
sensors

Article

Adaptive Indoor Area Localization for Perpetual
Crowdsourced Data Collection

Marius Laska 1,* , Jörg Blankenbach 1 and Ralf Klamma 2

1 Geodetic Institute and Chair for Computing in Civil Engineering & Geo Information Systems,
RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany;
blankenbach@gia.rwth-aachen.de

2 Advanced Community Information Systems Group (ACIS), RWTH Aachen University,
Lehrstuhl Informatik 5, Ahornstr. 55, 52074 Aachen, Germany; klamma@dbis.rwth-aachen.de

* Correspondence: marius.laska@gia.rwth-aachen.de

Received: 15 January 2020; Accepted: 3 March 2020; Published: 6 March 2020
����������
�������

Abstract: The accuracy of fingerprinting-based indoor localization correlates with the quality
and up-to-dateness of collected training data. Perpetual crowdsourced data collection reduces
manual labeling effort and provides a fresh data base. However, the decentralized collection
comes with the cost of heterogeneous data that causes performance degradation. In settings with
imperfect data, area localization can provide higher positioning guarantees than exact position
estimation. Existing area localization solutions employ a static segmentation into areas that is
independent of the available training data. This approach is not applicable for crowdsoucred data
collection, which features an unbalanced spatial training data distribution that evolves over time.
A segmentation is required that utilizes the existing training data distribution and adapts once
new data is accumulated. We propose an algorithm for data-aware floor plan segmentation and a
selection metric that balances expressiveness (information gain) and performance (correctly classified
examples) of area classifiers. We utilize supervised machine learning, in particular, deep learning,
to train the area classifiers. We demonstrate how to regularly provide an area localization model that
adapts its prediction space to the accumulating training data. The resulting models are shown to
provide higher reliability compared to models that pinpoint the exact position.

Keywords: indoor localization; area localization; crowdsourcing; fingerprinting; deep learning

1. Introduction

In recent years, the usage of location-based services (LBS) has experienced substantial growth.
This is mostly caused by the wide adoption of smartphones with the ability to reliably track a
user’s location. Global Navigation Satellite Systems (GNSS), such as the Global Positioning System
(GPS), are the dominant technology to enable LBS, since they offer accurate and reliable localization
performance. However, GNSS do not provide sufficient availability and reliability inside buildings,
since the satellite signals are attenuated and scattered by building features. This drawback has led
to the development of various alternative indoor localization systems [1], which utilize a spectrum
of techniques and technologies. Until today, there is not any gold standard for indoor localization,
which can be stated as the main issue that has prevented indoor LBS from developing their full
potential [2].

Indoor localization systems can serve different purposes. In monitor-based systems, the location
of a user or entity is passively obtained relative to some anchor node [1]. This can be utilized,
for example, to enhance the energy efficiency of buildings by automatically switching-off lighting
and heating/cooling in empty rooms [3,4]. In contrast, in device-based systems, the location

Sensors 2020, 20, 1443; doi:10.3390/s20051443 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9855-2898
https://orcid.org/0000-0002-5700-8818
https://orcid.org/0000-0002-2296-3401
http://dx.doi.org/10.3390/s20051443
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/5/1443?type=check_update&version=2

Sensors 2020, 20, 1443 2 of 26

information is obtained from a user-centric perspective [1], which can be utilized, for example, to enable
navigation [5,6]. A variety of technologies and approaches are present in the field of indoor localization.
Comprehensive overviews are given in [1,7–10]. In general, indoor localization systems can be grouped
into (1) autonomous, (2) infrastructure-based and (3) hybrid systems. Autonomous systems apply
inertial navigation [7]. In infrastructure-based systems, it can be differentiated between (2.1) analysis
of signal propagation to dedicated transmitting stations and (2.2) scene analysis (fingerprinting) [11].
The former utilizes proximity, lateration or angulation measurements to estimate the user’s location.
This requires line-of-sight and knowledge about the location of the stations. In contrast, fingerprinting
does not rely on either. Instead, in an offline phase, the scene is scanned at certain reference points
with a sensing device (e.g., smartphone). The observed sensor values at each reference point form
so-called fingerprints. Using supervised machine learning (ML), a mapping from fingerprints to
locations is learned, which is utilized to estimate the location for unseen fingerprints during online
localization. Fingerprinting leverages existing infrastructure, which reduces upfront deployment cost.
However, the accuracy of the system strongly depends on the quality of the offline site survey and the
up-to-dateness of the fingerprint database.

A crowdsourced site survey has been proposed to partition the collection among several
participants and thus reduces the manual labeling effort [12–14]. Users either explicitly tag a fingerprint
with a location, or the label is implicitly inferred by the system. The decentralized collection comes
with the cost of heterogeneous data, which include among others device heterogeneity, labeling noise
and an unequal spatial training data distribution [15].

Area localization can be applied in settings with imperfect data to achieve reliable positioning
guarantees [16]. The problem is simplified such that the goal becomes to predict the right area instead
of pinpointing the exact location. Existing area localization solutions employ a static segmentation into
areas that is independent of the available training data [17–20]. This approach is not applicable for
crowdsoucred data collection, since it features an unbalanced spatial training data distribution that
changes over time. A segmentation is required that utilizes the existing training data distribution and
adapts when new data is accumulated. The amount and shape of the areas, in particular, the richness
of training data per area, affect the accuracy of classification models, which we subsequently call
model performance. In addition, the expressive power is determined by the segmentation. If a model
predicts one of few but large classes, the information gain of the user is lower compared to models that
predict one of many smaller areas. We call the expressive power of the model that is determined by
the segmentation expressiveness. Since crowdsourced data is expected to be generated continuously,
the segmentation into areas as well as the successive classification model can be continuously improved.
The challenge is, therefore, to continuously find a model with the right balance between expressiveness
and performance given the most recent crowdsourced map coverage.

The main contributions of this paper are summarized as follows:

• We introduce the concept of adaptive area localization to enable area classification for
crowdsourced data that are continuously generated.

• We propose the idea of data-aware floor plan segmentation to compute segmentations that
benefit subsequent classification. We present a clustering-based algorithm that determines such a
segmentation with adjustable granularity.

• We formulate a metric to compare various area classifiers, such that the model, providing the
optimal balance between expressiveness and performance, can be selected. This allows for
automatic model building and selection in the setting of continuous crowdsourced data collection.

• We provide a comprehensive experimental study to validate the concepts on a self-generated and
a publicly available crowdsourced data set.

The rest of the paper is organized as follows: we introduce related work in Section 2 focusing on
crowdsourced data collection, area classification and deep learning. Subsequently, Section 3 introduces
the proposed concepts of adaptive area classification in detail. In Section 4 we present the locally
dense cluster expansion (LDCE) algorithm for computing floor plan segmentations with adjustable

Sensors 2020, 20, 1443 3 of 26

granularities that are based on the available training data. Section 5 covers details regarding machine
learning model building for area classification. In Section 6 the proposed concepts are evaluated on a
self-generated as well as a publicly available crowdsourced data set. Finally, we discuss our findings
in Section 7 and draw conclusion in Section 8.

2. Related Work

Fingerprinting-based indoor localization commonly utilizes a two stage approach. In the offline
phase, radio frequency (RF) signals are collected at certain reference points and tagged with the
position of collection. An algorithm is used to find a mapping from unknown fingerprints to locations.
This algorithm is then applied during the online phase to localize an RF device [21]. The RF technology
of choice for fingerprinting is commonly WLAN, however, solutions have been proposed that utilize
alternative RF technologies such as LTE [22]. The most common approach for constructing a WLAN
fingerprint is the received signal strength (RSS), which can be used either directly [23,24] or after feature
extraction [25–28]. Recent studies on fingerprinting also incorporate channel state information (CSI) as
input data in order to obtain more accurate prediction results [29–31]. The underlying assumption
states that RSS values do not exploit the subcarriers in an orthogonal frequency-division multiplexing
(OFDM). Therefore, CSI contains richer multipath information [32], which is beneficial for training
complex models. However, obtaining CSI data is only achievable with certain Wi-Fi network interface
cards (NIC) and thus is currently not suitable for smartphone based data collection like crowdsourcing.
In this work, we focus on classical WLAN fingerprinting and utilize the RSS of scanned access points
to construct the radio frequency map.

2.1. Crowdsourcing

Several approaches have been proposed to reduce the manual labeling effort during crowdsourced
data collection for Wi-Fi fingerprinting [12–14]. Rai et al. [12] were among the first to present a
probabilistic model to infer the position of implicitly collected fingerprints. They periodically collected
the RSS together with the timestamps of collection. Simultaneously, the system tracks the user utilizing
a particle filter. After convergence, the path information is used to annotate the RSS measurements with
a location. Radu and Marina [13] additionally integrated activity recognition and Wi-Fi fingerprinting
via a particle filter to detect certain anchor points, such as elevator or stairs. He and Chan [33]
utilized proximity information to Internet-of-things (IoT) sensing devices and the initially sparse RSS
radio map to label fingerprints during implicit crowdsourcing. The IoT devices can be fixed, such as
installed beacon transmitters or moving (smartphones of other participants). Santos et al. [14] utilized
pedestrian dead reckoning (PDR) techniques to reconstruct the movements of users and classified
the resulting trajectories using Wi-Fi measurements. Similar segments have been identified using
an adaptive approach based on geomagnetic field distance. Finally, floor plans were reconstructed
through a data fusion process and the collected Wi-Fi fingerprints were aligned to physical locations.
Zhou et al. [34] abstracted the indoor maps as semantics graph. Crowdsourcing trajectories were
mapped to the floor plan by applying activity detection and PDR. The annotated trajectories have
been utilized to construct the radio map. Based on unfixed data collection, Jiang et al. [35] proposed
the construction of a probabilistic radio map, where each cell was assigned a probability density
function (PDF) instead of a mean value as in classical site survey approaches. Wei et al. [18] utilized
the knowledge of location during the payment process inside the shops of a mall. They utilized this
to annotate collected fingerprints with the current shop to build a hierarchical classification model
that provides shop-level localization. In contrast to probabilistic fingerprint annotation, unsupervised
learning can be utilized to obtain labeled Wi-Fi fingerprints [36,37]. Jung and Han [37] utilized
unsupervised learning to infer the location of access points together with a path loss model and
optimization algorithm, which they presented in [36]. They investigated how to adaptively recalibrate
the resulting map to avoid performance degradation of downstream localization models.

Sensors 2020, 20, 1443 4 of 26

Besides the reduction of labeling effort when collecting data via crowdsourcing, there are several
additional challenges that have to be considered. Ye and Wang [15] identifed four major problems,
which are:

• Inaccurate position tags for crowdsourced fingerprints that might occur during manual labeling
of non-experts or are caused by automatic labeling via probabilistic models.

• The fluctuating dimensionality of RSS signals caused by varying numbers of hearable access
points for various locations.

• The device heterogeneity that causes RSS to differ across various devices for the same
measurement position.

• The nonuniform spatial data distribution, meaning that some areas feature a larger amount of
data, while for others no data was collected.

They constructed device-specific grid fingerprints utilizing clustering-based algorithms.
For sparse areas fingerprints are interpolated and finally, the samples from several devices are fused
to obtain device independent grid fingerprints. Yang et al. [25] additionally identified the short
measurement time of crowdsourced sample collection as a typical problem. They utilized the fact
that the most-recorded RSS does not differ much, irrespective of the length of measuring, to extract a
characteristic fingerprint. In a follow up work, Kim et al. [26] evaluated the system in a case study
and demonstrated its effectiveness. Pipelidis et al. [38] proposed an architecture for cross-device
radio map construction via crowdsourcing. They utilized data labeled via a simultaneous localization
and mapping (SLAM)-like algorithm. The RSS values between devices were calibrated via reference
measurements at several landmarks. The data was clustered and subsequently used for classification
of areas.

2.2. Area Localization

In contrast to localization systems that aim at pinpointing the exact position of a user, the concept
of area classification only focuses on estimating the current area of the user, such as the office room or
the shop inside a mall. This is particularly suitable for large scale deployments or in situations where
the data quality does not allow for accurate localization.

Lopez Pastor et al. [17] evaluated a Wi-Fi fingerprinting-based indoor localization system inside a
medium sized shopping mall. The system is meant for providing shop-level accuracy, while minimizing
the deployment cost and effort. Data is collected by randomly walking in predefined areas, such
that all data can be labeled with the corresponding shop. The authors claim that the achieved
system performance is sufficiently independent of the device and does not deteriorate over time.
Wei et al. [18] adopted a similar approach. They utilized the fact that during payment inside a shop,
the location of the user is known. This can be used to annotate Wi-Fi fingerprints collected while paying.
The obtained fingerprints can be utilized for shop-level position estimation. Rezgui et al. [19] proposed
a variation of a support vector machine (SVM) (normalized rank based SVM) to address the problem
of hardware variance and signal fluctuation of Wi-Fi based localization systems. The system achieves
room level prediction accuracies. He et al. [16] compared the performance of various classification
models, such as SVM, artificial neural network (ANN) and deep belief network (DBN) for various
test sites. They addressed the identification of floors, indoor/outdoor and buildings. In a recent
follow up work [39], they also tackled the inside/outside region decision problem and propose
solutions for missing AP detection and fingerprint preprocessing. Liu et al. [20] proposed an algorithm
for probability estimation over possible areas. By adopting the user’s trajectory and existing map
information, they eliminate unreasonable results. The partitioning of the map into areas is done
manually based on the different rooms and offices.

2.3. Deep Learning for Fingerprinting

Fingerprinting-based indoor localization can be formulated as standard supervised learning
problem. It can be modeled as regression problem with the goal to predict the exact position, or as a

Sensors 2020, 20, 1443 5 of 26

classification task on predetermined areas. Due to the recent success of deep learning in areas such
as image processing or speech recognition, the application of deep models for fingerprinting-based
indoor localization has gained attention recently. Nowicki and Wietrzykowski [40] applied stacked
autoencoders combined with a feed forward neural network for building and floor prediction.
Xiao et al. [23] compared SVM and a deep neural network (DNN) on various publicly available
data sets and propose a data augmentation schema as well as an approach for transfer learning.
Adege et al. [28] applied regression analysis to fill missing RSS values and utilize linear discriminant
analysis for dimensionality reduction. Finally, feed forward neural networks are applied to tackle
the regression and classification problem. Kim et al. [41] formulated the problem as multi-label
classification problem to predict the building, floor and position with a single network with minimal
performance degradation. Mai et al. [42] utilized a convolutional neural network (CNN) on raw RSS
data by applying the convolution on time-series data. The data is artificially constructed by combining
measurements within a certain cell size that have been captured in temporal intervals not exceeding
a certain threshold. By constructing an image of the RSS vector, CNNs that are predominantly used
for image classification can be applied. Mittal et al. [27] filtered access point signals that have a
low Pearson Correlation Coefficient (PCC) between the access point values and the location vector.
The remaining RSS vector is transformed into an image matrix by multiplying each access point vector
with the obtained correlation values and arranging as matrix with zero padding. Sinha et al. [24]
simply arranged the RSS vector as a matrix to train a standard CNN image classifier. They proposed
a data augmentation scheme where single values of the RSS vector are replaced by random values
sampled from the interval of the difference of the actual value and the access point mean value.

3. Adaptive Area Classification for Crowdsourced Data

In the following section, we introduce our approach to adaptive area classification. We describe
the concept overview and introduce relevant notations. Subsequently, a floor plan segmentation is
formally defined and classification models for indoor localization are described. Finally, we propose a
novel metric called ACS, which is utilized to select area classifiers with respect to the optimal balance
between expressiveness and performance.

3.1. Concept Overview

The performance of Wi-Fi fingerprinting-based indoor localization systems heavily relies on
thorough and up-to-date site survey data. Crowdsourced training data collection continuously
provides fresh data, but suffers from poor data quality. Several approaches suggest to maintain
an up-to-date radio map, which stores a representative fingerprint or a probabilistic distribution for
predefined locations, regions, or grid cells [33,35,43]. Missing data for certain locations prohibits
equal radio map quality at all areas. This is solved by either enlarging the areas of the radio map
or by interpolating fingerprints for sparsely covered areas [15]. The update of such a radio map is
a complicated process, since its granularity is static. However, the spatial distribution of available
training data is expected to shift over time. Therefore, instead of maintaining a radio map with
characteristic fingerprints for predefined areas, we store the entire training data with the noisy position
tags. At regular intervals, we dynamically subdivide the floor plan into areas based on the richness
of available training data. The training data, which are originally annotated with noisy position tags,
are labeled with the corresponding areas based on the computed floor plan segmentation. This enables
training of standard supervised machine learning classifiers that predict the correct area. In order to
quantify the gain of such an area classifier, two metrics can be utilized.

• The expressiveness measures the information gain of the user, which is mainly influenced by the
extent of each individual area and the total coverage of the model.

• The performance indicates how reliably the model predicts a certain area.

Sensors 2020, 20, 1443 6 of 26

The two metrics are inversely proportional. That means a fine segmentation (high expressiveness)
negatively affects the performance of the model and vice versa. We assume that fresh crowdsourced
training data is accumulated over time. This enables updates of the floor plan segmentation and the
successive area classifier. The workflow for continuously providing area localization models, where the
prediction space adapts to the new training data, is illustrated in Figure 1. Over time, the map gets
covered with an increasing amount of training data, which is illustrated in the top row of Figure 1.
At regular intervals, the goal is to provide an optimal indoor area classification model based on the
current map coverage. This process includes the automatic floor plan segmentation into areas and
the training of an ML model. Several floor plan segmentations can be determined that influence the
expressiveness of the ML model and for each of these segmentations several ML models can be learned.
For each epoch, the best combination of segmentation and model is selected. This is done with respect
to a metric, called area classification score (ACS). The ACS balances expressiveness and performance
and is introduced in Section 3.5.

time

Expressiveness

Floor plan
segmentation

Training
data

Model
selection ACS = 0.4 ACS = 0.5 ACS = 0.5 ACS = 0.6

Model
training

&

t1 t2

tra

in
in

g
sa

m
pl

es

tra

in
in

g
sa

m
pl

es

Figure 1. Concept of adaptive area classification for crowdsourced map coverage.

3.2. Data Notations

In the following, we introduce the formal notations that are subsequently used. We assume
that at a certain point in time, a set of N labeled training data tuples (fingerprints) FP = { f pn =

(xn, pn, tn)} for n = 1, ..., N has been collected for a given indoor map. Each fingerprint f p consists
of a M-dimensional feature vector x = (x1, ..., xM)T and is tagged with a position pn = (px, py)T in
two dimensions and the corresponding timestamp tn of collection. In the following we focus on Wi-Fi
fingerprinting, such that each entry of the vector is the RSS value of the corresponding access point
and M is equal to the total amount of access points that are observable for the map. Since not all access
points are hearable at all locations, x contains missing entries, which have to be considered during
further processing of the data.

3.3. Floor Plan Segmentation for Area Classification

In order to train a classification model, we have to find a floor plan segmentation that assigns each
fingerprint tuple (x, p, t) to one of the K areas or classes, Ck for k = 1, .., K. A floor plan segmentation
determines a mapping SEG : Ck → Ak, where Ak might be any two-dimensional shape, such as a
rectangle. Given such a mapping SEG, we can label each fingerprint with the class label of the area
it is located in. For a given segmentation SEG, we obtain the transformed set FPSEG = {(xn, cn)},
where cn ∈ {1, ..., K} and cn = k ⇔ pn lies within Ak. The goal is now to find a classifier C : x → ck

Sensors 2020, 20, 1443 7 of 26

that determines the correct area of the floor plan segmentation for an unknown RSS fingerprint.
We have now arrived at the standard formulation of a supervised learning problem, in particular,
a classification problem.

3.4. ML Models for Area Classification

Given the transformed set of fingerprints FPSEG = {(xn, cn)} for a segmentation SEG, we can
utilize any standard ML classification model that learns to predict the unknown class ck for a fingerprint
x. We can either construct a discriminant function that directly assigns a class to an unknown
fingerprint, or we model the conditional probability distribution p(ck|x) [44]. SVMs depict a typical
discriminant model used in the domain of indoor localization, while with DNNs, it is possible to
model p(ck|x). Both models are utilized in the experimental study (Section 6) as classifiers for the
transformed fingerprint sets FPSEG.

3.5. Area Classification Score

In order to properly quantify the quality of the learned area localization model (combination of
segmentation and trained classifier), we have to simultaneously investigate the model’s expressiveness
as well as its performance. The expressiveness is influenced by the total extent of covered area as well
as the size of each individual area. We state that the expressiveness of a model is higher if it predicts
classes associated with smaller areas. However, the benefit of a narrow prediction area vanishes if the
performance for that specific class, for example the accuracy, is poor. To capture this interplay, we
have to look at each predicted class of the classifier individually. We define areak as the surface area
of the area Ak that belongs to class Ck. On an individual class level, we define the expressiveness of
class Ck as:

expλ(Ck) =
areamin

areaλ
k

, (1)

where areamin is the minimal extent that an area might have by definition (set to 1m2 in the following)
and λ is a parameter to adjust the slope of the function. Additionally, a performance metric is required,
which measures the accuracy of the model on a class level. We choose the F1 score, since we are equally
interested in precision and recall. Let F1(Ck) be the class-based F1 score for class Ck, evaluated on a
separate test set. The chosen metrics for expressiveness and performance reside in the interval [0, 1],
such that we can multiply them to obtain a value in [0, 1], which would be optimal, if the predicted
class has the minimal extent of 1m2 and a F1-score of 1 on the test set. In order to account for the total
covered area, we take the weighted mean of the product of expressiveness and performance using the
area of each class. We finally arrive at:

ACS =
1

areatot

k

∑
k=1

F1(Ck)
µ · expλ(Ck) · areak , (2)

which we call area classification score (ACS) in the following. The expressiveness term (1) regulates
how much the class score adds to the weighted mean. For λ = 0, the regularization term vanishes,
such that the area size of the specific class has no influence on the amount that is added to the mean.
This means that two localization models with constant class-wise classification performance F1 achieve
the same score if they cover the same area areacov, independent of the amount of classes and their
individual size:

ACSλ=0 =
areacov

areatot
· F1 . (3)

It follows that if λ approaches 0, the metric becomes less sensitive to the individual area sizes.
With respect to models covering a similar extent of the map, those that provide a higher performance
will be rated higher, independent of the number and individual size of their areas. The closer λ

gets to 1, the higher is the influence of individual area sizes. High performance on broad areas will

Sensors 2020, 20, 1443 8 of 26

not add much to the weighted mean, since they are downscaled by the expressiveness factor. As a
consequence, models with finer segmentations score higher, since the influence of area regularization
outweighs the performance factor. For λ = 1, the score is only sensitive to the amount of total segments.
The ACS becomes

ACSλ=1 =
1

areatot

k

∑
k=1

F1(Ck)
µ , (4)

which will be higher for finer segmentations given that the same total extent of the map is covered.
The parameter µ can be utilized for fine tuning. By setting it larger than 1, models with overall low
performance are penalized. We found that λ has a greater impact on the model selection and suffices
for our use-cases. Therefore, µ is set to 1 during subsequent application of the ACS.

Figure 2 emphasizes how the parameter choice of λ affects the ACS for three artificial
segmentations (a–c) . The rectangular boxes represent the prediction areas of the classifier and
the numbers show the class-wise F1 scores on a separate test set. We stated that λ influences the
expressiveness. In particular, the closer the value gets to 1, the more each individual class score is
downscaled by the size of its area. As a consequence, a low λ value targets high performant models
with lower expressiveness and a high λ value selects models with high expressiveness and lower
performance. Given the three segmentations (a–c), we plot the ACS for all possible choices of λ in
Figure 2d to investigate which model achieves the highest score (illustrated by the color below the
curve). As expected, the broad segmentation (a) is selected for low lambda values (0–0.13), the medium
segmentation (b) is chosen for values (0.13–0.37) and the fine segmentation (c) is chosen for higher
values (0.37–1). In practice, a pool of models is trained such as (a–c). The λ parameter is fixed, such
that the best scoring model is determined. If the model does not adhere to the required use case
requirements, λ can be adjusted accordingly, such that a different model is obtained.

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

0.95

0.93

0.91

(a) broad segmentation

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

0.9 0.92

0.93

0.89 0.91 0.88

(b) medium segmentation

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

0.8 0.76 0.54 0.88

0.72 0.85

0.68 0.81 0.7 0.73 0.84

(c) fine segmentation

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

AC
S

SEG
broad
medium
fine

(d) ACS for different λ values

Figure 2. Illustration of the impact of λ on the ACS for pool of example models.

Sensors 2020, 20, 1443 9 of 26

4. Floor Plan Segmentation Algorithms

In order to train an area classification model, we have to determine a mapping from areas
to classes that we defined as floor plan segmentation. If we neglect the underlying training data
distribution, we end up with segmentations where certain classes feature few to zero fingerprint
samples. This results in unsatisfying classification performance. The goal should be to leverage
the knowledge about available training data to compute a segmentation that benefits subsequent
classification but still provides the best possible expressiveness. We call such a segmentation data-aware
floor plan segmentation and present an algorithm for this purpose in the following.

4.1. Locally Dense Cluster Expansion (LDCE)

In the following, we introduce the LDCE algorithm that computes a floor plan segmentation,
in particular, a mapping SEG : Ck → Ak that assign each class Ck a shape Ak. Given SEG, we can label
fingerprints (x, p, t) with the class that belongs to the area Ak in which p is located. Let FP = { f pn =

(xn, pn)} for n = 1, ..., N be a set of training data, we cluster the observations and determine the shapes
Ak based on the position labels of the resulting cluster members.

Initially, we detect a set of locally dense base clusters. This serves two purposes: (1) observations
that are densely connected to a certain degree should not be separated and (2) fingerprints that are not
part of any initially dense cluster should be considered as noise. Both conditions are fulfilled when
applying a standard density based clustering algorithm such as the density-based spatial clustering of
applications with noise (DBSCAN) algorithm.

The resulting base clusters are subsequently expanded. Each round the closest clusters are
determined and merged. Resulting clusters that contain the required amount of stop_size members
are deleted from the expansion set and added to the set of final clusters. This process is continued
until either no clusters are present in the expansion set, or the smallest minimal distance exceeds the
maximal allowed merging distance max_eps. Remaining clusters with fewer than stop_size members
are postprocessed. By setting the minMembers parameters lower than stop_size, those clusters having
at least minMember members are added to the set of final clusters. All other remaining clusters are
added to the closest final cluster.

This routine yields clusters with definable bounds for the amount of members. Since clusters with
more than stop_size members are excluded from the merging phase, any merged cluster might have
at most 2 · stop_size members. However, besides the amount of available training data per segment,
we require a reasonable segmentation that adheres to the physical floor plan structure. In particular,
segmentations should minimize spreads across multiple walls if possible. Furthermore, since the
feature vector of subsequent classification consists of the RSS vector, the similarity in RSS signal space
should be considered during the segmentation phase. The approach we propose achieves this by
constructing a particular distance function between fingerprints and clusters of fingerprints that is
used in the previously described algorithm. Given two fingerprints f pu = (xu, pu) and f pv = (xv, pv),
we define their distance as:

dist(f pu, f pv) = ||pu − pv||2 + θ · |Wpu ,pv |+ ζ · ||xu − xv||2 , (5)

whereWpu ,pv is the set of walls between pu and pv. Note that the main distance factor is the Euclidean
distance between the position labels, while the difference between RSS vectors and the number of
conflicting walls are used to penalize this base distance. The distance between clusters is based on
centroid distance. We add another penalty term to account for final clusters that might lie between
merging clusters. Let Ci and Cj be two clusters, pi, pj the average position labels and xi, xj the average
RSS vectors, the distance is then given by:

dist(Ci, Cj) = ||pi − pj||2 + θ · |Wpi ,pj
|+ ζ · ||xi − xj||2 + η · |Ci,j| , (6)

Sensors 2020, 20, 1443 10 of 26

where Ci,j is the subset of final clusters, such that C f ∈ Ci,j ⇔ ∃ f p f ∈ C f |p f within bounds(pi, pj).
In order to prevent merging of far distant clusters, with respect to the penalized distance function,
we set a threshold max_eps on the maximal allowed merging distance of two clusters. Note that the
choice of max_eps determines the maximal amount of allowed walls between two merging clusters.
If we choose max_eps = θ · x + δ, it holds that for any δ < θ, there will be at most x− 1 separating
walls between any merging cluster.

After we have determined the clustering, we have to construct the two-dimensional shapes
that represent the floor plan segmentation. Those are obtained by using the position labels of the
respective cluster members. We can construct the shape by taking the bounding box around the
labels, or computing the convex or concave hull. Figure 3 shows stages of an example run of LDCE.
The clusters merge over time (a–c) until all clusters have at least stop_size members (d). In the example,
the final segments are obtained from the bounding boxes around the labels of the class members.
The pseude code of the algorithm can be found in Algorithm 1.

0 10 20 30 40 50 60 70 80

0.0

2.5

5.0

7.5

10.0

12.5

15.0

(a) 0 10 20 30 40 50 60 70 80

0.0

2.5

5.0

7.5

10.0

12.5

15.0

(b)

0 10 20 30 40 50 60 70 80

0.0

2.5

5.0

7.5

10.0

12.5

15.0

(c) 0 10 20 30 40 50 60 70 80

0.0

2.5

5.0

7.5

10.0

12.5

15.0

(d)

Figure 3. Illustration of LDCE segmentation. Clusters expand over time (a–c) until all clusters have
reached a size greater than the stop_size threshold (d).

Sensors 2020, 20, 1443 11 of 26

Algorithm 1 LDCE floor plan segmentation
1: Inputs:

Fingerprints: FP = { f pn = (xn, pn)} . n = 1, ..., N
Walls: W = {(xsw , ysw , xew , yew)} . w = 1, ..., W
Main parameters: stop_size, max_eps
Distance penalties: θ, η, ζ

DBSCAN parameters: eps, minPts
Postprocessing: minMembers

2: Initialize:
dist[f pu, f pv]← ||pu − pv||2 + θ · |Wpu ,pv |+ ζ · ||xu − xv||2 . 1 ≤ u, v ≤ N
C f inal ← {}
Cexp ← DBSCAN(dist, eps, minPts)

. Main routine
3: while |Cexp| > 1 and min_dist < map_eps do
4: C_dist[Ci, Cj]← ||pi − pj||2 + θ · |Wpi ,pj

|+ ζ · ||xi − xj||2 + η · |Ci,j| . 1 ≤ i, j ≤ |Cexp|
5: min_dist← min(C_dist)
6: Cm, Cn ← argmin(C_dist)
7: Cmerged ← Cm ∪ Cn

8: Cexp ← Cexp \ Cx, Cy

9: if |Cmerged| > stop_size then
10: C f inal ← C f inal ∪ Cmerged

11: else
12: Cexp ← Cexp ∪ Cmerged

13: end if
14: end while

. Postprocessing
15: for all C in Cexp do
16: if |C| > minMembers then
17: C f inal ← C f inal ∪ Cmerged

18: Cexp ← Cexp \ C
19: end if
20: end for
21: for all C in Cexp do
22: Add C to closest C f ∈ C f inal if closer than 2 ·max_eps
23: end for

. Determine final shapes
24: Pk = {pi|(pi, xi) ∈ C f inalk

} . k = 1, ..., |C f inal |
25: Ak = convex_hull(Pk)

26: return A

5. Machine Learning Model Building

The complete pipeline of ML model building comprises (1) preprocessing of the data, (2) model
training and (3) model selection and evaluation. Each step is explained in the following.

Sensors 2020, 20, 1443 12 of 26

5.1. Preprocessing

5.1.1. Feature Preprocessing

The applied machine learning models require inputs of fixed dimensions. Each access point that
is observed during data collection represents one dimension of the input vector. Having observed
a total amount of M access points, we can construct a feature vector xn = (x1, ..., xM)T , where xi for
i = 1, ..., M and n = 1, ..., N represents the RSS value of the i-th access point of the n-th measurement.
Given a collected training sample, there is not a RSS value for each access point. This can have two
reasons: (1) the access point cannot be observed at the measuring position because it is out of range,
or (2) the access point is in general observable for the given location, however, its RSS value could
not be recorded in that specific sample. The second reason is caused by the response rate of an access
point, which is correlated with the average observable RSS value for a location [45]. For both causes
of unobservable access points, an artificial value has to be chosen as entry for the feature vector.
A common practice, which neglects the response rate of access points, is to simply set all missing
values to a low RSS value, such as -110dB. This approach is adopted in our experiments.

For gradient-based learning algorithms such as DNNs or distance-based algorithms such
as k-nearest neighbor (k-NN), it is crucial to normalize or standardize each feature column [46].
This speeds up the learning phase and prevents features with a longer range to outweigh other features.
It can be distinguished between feature scaling/normalization and feature standardization (z-score
normalization). Scaling linearly transforms the data into the interval [0, 1], while standardization
transforms the data to have zero mean and standard deviation equal to one. Standardization is
especially useful if the range of the features are unknown or the feature contains many outliers.
For choosing the right normalization technique, we have to investigate the influence of the given map
coverage. Let APa and APb be two access points that are far away, such that there is no location where
both can be observed simultaneously. Let areaa and areab be the areas where either signals of APa

or APb are received. A map coverage that contains much more samples of areaa does only have few
samples with signal of APb. When standardizing the data of the map coverage, we encode a strong
bias into the preprocessed data, since the feature column of APb is strongly influenced by the vast
amount of zero entries. Such a bias might be tolerable if the distribution of training data matches the
test data distribution. However, during online localization, users might request their position mostly
within areab, which would result in worse performance. In order to prevent this bias towards the given
map coverage, we simply apply column-wise feature scaling. For each AP it is likely that a sample
exist which could not register any signal strength for the AP. As a conclusion, the minimum RSS value
for all columns is equal to the supplementary value for missing data.

5.1.2. Floor Plan Segmentation (Parameter Choice)

To obtain the class labeled set FPSEG, we partition the floor plan with the introduced LDCE
algorithm. The choice of certain parameters of the LDCE algorithm depends on the given floor plan
and the spatial distribution of available training data. The parameters eps and minPts determine the
starting clusters that result from the initial DBSCAN execution. They should be chosen empirically,
such that the sizes of starting clusters do not exceed the stop_size member threshold and not too many
observations are considered as noise. The value of max_eps and the wall penalty should also be chosen
empirically based on the given floor plan dimensions and the amount of walls that should be allowed
within segments. The penalty term η is set to 2, since higher values might yield overlapping clusters
during the initial DBSCAN execution. ζ is set to the highest penalty value of 20 to avoid intersecting
final clusters. After those parameters are fixed, we can vary the stop_size and minMembers parameters
to obtain multiple segmentations with various granularities. An overview of the parameters can be
found in Table 1. Those parameters that depend on the given test site are revisited in the corresponding
Sections 6.2 and 6.3.

Sensors 2020, 20, 1443 13 of 26

5.1.3. Label Preprocessing

For training of regression models, the labels consist of the set of positions {pn}, n = 1, ..., N,
where each label is a two-dimensional vector representing the position tag. In case of area classification,
the labels {yn} with yn = (y1, ..., yK)

T , n = 1, ..., N, for the set FPSEG are the one-hot encoded areas
of the floor plan segmentation, where yi = 1⇔ i = cn and 0 at all other positions. K represents the
amount of segments of the given floor plan segmentation FPSEG.

Table 1. Parameter choice of LDCE for experiments.

Data Set
Main Postprocessing Penalties DBSCAN

stop_size max_eps minMembers θ ζ η eps minPts

RWTH Aachen {80, 50} 30 {40,20} 10 2 20 2 3

Tampere, Finnland {100, 60} 50 {60, 40} 5 2 20 5 3

5.2. Model Training

In the upcoming case study in Section 6, we focus on three types of supervised machine learning
models that are suitable to predict the area of unknown fingerprints. After hyperparameter tuning
we end up with a DNN model that has 3 hidden layers (HL) and 512 hidden units (HU) per layer
and utilizes rectified linear unit (ReLU) as activation function between layers. In order to learn the
conditional probability distribution p(y|x), we apply softmax activation function for the output layer
together with multiclass cross-entropy loss. This choice can be derived by following a maximum
likelihood approach [47]. The Adam optimizer, a variant of stochastic gradient descent (SGD),
is utilized for iterative learning of the weights. To prevent overfitting, we apply early stopping,
which stops the training phase if the performance on a separate validation data set does not increase
for a specified amount of epochs. Furthermore, weight regularization within the loss function and
dropout are applied. The complete parameterization of the tuned DNN is given in Table 2. In addition,
we train a CNN with similar hyperparameters as suggested by [24], which consists of two convolutional
layers of size (16 × 16), a Maxpool layer of size (8 × 8), a convolutional layer of size (8 × 8) and a
Maxpool layer of size (8 × 8). In-between layers, we add dropout layers with dropping probability of
0.25 and utilize ReLu as activation function. Finally, a fully connected dense layer of size 128 is used
with output softmax activation function. We found that rearranging the RSS vector as matrix with
zero padding outperforms the proposed preprocessing method of [27] that utilize the PCC to reduce
the dimensionality and scale the data per access point. Furthermore, we fit a SVM with RBF kernel,
which we utilize as discriminative model to directly predict y.

Additionally, we select two regression models (k-NN and DNN(reg)). The DNN regression model
has the same configuration as the DNN classifier but uses a linear output activation function and
mean squared error as loss function. The k-NN models apply the weighted version of the algorithm
and are evaluated for three values of k, namely, 2,3 and 5. To validate whether explicitly training a
classifier provides valuable results, we label the regression outputs with the closest area of the floor
plan segmentation during postprocessing and compare them to the output of the area classifiers.

Table 2. DNN model hyperparameter configuration.

HU HL Dropout Reg. Penalty lr Batch Epochs Loss Activation Optimizer

512 3 0.2 0.06 0.0007 32 200 Cat. cross-entropy ReLU Adam

5.3. Model Evaluation

For model evaluation, we require a splitting strategy into training and test data as well as a metric
that indicates how well a model performs. Those are introduced for the different model types in the
following.

Sensors 2020, 20, 1443 14 of 26

Splitting strategy:

• Area classifiers: The training data is labeled according to the computed floor plan segmentations.
We apply k-fold cross validation with k=5, such that we arrive at 20% test data per fold. We utilize
the stratified version to obtain a good representative of the whole data set in each split.

• Regression models: We choose a subset of testing positions by applying DBSCAN on the position
labels only. Based on the resulting clusters we apply 5-fold cross validation, such that 20% of the
clusters are used as testing data in each fold.

Metric:

As metrics, we compute error vectors for the vectors of predictions and ground truth labels.
Those error vectors can be visualized via an empirical cumulative distribution function, which we will
refer to as CDF in the following.

• Area classifiers: The error vector consists of the pairwise distances between the centers of
the predicted areas and the ground truth areas, which is zero in case of a correct prediction.
The y-intercept of the CDF corresponds to the machine learning accuracy metric (ACC). The curve
yields additional knowledge about the significance of misclassification. Furthermore, we report
the F1 score (F1).

• Regression models: In case of exact position estimation, the error vector consists of the pairwise
distances between predictions and ground truth positions.

• Selection via ACS: During model selection, we utilize the ACS as metric. This requires computing
the class-wise F1 scores of the predicted and ground truth areas.

6. Experimental Evaluation

The subsequent experimental case study targets two separate questions:

1. Does adaptive area localization based on a data-aware floor plan segmentation provide more
robust results than the standard regression approach for exact position estimation? In particular,
is it suited for arbitrarily collected training data via crowdsourcing?

2. When crowdsourced training data is generated continuously, the area classifier has to adapt to the
current data basis. This is accomplished by recomputing the underlying floor plan segmentation
and retraining a classification model on the data labeled with the corresponding areas. In this
setting, is the proposed ACS suited for automatic model selection among a pool of models that
provide varying performances and expressivenesses?

6.1. Study Design

In order to answer these questions, we conduct two experiments.

• Static performance analysis (Sections 6.2.1 and 6.3.1): we compute two floor plan segmentations with
varying granularities for a snapshot of collected training data. For each segmentation we train
and evaluate various classification models. In addition, the performance of the proposed area
classifiers is compared to standard regression models that aim at pinpointing the exact location.

• Model selection via ACS for continuous data collection (Sections 6.2.2 and 6.3.2): we subdivide all
available training data into 5 epochs that contain roughly the same amount of additional data
to simulate the continuous data collection. For each epoch we compute a pool of floor plan
segmentations, where we choose the parameters stop_size and minMembers empirically to obtain
segmentations with various granularities. Subsequently, we optimize a classifier on the data
labeled with the areas. The parameter λ has to be chosen according to the use case requirements.
We exemplarily choose the outer bounds (0 and 1), where 0 provides high performance and low
expressiveness and 1 targets models with higher expressiveness. Furthermore, λ = 0.5 is chosen
to select a balanced model. We demonstrate how to utilize the ACS to automatically select the
optimal model for the given use case requirements.

Sensors 2020, 20, 1443 15 of 26

Both experiments are conducted on two different data sets. The first one has been collected in
our university building. The second one utilizes the publicly available benchmark dataset for indoor
localization using crowdsourced data [48], which was captured in Tampere, Finland. In the following
we report the results grouped by the different test sites.

6.2. Case Study: RWTH Aachen University Building

The test environment for the data that we collected by ourselves is the 4th floor of the civil
engineering building of the RWTH Aachen university, Germany. The floor contains several offices and
a long hall. The total area is roughly 1500 m2. Two smartphones (Oneplus and LG) are used to collect
labeled fingerprints with continuous position tags. In a period of 9 months (from December 2018 to
August 2019), a total amount of above 1000 fingerprints have been collected. The initial performance
analysis utilizes the entire training data as static data set.

6.2.1. Static Performance Analysis

By applying the LDCE algorithm with two different parameterizations, we obtain two floor plan
segmentations, which differ in granularity.

The segmentations are shown in Figure 4, where the segments are represented by the shapes with
black boundaries. The grey points represent fingerprint locations. We sum the amount of data per
2 × 2 m square and plot a heatmap to visualize the training data distribution. The initial DBSCAN
is performed with eps = 2 and minPts = 3, which yields reasonably sized start clusters. We choose
a wall penalty of 10 such that given max_eps = 30, there will be at most 2 separating walls between
merging clusters. The first segmentation (Figure 4a) sets stop_size equal to 80, such that clusters are
excluded from the expansion set when they reach more than 80 members. The second segmentation
(Figure 4b) is obtained by setting stop_size to 50.

0 10 20 30 40 50 60 70 80

0.0

2.5

5.0

7.5

10.0

12.5

15.0

0.98
0.98

0.92

0.97

0.98

0.98

1

5

10

20

50

100
150

(a) broad

0 10 20 30 40 50 60 70 80

0.0

2.5

5.0

7.5

10.0

12.5

15.0

1.0

0.94

0.9
0.97

0.91

0.95
0.91

0.57

0.96 0.97

1

5

10

20

50

100
150

(b) fine

Figure 4. Floor plan segmentations of RWTH Aachen university building. The black lined shapes
represent areas of classifier. The green numbers represent the class-wise F1-score of the best model.
The grey dots are the fingerprint locations. The amount of training data per 2 × 2 m grid cell is
illustrated via the heatmap color.

We label the data set according to both segmentations and train the models described in Section 5.2
to predict the right area.

The resulting CDF is illustrated in Figure 5.

Sensors 2020, 20, 1443 16 of 26

0 5 10 15 20 25 30
Distance [m]

0.85

0.90

0.95

1.00

C
D

F
SEG = broad

0 5 10 15 20 25 30
Distance [m]

SEG = fine

model
CNN
DNN
SVM
KNN(2)
KNN(3)
KNN(5)
DNN(reg)

Figure 5. CDF of classification error. Error vector build from distances between centroids of true and
predicted areas.

The CNN and the DNN achieve the best classification performance with an accuracy of above
97% on the broad segmentation and almost 95% on the finer segmentation. While the SVM achieves
acceptable results for the broad segmentation its performance significantly decreases when using a
finer segmentation. All regression model results are mapped to the closest class. They achieve lower
performance than the CNN and DNN classifiers. A comprehensive overview of the model comparison
can be found in Table 3. The lowest mean error is achieved by the DNN classifier with values of
0.43m and 0.66m respectively. For illustration purposes we plotted the class-wise F1 score of the best
performing model as green numbers for each segment in Figure 4.

Table 3. Performance of classification models on both segmentations. The upper three models are
explicitly trained to predict one of the underlying areas, while the other models (reg->class) are
regression models where we assign the closest area of the regression prediction during postprocessing.

Segmentation Model Parameter Area Center Error Classification

Mean Std Min Max ACC F1

broad CNN 0.43 3.28 0.0 47.42 0.97 0.97
DNN 0.32 2.17 0.0 47.42 0.97 0.97
SVM 0.54 3.46 0.0 45.25 0.96 0.95
k-NN (reg- > class) k = 2 0.85 4.36 0.0 49.95 0.94 0.93
k-NN (reg- > class) k = 3 0.82 4.30 0.0 49.95 0.94 0.93
k-NN (reg- > class) k = 5 0.87 3.94 0.0 49.95 0.93 0.92
DNN (reg- > class) 0.56 2.88 0.0 25.09 0.95 0.95

fine CNN 0.66 4.18 0.0 55.12 0.95 0.91
DNN 0.54 3.74 0.0 59.90 0.95 0.91
SVM 1.12 4.80 0.0 59.90 0.88 0.79
k-NN (reg- > class) k = 2 1.15 5.47 0.0 59.90 0.91 0.84
k-NN (reg- > class) k = 3 0.99 4.94 0.0 59.90 0.91 0.87
k-NN (reg- > class) k = 5 1.00 4.54 0.0 48.34 0.91 0.86
DNN (reg- > class) 0.71 3.07 0.0 42.50 0.92 0.87

In addition, we evaluate the performance of training a standard regression model for exact
position estimation.

The results are presented in Figure 6. The best regression model (DNN) guarantees that in
95% of the cases, the estimated position will not differ more than 10 m. In comparison the area
classification models guarantee a correct area prediction in 95% of the cases and thus achieve more

Sensors 2020, 20, 1443 17 of 26

robust results. This is achieved by lowering the expressiveness and utilizing the knowledge about
available training data.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Distance [m]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

model
DNN
KNN(2)
KNN(3)
KNN(5)

(a)

Model Values

Mean Std Min Max

DNN 4.76 4.09 0.01 49.89
k-NN(k = 2) 6.91 5.53 0.01 61.06
k-NN(k = 3) 6.50 4.24 0.31 40.71
k-NN(k = 5) 6.56 4.25 0.45 41.76

(b)

Figure 6. Performance of regression models. (a) shows the CDF of the prediction errors and (b) holds
mean, standard deviation, minimal and maximal error.

6.2.2. Model Selection via ACS

In the following we present the results when applying the ACS for model selection as described
in Section 6.1.

Figure 7 shows the ACS score of the trained models on the pool of segmentations for the three
choices of λ. The figure is interpreted by fixing a choice for λ depending on the use case. At each
epoch, we can now deliver the model with the highest ACS, since it provides the best balance between
expressiveness and performance. Note that for the first two epochs, the segmentations obtained from
stop_size = {60, 80} result in a single cluster, since too few data is available and are thus discarded.
When inspecting the score for λ = 0.5, we see that at the second and third epoch, we would use the
segmentation obtained by LDCE (5:20), while in epoch four the highest score is achieved on LDCE
(10:40). Finally, for the last epoch, the classifier that was optimized on LDCE (40:80) is selected.

1 2 3 4 5
epoch

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

AC
S

SEG
LDCE (5:20)
LDCE (10:40)
LDCE (20:60)
LDCE (40:80)

(a) λ = 0

1 2 3 4 5
epoch

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

AC
S

(b) λ = 0.5

1 2 3 4 5
epoch

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

AC
S

(c) λ = 1

Figure 7. Area classification score (ACS) for three choices of λ. Per epoch the model with the highest
score is chosen. The legend shows the (minMembers: stop_size) parameters used during segmentation.
The other parameters of LDCE are chosen as presented in Table 1.

The changes in ACS are discussed epoch-wise in the following. While epoch 1 contains only
training data of the lower left offices, in epoch 2 additional training data along the hall has been
collected. This allows for additional areas. LDCE (5:20) yields much more new segments among
the hall, which causes the high increase for λ = 1. For λ = 0, those small segments do not affect
the score, however, the achieved class-wise F1 score does, which is slightly lower for LDCE (10:40).
Between epoch 2 and 3, only few new areas are covered, however, the lower left offices feature
additional data. LDCE (20:60) and LDCE (40:80) are equal, which can also be observed from their
similar ACS values. In LDCE (10:40), the lower offices have already been split in epoch 2, which yielded
a bad performance. The additional data allows for improved model performance, which explains the

Sensors 2020, 20, 1443 18 of 26

increased ACS. Between epoch 3 and 4, only data in previously uncovered areas is added. This causes
an increased ACS value for all segmentations and λ values. For the broadest segmentation LDCE
(40:80), the previous areas remain the same, while the other segmentations adopt a finer granularity.
Therefore, the highest relative increase for λ = 0 is observed for LDCE (40:80). Between epoch 4 and 5,
no additional areas are covered with training data. However, segmentation LDCE (40:80) rearranges its
area shapes, such that the total covered area increases. While the class-wise F1 scores remain roughly
the same, this causes the jump in ACS value for λ = 0. The other segmentations remain mainly
unchanged, since only the F1 scores of the models slightly change.

6.3. Case Study: Tampere, Finland

In addition to the data collected by ourselves, we evaluate our approach on a publicly available
fingerprinting dataset that was generated via crowdsourcing [48]. The original dataset consists of
4648 fingerprints collected by 21 devices in a university building in Tampere, Finland. The fingerprints
are distributed over five floors, while the 1st floor contains the highest sample density. Therefore, we
select the data of the 1st floor as subset to conduct our experiments.

6.3.1. Static Performance Analysis

Using the entire data collected on the 1st floor, we construct two floor plan segmentations based
on the LDCE algorithm, which can be found in Figure 8. The initial DBSCAN is performed with
eps = 5 and minPts = 3. Note that in contrast to the other site, we slightly increase the eps parameter
to obtain reasonably sized start clusters. This is justified because the overall training data distribution
is more sparse and the map has more than 5 times the extent of the other test site. Following the
same logic, we increase the max_eps parameter to 50. We use the same penalties as before but lowered
the wall penalty to 5, since we want to allow clusters to span several office rooms. The remaining
parameters can be found in Table 1. The broad segmentation was obtained by choosing a stop_size of
100 and for the fine segmentation we set stop_size equal to 60.

The dataset is published with a predetermined train test split, which consists of 20% training
data and 80% testing data. When plotting the training data of the 1st floor, we noted that only a
single region contains training samples, which makes the proposed split impractical. Therefore,
we apply the splitting strategy described in Section 5.3. The CDF of the class-wise error vectors is
presented in Figure 9. Similar to the other dataset, the DNN classification models achieve the best
results independent of the segmentation. On the broad segmentation, an accuracy of 89% is reached
and in 97% of the cases the predicted centroid of the area is less than 30 m off from the centroid
of the true area. A comprehensive overview of the individual model performance can be found in
Table 4. The DNN achieves the lowest mean centroid error and has the lowest standard deviation.
The prediction performance with respect to individual areas is illustrated in Figure 8. The green
numbers represent the class-wise F1 scores that the best model achieved.

For comparison with exact position estimation, we evaluate the performance of training standard
regression models. The results are presented in Figure 10. While the DNN regression model achieves
an error below 10 m with 90% probability, we achieve a correct area prediction in ~90% of the cases on
the broad floor plan segmentation. Thus, for the goal of coarse localization the area classifiers provide
higher guarantees.

6.3.2. Model Selection via ACS

In the following we present the results when applying the ACS for model selection as described
in Section 6.1. Figure 11 illustrates the obtained ACS scores of the trained models on the pool of
segmentations for the three choices of λ. Using the ACS as selective feature, we can state the following
observations. For λ = 0 (high performance), the model trained on LDCE (15:40) is chosen for the
first epoch and LDCE (40:80) is selected for the second and third epoch. For the entire training data
the classifier trained on LDCE (60:100) is chosen. For λ = 0.5 (balance between expressiveness and

Sensors 2020, 20, 1443 19 of 26

performance), LDCE (15:40) provides the selected segmentation for the first four epochs and is replaced
by the slightly broader segmentation LDCE (25:60) in the last epoch. The highest expressiveness is
given for λ = 1, which selects the model trained on the finest segmentation LDCE (5:20) for all epochs.

0 25 50 75 100 125 150 175 200

0

10

20

30

40

50

60

70

80

0.92
0.89

0.87

0.91

0.97

0.67

0.93

0.87

1

5

10

20

(a) broad

0 25 50 75 100 125 150 175 200

0

10

20

30

40

50

60

70

80

0.90.8

0.92
0.86

0.89

0.81

0.87

0.91

0.88

0.85
0.87

0.79
0.47

0.66
0.71

1

5

10

20

(b) fine

Figure 8. Floor plan segmentations of 1st floor of public dataset [48]. The black lined shapes represent
areas of the classifier. The green numbers represent the class-wise F1-score of the best model. The grey
dots are the fingerprint locations. The amount of training data per 4x4m grid cell is illustrated via the
heatmap color.

0 10 20 30 40 50 60
Distance [m]

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
D

F

SEG = broad

0 10 20 30 40 50 60
Distance [m]

SEG = fine

model
CNN
DNN
SVM
KNN(2)
KNN(3)
KNN(5)
DNN(reg)

Figure 9. CDF of classification error. Error vector build from distances between centroids of true and
predicted areas.

Sensors 2020, 20, 1443 20 of 26

Table 4. Performance of classification models on both segmentations. The upper three models are
explicitly trained to predict one of the underlying areas, while the other models (reg->class) are
regression models where we assign the closest area of the regression prediction during postprocessing.

Segmentation Model Parameter Area Center Error Classification

Mean Std Min Max ACC F1

broad CNN 3.70 10.15 0.0 69.26 0.87 0.86
DNN 3.21 9.60 0.0 69.26 0.89 0.88
SVM 4.30 10.92 0.0 65.84 0.85 0.83
k-NN (reg- > class) k = 2 3.55 10.02 0.0 69.26 0.87 0.86
k-NN (reg- > class) k = 3 3.97 10.48 0.0 69.26 0.86 0.85
k-NN (reg- > class) k = 5 4.34 10.84 0.0 65.84 0.85 0.83
DNN (reg- > class) 4.62 11.17 0.0 65.84 0.83 0.81

fine CNN 3.65 9.11 0.0 90.47 0.83 0.81
DNN 3.53 9.00 0.0 91.75 0.84 0.81
SVM 7.00 12.36 0.0 100.44 0.71 0.56
k-NN (reg- > class) k = 2 3.72 9.12 0.0 90.47 0.82 0.79
k-NN (reg- > class) k = 3 3.95 9.30 0.0 90.47 0.81 0.77
k-NN (reg- > class) k = 5 4.25 9.55 0.0 69.79 0.80 0.76
DNN(reg) 5.00 10.07 0.0 69.79 0.76 0.72

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Distance [m]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

model
DNN
KNN(2)
KNN(3)
KNN(5)

(a)

Model Values

Mean Std Min Max

DNN 5.34 4.00 0.05 45.72
k-NN(k = 2) 5.89 4.66 0.05 38.79
k-NN(k = 3) 5.79 4.76 0.15 38.30
k-NN(k = 5) 5.90 4.72 0.04 36.87

(b)

Figure 10. Performance of regression models. (a) shows the CDF of the prediction errors and (b) holds
mean, standard deviation, minimal and maximal error.

In the following the ACS graphs are analyzed epoch-wise. In the first epoch LDCE (25:60) and
LDCE (15:40) consist of only two broad segments, on which the models achieve the same class-wise F1

scores. This can be observed, since both have the same scores for a fixed λ value. Since they cover a
larger total area than the finer LDCE (5:20), they score higher for low and medium λ values. However,
the larger number of segments of LDCE (5:20) causes the higher ACS value for λ = 1. In epoch 2
LDCE (5:20) adds the most additional segments, while the number of added segments is the same
for LDCE (15:40) and LDCE (25:60). This explains the scores observed for λ = 1. While for the three
segmentations the number of segments increases, high class-wise F1 scores can be maintained for
LDCE (15:40) and LDCE (25:60). However, the finest segmentation LDCE (5:20) sacrifices performance
for expressiveness and thus scores lower for λ = 0.5. For λ = 0 the score does not change much,
since the total covered area remains mostly constant. However, LDCE (40:80), which is present in
epoch 2 for first time, covers a much wider total area, since it only consists of few large segments and
therefore scores considerably higher for λ = 0. Between epoch 2 and 3, data is collected in previously
uncovered areas, which allows for finer segmentations independent of the chosen parameters. This can
be observed by the significant increase in ACS for λ = {0.5, 1}. On the contrary, between epoch 3 and 4,
mostly data within previously covered areas is collected, which allows for slightly higher performance.
Finally, in the last epoch, the segmentations change again, while especially LDCE (60:100) computes a
segmentation that covers a much larger total extent than the other segmentations. This explains the
high increase in ACS value for λ = 0.

Sensors 2020, 20, 1443 21 of 26

1 2 3 4 5
epoch

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

AC
S

SEG
LDCE (5:20)
LDCE (15:40)

LDCE (25:60)
LDCE (40:80)
LDCE (60:100)

(a) λ = 0

1 2 3 4 5
epoch

0.003

0.004

0.005

0.006

0.007

0.008

AC
S

(b) λ = 0.5

1 2 3 4 5
epoch

0.0002

0.0004

0.0006

0.0008

0.0010

AC
S

(c) λ = 1

Figure 11. Area classification score (ACS) for three choices of λ. Per epoch the model with the highest
score is chosen. The legend shows the (minMembers: stop_size) parameters used during segmentation.
The other parameters of LDCE are chosen as presented in Table 1.

7. Discussion

In the following the findings of our work are discussed. The results of the case study are analyzed
with emphasis on the proposed concepts. Subsequently, the benefits of adaptive area localization are
highlighted in comparison to existing solutions. And finally, potential applications of the proposed
concept are described.

7.1. Case Study Results

Model performance:

Independent of the test site, the DNN area classifiers outperformed all other models with respect
to standard classification metrics, such as accuracy and F1 score. The F1 metric indicates that the
model provides high precision and recall scores, which means that each individual area is detected
properly and in case it is selected the prediction is trustable. CNN models are especially useful to
learn tasks where inputs are locally connected, such as adjacent pixels in images [49]. When randomly
arranging the access point vector as a matrix, it cannot be claimed that a comparable relation between
adjacent matrix entries exists. Therefore, the additional feature extraction should not provide any
benefits, which is empirically demonstrated by the results. The SVM model can only be used as
multi-class classifier by training several individual classifiers and following a certain voting scheme.
We applied the one-vs-one strategy, which results in K(K− 1)/2 classifiers if we want to detect K areas.
Besides, the high computational effort, the results are worse than a simple k-NN classifier, which is
also observed in [50].

LDCE floor plan segmentation algorithm:

During the second experiment, it was demonstrated that the proposed LDCE algorithm is capable
of providing a pool of segmentations with various granularities. Those can be utilized in combination
with the proposed ACS to select the best area classifier with respect to the right balance between
expressiveness and performance. The algorithm requires certain parameters to be chosen empirically
based on the given site.

ACS model selection metric:

The effect of λ on the ACS was theoretically evaluated and demonstrated for three values in the
experiments. However, explicit values cannot be associated with qualitative terms, yet. In particular,
it cannot be stated which exact value is optimal for a certain use case. However, the ACS is lazily
computed. Once an area classifier has been trained, its ACS can be computed for several choices of
λ by utilizing the stored prediction and ground truth vectors. This means that it is computationally
inexpensive to compute the ACS for a pool of trained models and a large set of λ values. An initial

Sensors 2020, 20, 1443 22 of 26

λ value is guessed. When the retrieved model does not meet the requirements, λ can be adjusted to
match the right balance between expressiveness and performance.

7.2. Adaptive Area Localization

Area localization has been proposed for large-scale deployments of fingerprinting-based solutions
or when the data quality does not allow for exact position estimation. The objective is to provide higher
positioning guarantees by lowering the expressiveness of the model. In related work, the segmentation
during area classification features two characteristics [17–20]:

• It is determined independent of the available training data.
• It is statically determined, mostly prior to data collection.

Both features are unfavorable when working with crowdsourced data that is continuously
collected and solutions to apply area localization in such settings are currently missing in the literature.
Crowdsourced data collection results in a spatially non-uniform data distribution [15]. Training
a classifier on data where certain areas (classes) feature only few or no samples results in poor
performance. A segmentation that is determined independent of the training data might result in such
sparsely covered areas. Therefore, we introduce the concept of data-aware floor plan segmentation
and propose the LDCE algorithm that computes such a segmentation. A data-aware floor plan
segmentation introduces a trade-off between expressiveness and performance, which has not been
quantified in the literature, yet. However, such a quantification is required to measure how well an
area classifier performs given that the underlying segmentation is not static. Therefore, we propose
the ACS that captures this trade-off. Furthermore, during crowdsourcing, data is accumulated over
time. The segmentation determined for a given snapshot of data might become unfavorable once
additional data has been collected. It is crucial to regularly recompute the segmentation into areas.
In summary, our proposed concepts enable area localization for crowdsourced data and we empirically
demonstrate that this achieves higher reliability than exact position estimation. The model adapts to
the accumulating training data and finds the right balance between expressiveness and performance.

7.3. Potential Applications

Depending on the use case, localization systems might have distinct requirements. A system
with the objective to provide proximity based services (e.g., inside a shopping mall [17]) requires a
coarse-grained position estimation with high guarantees. In contrast, a localization system utilized
for navigation of people with visual impairments might benefit from a more fine-grained position
estimation. Given a base of crowdsourced training data, our approach allows to automatically
construct area localization models for any required tradeoff between expressiveness and performance.
Furthermore, it adapts to the accumulating training data that results from continuous crowdsourced
data collection. To the best of our knowledge, generating such adaptive localization models based on
fingerprinting has not been proposed in the literature, yet.

In addition, absolute location information can be merged with systems that iteratively determine
the position of a user such as PDR. WLAN fingerprinting is already employed in sensor fusion
solutions [51–53]. The granularity and level of guarantee of the fingerprinting model might impact
initialization and convergence time of the fused model. With our approach, the fingerprinting-based
localization model with the optimal granularity in that regards can be trained and deployed in the
fused model.

8. Conclusions

In this work, we propose the concept of adaptive area localization to achieve reliable position
estimations using crowdsourced data that is accumulated over time. Existing area localization
solutions employ a static segmentation into areas that is independent of the available training data.
This approach is not applicable for crowdsoucred data collection, since it features an unbalanced

Sensors 2020, 20, 1443 23 of 26

spatial training data distribution that changes over time. To solve this, we propose the LDCE algorithm
that computes data-aware floor plan segmentations with various granularities. The underlying
segmentation influences the model performance as well as its expressiveness. We introduce the ACS
to select the area classifier that provides the best trade-off between them. With those concepts, we
can now regularly compute a pool of segmentations and train classifiers on the data labeled with the
corresponding areas. We select the best model with the ACS and deploy it for localization.

The proposed concepts are validated on a self-collected as well as on a publicly available
crowdsourced data set. We demonstrate that the proposed area classifiers provide higher positioning
guarantees than models for exact position estimation. Furthermore, we show that they adapt to
the accumulating data base. In future work, we want to utilize PDR techniques and sensor fusion
to automate the data collection process and to enhance the positioning quality during localization.
In addition, our approach is not limited to WLAN RSS fingerprinting, but can be extended to support
magnetic and light sensors [54,55] or bluetooth [56], which we want to demonstrate in future work.

Author Contributions: M.L., J.B. and R.K. designed the methodology; M.L. conceived and conducted the
experiments; J.B. and R.K. administrated and supervised the research project; M.L. wrote the paper, J.B. and R.K.
reviewed the text and offered valuable suggestions for improving the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zafari, F.; Gkelias, A.; Leung, K.K. A Survey of Indoor Localization Systems and Technologies. Commun. Surv.
Tutorials IEEE 2019, 21, 2568–2599. [CrossRef]

2. Basiri, A.; Lohan, E.S.; Moore, T.; Winstanley, A.; Peltola, P.; Hill, C.; Amirian, P.; Figueiredo e Silva, P. Indoor
location based services challenges, requirements and usability of current solutions. Comput. Sci. Rev. 2017,
24, 1–12. [CrossRef]

3. Wang, Y.; Shao, L. Understanding occupancy pattern and improving building energy efficiency through
Wi-Fi based indoor positioning. Build. Environ. 2017, 114, 106–117. [CrossRef]

4. D’Aloia, M.; Cortone, F.; Cice, G.; Russo, R.; Rizzi, M.; Longo, A. Improving energy efficiency in building
system using a novel people localization system. In Proceedings of the 2016 IEEE Workshop on
Environmental, Energy, and Structural Monitoring Systems (EESMS), Bari, Italy, 13–14 June 2016; pp. 1–6.
[CrossRef]

5. Ahmetovic, D.; Murata, M.; Gleason, C.; Brady, E.; Takagi, H.; Kitani, K.; Asakawa, C. Achieving Practical
and Accurate Indoor Navigation for People with Visual Impairments. In Proceedings of the 14th Web for
All Conference on The Future of Accessible Work—W4A ’17; ACM Press: New York, NY, USA, 2017; pp. 1–10.
[CrossRef]

6. Ho, T.W.; Tsai, C.J.; Hsu, C.C.; Chang, Y.T.; Lai, F. Indoor navigation and physician-patient communication
in emergency department. In Proceedings of the 3rd International Conference on Communication and Information
Processing—ICCIP ’17; Ben-Othman, J., Gang, F., Liu, J.S., Arai, M., Eds.; ACM Press: New York, NY, USA,
2017; pp. 92–98. [CrossRef]

7. Kárník, J.; Streit, J. Summary of available indoor location techniques. IFAC-PapersOnLine 2016, 49, 311–317.
[CrossRef]

8. He, S.; Chan, S.H.G. Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and Comparisons.
Commun. Surv. Tutorials IEEE 2016, 18, 466–490. [CrossRef]

9. Xia, S.; Liu, Y.; Yuan, G.; Zhu, M.; Wang, Z. Indoor Fingerprint Positioning Based on Wi-Fi: An Overview.
ISPRS Int. J. Geo-Inf. 2017, 6, 135. [CrossRef]

10. Batistic, L.; Tomic, M. Overview of indoor positioning system technologies. In Proceedings of the 2018 41st
International Convention on Information and Communication Technology, Electronics and Microelectronics
(MIPRO), Opatija, Croatia, 21–25 May 2018; pp. 473–478. [CrossRef]

http://dx.doi.org/10.1109/COMST.2019.2911558
http://dx.doi.org/10.1016/j.cosrev.2017.03.002
http://dx.doi.org/10.1016/j.buildenv.2016.12.015
http://dx.doi.org/10.1109/EESMS.2016.7504811
http://dx.doi.org/10.1145/3058555.3058560
http://dx.doi.org/10.1145/3162957.3162971
http://dx.doi.org/10.1016/j.ifacol.2016.12.055
http://dx.doi.org/10.1109/COMST.2015.2464084
http://dx.doi.org/10.3390/ijgi6050135
http://dx.doi.org/10.23919/MIPRO.2018.8400090

Sensors 2020, 20, 1443 24 of 26

11. Yassin, A.; Nasser, Y.; Awad, M.; Al-Dubai, A.; Liu, R.; Yuen, C.; Raulefs, R.; Aboutanios, E. Recent Advances
in Indoor Localization: A Survey on Theoretical Approaches and Applications. Commun. Surv. Tutorials IEEE
2017, 19, 1327–1346. [CrossRef]

12. Rai, A.; Chintalapudi, K.K.; Padmanabhan, V.N.; Sen, R. Zee: Zero-Effort Crowdsourcing for Indoor
Localization. In Proceedings of the 18th annual international conference on Mobile computing and
networking (Mobicom ’12), Istanbul, Turkey, 22–26 August 2012; pp. 293—304.

13. Radu, V.; Marina, M.K. HiMLoc: Indoor smartphone localization via activity aware Pedestrian Dead
Reckoning with selective crowdsourced WiFi fingerprinting. In Proceedings of the International Conference
on Indoor Positioning and Indoor Navigation, Montbeliard-Belfort, France, 28–31 October 2013; pp. 1–10.
[CrossRef]

14. Santos, R.; Barandas, M.; Leonardo, R.; Gamboa, H. Fingerprints and Floor Plans Construction for Indoor
Localisation Based on Crowdsourcing. Sensors 2019, 19, 919. [CrossRef]

15. Ye, Y.; Wang, B. RMapCS: Radio Map Construction From Crowdsourced Samples for Indoor Localization.
IEEE Access 2018, 6, 24224–24238. [CrossRef]

16. He, S.; Tan, J.; Chan, S.H.G. Towards area classification for large-scale fingerprint-based system. In Proceedings
of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing - UbiComp ’16; Lukowicz,
P.; Krüger, A.; Bulling, A.; Lim, Y.K.; Patel, S.N., Eds.; ACM Press: New York, NY, USA, 2016; pp. 232–243.
[CrossRef]

17. Lopez-Pastor, J.A.; Ruiz-Ruiz, A.J.; Martinez-Sala, A.S.; Luis Gomez-Tornero, J. Evaluation of an indoor
positioning system for added-value services in a mall. In Proceedings of the 2019 International Conference
on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, 30 September 2019–3 October 2019; pp. 1–8.
[CrossRef]

18. Wei, J.; Zhou, X.; Zhao, F.; Luo, H.; Ye, L. Zero-cost and map-free shop-level localization algorithm based on
crowdsourcing fingerprints. In Proceedings of the 2018 Ubiquitous Positioning, Indoor Navigation and
Location-Based Services (UPINLBS), Wuhan, China, 22–23 March 2018; pp. 1–10. [CrossRef]

19. Rezgui, Y.; Pei, L.; Chen, X.; Wen, F.; Han, C. An Efficient Normalized Rank Based SVM for Room Level
Indoor WiFi Localization with Diverse Devices. Mob. Inf. Syst. 2017, 2017, 1–19. [CrossRef]

20. Liu, H.X.; Chen, B.A.; Tseng, P.H.; Feng, K.T.; Wang, T.S. Map-Aware Indoor Area Estimation with Shortest
Path Based on RSS Fingerprinting. In Proceedings of the 2015 IEEE 81st Vehicular Technology Conference
(VTC Spring), Glasgow, UK, 11–14 May 2015; pp. 1–5. [CrossRef]

21. Torres-Solis, J.; Falk., T.; Chau, T. A Review of Indoor Localization Technologies: Towards Navigational
Assistance for Topographical Disorientation. In Ambient Intelligence; Villanueva Molina, F.J., Ed.; IntechOpen:
Rijeka, Croatia, 2010. [CrossRef]

22. Pecoraro, G.; Di Domenico, S.; Cianca, E.; de Sanctis, M. LTE signal fingerprinting localization based on
CSI. In Proceedings of the 2017 IEEE 13th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), Rome, Italy, 9–11 October 2017; pp. 1–8. [CrossRef]

23. Xiao, L.; Behboodi, A.; Mathar, R. A deep learning approach to fingerprinting indoor localization solutions.
In Proceedings of the 2017 27th International Telecommunication Networks and Applications Conference
(ITNAC), Melbourne, VIC, Australia, 22–24 November 2017; pp. 1–7. [CrossRef]

24. Sinha, R.S.; Lee, S.M.; Rim, M.; Hwang, S.H. Data Augmentation Schemes for Deep Learning in an Indoor
Positioning Application. Electronics 2019, 8, 554. [CrossRef]

25. Yang, S.; Dessai, P.; Verma, M.; Gerla, M. FreeLoc: Calibration-free crowdsourced indoor localization.
In Proceedings of the 2013 Proceedings IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 2481–2489.
[CrossRef]

26. Kim, W.; Yang, S.; Gerla, M.; Lee, E.K. Crowdsource Based Indoor Localization by Uncalibrated
Heterogeneous Wi-Fi Devices. Mob. Inf. Syst. 2016, 2016, 1–18. [CrossRef]

27. Mittal, A.; Tiku, S.; Pasricha, S. Adapting Convolutional Neural Networks for Indoor Localization with
Smart Mobile Devices. In Proceedings of the 2018 on Great Lakes Symposium on VLSI—GLSVLSI ’18; Chen, D.;
Homayoun, H.; Taskin, B., Eds.; ACM Press: New York, NY, USA, 2018; pp. 117–122. [CrossRef]

28. Adege, A.; Lin, H.P.; Tarekegn, G.; Jeng, S.S. Applying Deep Neural Network (DNN) for Robust Indoor
Localization in Multi-Building Environment. Appl. Sci. 2018, 8, 1062. [CrossRef]

http://dx.doi.org/10.1109/COMST.2016.2632427
http://dx.doi.org/10.1109/IPIN.2013.6817916
http://dx.doi.org/10.3390/s19040919
http://dx.doi.org/10.1109/ACCESS.2018.2830415
http://dx.doi.org/10.1145/2971648.2971689
http://dx.doi.org/10.1109/IPIN.2019.8911822
http://dx.doi.org/10.1109/UPINLBS.2018.8559708
http://dx.doi.org/10.1155/2017/6268797
http://dx.doi.org/10.1109/VTCSpring.2015.7145926
http://dx.doi.org/10.5772/8678
http://dx.doi.org/10.1109/WiMOB.2017.8115803
http://dx.doi.org/10.1109/ATNAC.2017.8215428
http://dx.doi.org/10.3390/electronics8050554
http://dx.doi.org/10.1109/INFCOM.2013.6567054
http://dx.doi.org/10.1155/2016/4916563
http://dx.doi.org/10.1145/3194554.3194594
http://dx.doi.org/10.3390/app8071062

Sensors 2020, 20, 1443 25 of 26

29. Wang, X.; Gao, L.; Mao, S.; Pandey, S. DeepFi: Deep learning for indoor fingerprinting using channel state
information. In Proceedings of the 2015 IEEE Wireless Communications and Networking Conference
(WCNC), New Orleans, LA, USA, 9–12 March 2015; pp. 1666–1671. [CrossRef]

30. Wang, X.; Gao, L.; Mao, S.; Pandey, S. CSI-based Fingerprinting for Indoor Localization: A Deep Learning
Approach. IEEE Trans. Veh. Technol. 2016, 66, 763–776. [CrossRef]

31. Chen, H.; Zhang, Y.; Li, W.; Tao, X.; Zhang, P. ConFi: Convolutional Neural Networks Based Indoor Wi-Fi
Localization Using Channel State Information. IEEE Access 2017, 5, 18066–18074. [CrossRef]

32. Yang, Z.; Zhou, Z.; Liu, Y. From RSSI to CSI. ACM Comput. Surv. (CSUR) 2013, 46, 1–32. [CrossRef]
33. He, S.; Chan, S.H.G. Towards Crowdsourced Signal Map Construction via Implicit Interaction of IoT Devices.

In Proceedings of the 2017 14th Annual IEEE International Conference on Sensing, Communication, and
Networking (SECON), San Diego, CA, USA, 12–14 June 2017; pp. 1–9. [CrossRef]

34. Zhou, B.; Li, Q.; Mao, Q.; Tu, W. A Robust Crowdsourcing-Based Indoor Localization System. Sensors
2017, 17, 864. [CrossRef]

35. Jiang, Q.; Ma, Y.; Liu, K.; Dou, Z. A Probabilistic Radio Map Construction Scheme for Crowdsourcing-Based
Fingerprinting Localization. IEEE Sensors J. 2016, 16, 3764–3774. [CrossRef]

36. Jung, S.h.; Moon, B.c.; Han, D. Unsupervised Learning for Crowdsourced Indoor Localization in Wireless
Networks. IEEE Trans. Mob. Comput. 2016, 15, 2892–2906. [CrossRef]

37. Jung, S.h.; Han, D. Automated Construction and Maintenance of Wi-Fi Radio Maps for Crowdsourcing-Based
Indoor Positioning Systems. IEEE Access 2018, 6, 1764–1777. [CrossRef]

38. Pipelidis, G.; Tsiamitros, N.; Ustaoglu, E.; Kienzler, R.; Nurmi, P.; Flores, H.; Prehofer, C. Cross-Device
Radio Map Generation via Crowdsourcing. In Proceedings of the 2019 International Conference on Indoor
Positioning and Indoor Navigation (IPIN), Pisa, Italy, 30 September 2019–3 October 2019; pp. 1–8. [CrossRef]

39. Chow, K.H.; He, S.; Tan, J.; Chan, S.H.G. Efficient Locality Classification for Indoor Fingerprint-Based
Systems. IEEE Trans. Mob. Comput. 2019, 18, 290–304. [CrossRef]

40. Nowicki, M.; Wietrzykowski, J. Low-Effort Place Recognition with WiFi Fingerprints Using Deep Learning.
In Automation 2017, Advances in Intelligent Systems and Computing, Warsaw, Poland, 15–17 March 2017;
Szewczyk, R.; Zieliński, C.; Kaliczyńska, M., Eds.; Springer International Publishing: Cham, Switzerland,
2017; Volume 550, pp. 575–584. [CrossRef]

41. Kim, K.S.; Lee, S.; Huang, K. A scalable deep neural network architecture for multi-building and multi-floor
indoor localization based on Wi-Fi fingerprinting. Big Data Anal. 2018, 3, 466. [CrossRef]

42. Ibrahim, M.; Torki, M.; ElNainay, M. CNN based Indoor Localization using RSS Time-Series. In Proceedings
of the 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018;
pp. 01044–01049. [CrossRef]

43. Song, C.; Wang, J. WLAN Fingerprint Indoor Positioning Strategy Based on Implicit Crowdsourcing and
Semi-Supervised Learning. ISPRS Int. J. Geo-Inf. 2017, 6, 356. [CrossRef]

44. Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: Secaucus,
NJ, USA, 2006.

45. Dong, K.; Ling, Z.; Xia, X.; Ye, H.; Wu, W.; Yang, M. Dealing with Insufficient Location Fingerprints in Wi-Fi
Based Indoor Location Fingerprinting. Wirel. Commun. Mob. Comput. 2017, 2017, 1–11. [CrossRef]

46. Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques, online-ausg ed.; Morgan Kaufmann Series
in Data Management Systems; Elsevier Science: Burlington, Vermont, 2011.

47. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
48. Lohan, E.; Torres-Sospedra, J.; Leppäkoski, H.; Richter, P.; Peng, Z.; Huerta, J. Wi-Fi Crowdsourced

Fingerprinting Dataset for Indoor Positioning. Data 2017, 2, 32. [CrossRef]
49. Rawat, W.; Wang, Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive

Review. Neural Comput. 2017, 29, 2352–2449. [CrossRef]
50. Rana, S.P.; Prieto, J.; Dey, M.; Dudley, S.; Corchado, J.M. A Self Regulating and Crowdsourced Indoor

Positioning System through Wi-Fi Fingerprinting for Multi Storey Building. Sensors 2018, 18. [CrossRef]
51. Chang, Q.; van de Velde, S.; Wang, W.; Li, Q.; Hou, H.; Heidi, S. Wi-Fi Fingerprint Positioning Updated by

Pedestrian Dead Reckoning for Mobile Phone Indoor Localization. In China Satellite Navigation Conference
(CSNC) 2015 Proceedings: Volume III; Lecture Notes in Electrical Engineering; Sun, J., Liu, J., Fan, S., Lu, X.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 342, pp. 729–739. [CrossRef]

http://dx.doi.org/10.1109/WCNC.2015.7127718
http://dx.doi.org/10.1109/TVT.2016.2545523
http://dx.doi.org/10.1109/ACCESS.2017.2749516
http://dx.doi.org/10.1145/2543581.2543592
http://dx.doi.org/10.1109/SAHCN.2017.7964901
http://dx.doi.org/10.3390/s17040864
http://dx.doi.org/10.1109/JSEN.2016.2535250
http://dx.doi.org/10.1109/TMC.2015.2506585
http://dx.doi.org/10.1109/ACCESS.2017.2780243
http://dx.doi.org/10.1109/IPIN.2019.8911766
http://dx.doi.org/10.1109/TMC.2018.2839112
http://dx.doi.org/10.1007/978-3-319-54042-9_57
http://dx.doi.org/10.1186/s41044-018-0031-2
http://dx.doi.org/10.1109/ISCC.2018.8538530
http://dx.doi.org/10.3390/ijgi6110356
http://dx.doi.org/10.1155/2017/1268515
http://dx.doi.org/10.3390/data2040032
http://dx.doi.org/10.1162/NECO_a_00990
http://dx.doi.org/10.3390/s18113766
http://dx.doi.org/10.1007/978-3-662-46632-2_63

Sensors 2020, 20, 1443 26 of 26

52. Zou, H.; Chen, Z.; Jiang, H.; Xie, L.; Spanos, C. Accurate indoor localization and tracking using mobile
phone inertial sensors, WiFi and iBeacon. In Proceedings of the 2017 IEEE International Symposium on
Inertial Sensors and Systems (INERTIAL), Kauai, HI, USA, 27–30 March 2017; pp. 1–4. [CrossRef]

53. Jin, F.; Liu, K.; Zhang, H.; Feng, L.; Chen, C.; Wu, W. Towards Scalable Indoor Localization with Particle Filter
and Wi-Fi Fingerprint. In Proceedings of the 2018 15th Annual IEEE International Conference on Sensing,
Communication, and Networking (SECON), Hong Kong, China, 11–13 June 2018; pp. 1–2. [CrossRef]

54. Wang, X.; Yu, Z.; Mao, S. DeepML: Deep LSTM for Indoor Localization with Smartphone Magnetic and
Light Sensors. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas
City, MO, USA, 20–24 May 2018; pp. 1–6. [CrossRef]

55. Zhang, W.; Sengupta, R.; Fodero, J.; Li, X. DeepPositioning: Intelligent Fusion of Pervasive Magnetic Field
and WiFi Fingerprinting for Smartphone Indoor Localization via Deep Learning. In Proceedings of the
2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico,
18–21 December 2017; pp. 7–13. [CrossRef]

56. Kanaris, L.; Kokkinis, A.; Liotta, A.; Stavrou, S. Fusing Bluetooth Beacon Data with Wi-Fi Radiomaps for
Improved Indoor Localization. Sensors 2017, 17, 812. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ISISS.2017.7935650
http://dx.doi.org/10.1109/SAHCN.2018.8397155
http://dx.doi.org/10.1109/ICC.2018.8422562
http://dx.doi.org/10.1109/ICMLA.2017.0-185
http://dx.doi.org/10.3390/s17040812
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Crowdsourcing
	Area Localization
	Deep Learning for Fingerprinting

	Adaptive Area Classification for Crowdsourced Data
	Concept Overview
	Data Notations
	Floor Plan Segmentation for Area Classification
	ML Models for Area Classification
	Area Classification Score

	Floor Plan Segmentation Algorithms
	Locally Dense Cluster Expansion (LDCE)

	Machine Learning Model Building
	Preprocessing
	Feature Preprocessing
	Floor Plan Segmentation (Parameter Choice)
	Label Preprocessing

	Model Training
	Model Evaluation

	Experimental Evaluation
	Study Design
	Case Study: RWTH Aachen University Building
	Static Performance Analysis
	Model Selection via ACS

	Case Study: Tampere, Finland
	Static Performance Analysis
	Model Selection via ACS

	Discussion
	Case Study Results
	Adaptive Area Localization
	Potential Applications

	Conclusions
	References

