subcortical interactions [38]. The
decrease in high-frequency power with the administration of propofol may be due to a decrease
in intracortical and corticocortical activity. The increase in low-frequency power may arise
from interactions with subcortical structures such as the thalamus [36, 39]. EMG activity re-
flects subcortical activity during general anaesthesia. According to previous studies, subcortical
structures could be a site of the analgesic effect of anaesthetics [40–42].

Most studies addressing mechanisms of sedation and consciousness have been performed
under the effects of one drug only being it propofol or sevoflurane. Addition of an opioid as in
this case might probably affect the mechanisms of sedation in several ways but by the analysis

Fig 5. Time evolution of EEGmeasures. Example of time-evolution of bispectral index (BIS), predicted effect site remifentanil (CeRemi (ng/ml)) and propofol
(CePropo (μg/ml)), mean value of AMIF in θ band for q = 50, power spectral density in β band, power spectral density in VHF (105–145 Hz) band, first decay of
Auto-Mutual Information Function (AMIF) in VHF (105–145 Hz) band for q = 0.5 and first decay of AMIF in VHF (105–145 Hz) band for q = 0.2 of a patient
entire recording. All the EEGmeasures are represented in arbitrary units. Black vertical line represents the tube insertion, GAG = 1 in the first insertion and
GAG = 0 in the second insertion. RSS annotation are represented with yellow (RSS = 2), pink (RSS = 3), purple (RSS = 4), blue (RSS = 5) and red
(RSS = 6) circles.

doi:10.1371/journal.pone.0123464.g005
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of the EEG collected in our study it is not possible to establish a mechanistic hypothesis other
than the already demonstrated synergy between opioids and hypnotic drugs.

To our knowledge, there are not many publications addressing this topic of sedation-analge-
sia under combined propofol and remifentanil in real patients. One of them [43] have different
RSS score target (RSS = 4) and another one only took into account the drug concentration for
studying the loss of response [44] in volunteers undergoing a process similar to gastrointestinal
endoscopy.

In previous studies, all the EEG derived indexes showed high statistical performances in the
detection of the deep of anesthesia [45–46] with correlation scores or Pk>0.8.

However, general anesthesia requires deeper levels of hypnotic and opioid concentrations,
most of the times with pharmacological muscular paralysis to allow for mechanical ventilation
that eliminates any muscular activity improving the ability to predict certain responses with
the EEG because it is free of EMG signal.

During sedation and analgesia patients must be comfortable, painless but breathing sponta-
neously. This means that there will be muscular activity. EEG derived measure such as BIS will
perform worse in this context as demonstrated by the results of the present work. A measure
that would take into account EMG activity by expanding the frequency spectrum to be ana-
lyzed, as proposed in the present investigation, would probably be a better candidate to predict
sedation states better.

Auto-Mutual information function was chosen as a non-linear technique in order to evalu-
ate the complexity behavior of the EEG filtered in the different bands. The fundamental as-
sumption of nonlinear techniques is that EEG signal is generated by nonlinear deterministic
processes with nonlinear coupling interactions between neuronal populations [47, 48]. In gen-
eral, the most applied complexity measures found in the literature are attractor dimension
[49], correlation dimension [50], Lyapunov exponent [51], fractal dimension [52], entropies
[52], recurrence quantification analysis [53], higher order statistic and spectral [54]. Most of
the complexity measures mentioned above depend on the setting of estimation parameters,
namely embedding dimension, time delay of phase space reconstruction, prediction time
horizon, and partitioning signals. Assuming that the dimensional complexity of the nonlinear
system that generates the EEG signals is expected to be between 5 and 10 [55, 56], depending
on the aware or unaware states, the limit of the time series length was defined between 103 and
105 samples [57] or even greater than 105 [58]. These suppose a large sample size of the data
while mutual information function that describes the amount of information of a signal with
regard to a time shifted quantity can be constructed on short time series. This allows the
AMIF data to be computed more frequently so that the overall diagnostic indicator can quickly
indicate changes in the state of the patient. On the other hand, in this work mutual information
requires the estimation of probabilities from limited EEG time series and this might affect
the estimation of mutual information functions. However, in a previous work [59] this function
was calculated using 1024 samples after demonstrating a stabilization of the mutual information
measures variability for at least 512 samples. Furthermore, in other studies mutual information
functions were estimated on EEG and heart beat time series with length between 103 and 104 sam-
ples [60, 61]. In the proposed work the smallest EEG window resulted to be of 50 s corresponding
to 6400 samples at a sampling frequency of 128 Hz.

Furthermore, in the last decades, various time-frequency analysis methods have been pro-
posed for analyzing, interpreting, and scoring EEG signals, such as the wavelet transform [62],
the Hilbert-Huang transform (HHT) [63]. However, the wavelet transform requires the proper
choice of a mother wavelet function and the HHT, which is based on empirical mode decom-
position (EMD) [64], is very sensitive to the instantaneous energy content of the harmonics
and depends on the chosen spline-fitting techniques and stopping criterion [65]. For this

EEGHigh Frequencies to Predict Nociceptive Responses during Sedation

PLOS ONE | DOI:10.1371/journal.pone.0123464 April 22, 2015 14 / 21



reason, the results might be perturbed [66], especially if random noise is present in the signal.
In this way, before applying these methods on the present dataset further specific studies
should be performed but that would be out of the purpose of this work. Furthermore, in the fre-
quency representation provided by the wavelet transform and the HHT, there is no direct cor-
respondence between the scale and wavelength or frequency. Also, the conversion factors that
yield an approximate scale-frequency correspondence must be found. Regarding high order
spectral, since this feature is already included in the bispectral index we decided to not apply it
in the present study.

In this way, time-frequency representation based on Wigner-Ville and Choi-Williams dis-
tribution might be suitable for the purpose of this work for its ability to represent the spectral
features at each time-instant. However, comparing the results of two previous works, applied
to the same database, it can be noted that the statistical performances of the measures based on
time-frequency representation [17] does not significantly improve the statistical performances
of measures based on the Welch method [18]. In this way, since the Welch method avoids ex-
cessive computational charges and requires less computing time, it was considered to better fit
with the purpose of this study.

In all the trials, indexes based on AMIF outperformed all the autocorrelation and spectral
indexes in term of Sen, Spe and Pk. Especially, in the trial 1, only AMIF measures showed
Pk>0.65, in EMG band. We assumed that the properties of AMIF to deal with non-linear dy-
namics permit to detect differences in complexity behavior between the EEG recorded in dif-
ferent sedation levels. One can say that, in the case of the present study, AMIF should not
provide additional information because of the slightly presence of nonlinear dynamics in EEG
signal in healthy people compared with people suffering relevant neural pathology. However,
previous studies suggested the importance of nonlinear EEG analysis as a tool to monitor anes-
thetic depth [67, 68], since they found correlation between EEG complexity indexes and depth
of anesthesia and drug concentrations. Furthermore, we supposed that in EMG frequency
bands, the presence of nonlinear dynamics might be stronger than in EEG. In this way, EEG fil-
tered in EMG frequency bands might have different complexity behavior when comparing dif-
ferent values of Ramsey scores.

A previous study [69] assessed that nonstationarity affect frequency and information pa-
rameters, requiring stationarity of the EEG in the application of power spectral and AMIF.
However, several works demonstrated that, during wakefulness, EEG can be considered sta-
tionary for short intervals (about 1–20 s) and with increasing anaesthetic level, the probability
and duration of stationary EEG increases [70–74]. In the present study, the effect of non-statio-
narity was minimized by averaging the power spectral density calculated with Welch method
using a moving window of 1 s. In this short interval, we can use the assumption of stationary
EEG. Regarding the application of AMIF, a compromise has to be made between the minimum
window length for estimating the probability density and EEG stationarity. To solve this issue,
we applied AMIF to one-minute EEG windows and we took into account values of time delay
τ lower than 1 s, in AMIF calculation. Furthermore, the EEG windows were taken into account
only if no-variation higher than 0.1 ng/ml of remifentanil and 0.1 μg/ml of propofol were ob-
served. In this way, we might assume that EEG did not have strong variations due to variation
in the drug concentrations and thus the sedation level did not change. From all these consider-
ations, we assume that, even though the analyzed window were of one-minute length, the non-
stationarity effect on our results were minimized.

Analyzing all the results it can be denoted that the combinations of linear and non-linear
measures calculated in the traditional EEG bands were able to yield Pk>0.8 when discriminat-
ing between RSS<5) and (RSS = 5 and/or RSS = 6) and between GAG 0 and GAG 1. However,
in order to yield Pk>0.8 when discriminating between RSS<6 and RSS = 6, measures

EEGHigh Frequencies to Predict Nociceptive Responses during Sedation

PLOS ONE | DOI:10.1371/journal.pone.0123464 April 22, 2015 15 / 21



calculated in the traditional EEG bands had to be combined with measures calculated in EEG
filtered at high frequencies where the SEMG component is present. In this way, the measures
calculated in EEG filtered at high frequencies improved the prediction of unresponsive (RSS<6
and GAG = 0) and responsive (RSS = 6 and GAG = 1) states when different types of stimuli are
taken into account.

The use of combination between linear and non-linear EEG measures gave the advantages
to deal with both the spectrum and complexity characteristics of the EEG signal. Furthermore,
by calculating EEG filtered in high frequency bands, it could be possible to improve the pain re-
sponses prediction by including the contribution of the EMG component. In this way, further
than the hypnotic effects, also the analgesic effects was better characterized. This can give a
strong improvement in the prediction of the response to noxious stimuli in patients under an-
esthesia and sedation leading to design a method which can be integrated into a medical device
for the assessment of pain and nociception during anaesthesia. It was demonstrated that
intraoperative monitoring of processed physiological signals reduced anesthetic exposure im-
proving early recovery profiles and faster emergence from anesthesia [75]. Furthermore, it de-
creased the risk of post-operative delirium and cognitive decline [76]. Hence the outcome will
be of benefit for the patients and have a considerable socio-economic impact.

Since the nociceptive stimuli analyzed in the present work are of different kind, our findings
might be extended in any kind of surgical procedures, where patients are sedated with both an-
algesic and hypnotic agents.

However, a limitation of this study can be the use of a database in which only two kind of
anesthetics were used (propofol and remifentanil) because it represented a particular case of
drug. For a further validation, this method should be also applied to patients undergoing seda-
tion with different drug administrated (i e. sevoflurane)

Conclusions
Measures extracted from EEG filtered at high-frequencies have been proposed as new approach
to monitor pain responses during sedation. Traditional measures based on power spectral den-
sity and nonlinear measures based on auto-mutual information function (AMIF) applied to
EEG filtered in the traditional bands and in high frequency bands improved the discrimination
between different sedation levels. Single variables based on nonlinear measures of EEG filtered
in VHF band (105–145 Hz) yielded Pk>0.7, Sen>60 and Spe>65 when predicting Ramsey se-
dation score (RSS) related to between nociceptive responses RSS = 5 and non-responses
RSS = 6 to nail bed compression.

The combination of variables based on the spectral power in β and VHF bands, the mean
value of the AMIF calculated with q>1 in θ band and the first decay of AMIF calculated with
q<1 in VHF (105–145 Hz) band yielded Pk>0.75 in all RSS and GAG prediction.

The obtained results indicate that measures from frontal EEG filtered in high frequencies
that contain also EMG components helped to improve the prediction of different stimuli re-
sponses. The combination of linear and non-linear measures of EEG filtered in the traditional
bands and in higher frequencies resulted to be a promising methodology for the non-invasive
prediction of pain responses during sedation. This might give a contribution to solve the prob-
lems related to the development of a clinical index able to assess the sedation level.

Glossary

• BIS: Bispectral index
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• FD(Re02)VHF: First decay (FD) of AMIF using Rényi entropy (Re) with control parameter q =
0.2 in the VHF frequency band

• FD(Re05)VHF: First decay (FD) of AMIF using Rényi entropy (Re) with control parameter q =
0.5 in the VHF frequency band

• FD(Re2)δ: First decay (FD) of AMIF using Rényi entropy (Re) with control parameter q = 2
in the δ frequency band

• FD(Sh)β: First decay (FD) of AMIF using Shannon entropy (Sh) in the β frequency band

• m(Re05)α :Mean (m) of AMIF using Rényi entropy (Re) with control parameter q = 0.5 in
the α frequency band

• m(Re30)δ:Mean (m) of AMIF using Rényi entropy (Re) with control parameter q = 30 in the
δ frequency band

• m(Re50)θ: Mean (m) of AMIF using Rényi entropy (Re) with control parameter q = 50 in the
θ frequency band

• maxL(Re02)α: First relative maximum (maxL) of AMIF using Rényi entropy (Re) with control
parameter q = 0.2 in the α frequency band

• maxL(Re10)α: First relative maximum (maxL) of AMIF using Rényi entropy (Re) with control
parameter q = 10 in the α frequency band

• maxL(Re2)HF: First relative maximum (maxL) of AMIF using Rényi entropy (Re) with con-
trol parameter q = 2 in the HF frequency band

• maxL(Re2)VHF: First relative maximum (maxL) of AMIF using Rényi entropy (Re) with con-
trol parameter q = 2 in the VHF frequency band

• maxL(Re2)θ: First relative maximum (maxL) of AMIF using Rényi entropy (Re) with control
parameter q = 2 in the θ frequency band

• min2(Re30) δ: Absolute minimum (min2) of AMIF using Rényi entropy (Re) with control pa-
rameter q = 30 in the δ frequency band

• mFα:Weighted mean frequency (mF) in α frequency band

• Pα: Spectral power in α frequency band

• Pβ: Spectral power in β frequency band

• PVHF: Spectral power in VHF frequency band

• Pθ: Spectral power in θ frequency band
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