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Analyzing the lncRNA, miRNA, 
and mRNA‑associated ceRNA networks 
to reveal potential prognostic biomarkers 
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Abstract 

Background:  Glioblastoma multiforme (GBM) is the most seriously brain tumor with extremely poor prognosis. 
Recent research has demonstrated that competitive endogenous RNA (ceRNA) network which long noncoding RNAs 
(lncRNAs) act as microRNA (miRNA) sponges to regulate mRNA expression were closely related to tumor develop‑
ment. However, the regulatory mechanisms and functional roles of ceRNA network in the pathogenesis of GBM are 
remaining poorly understood.

Methods:  In this study, we systematically analyzed the expression profiles of lncRNA and mRNA (GSE51146 dataset) 
and miRNA (GSE65626 dataset) from GEO database. Then, we constructed a ceRNA network with the dysregulated 
genes by bioinformatics methods. The TCGA and GSE4290 dataset were used to confirm the expression and prognos‑
tic value of candidate mRNAs.

Results:  In total, 3413 differentially expressed lncRNAs and mRNAs, 305 differentially expressed miRNAs were indenti‑
fied in GBM samples. Then a ceRNA network containing 3 lncRNAs, 5 miRNAs, and 60 mRNAs was constructed. The 
overall survival analysis of TCGA databases indicated that two mRNAs (C1s and HSD3B7) were remarkly related with 
the prognosis of GBM.

Conclusion:  The ceRNA network may increase our understanding to the pathogenesis of GBM. In general, the can‑
didate mRNAs from the ceRNA network can be predicted as new therapeutic targets and prognostic biomarkers for 
GBM.
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Background
Glioma is the most frequently occurring primary tumors 
of the central nervous system (CNS) [1, 2]. Accord-
ing to cell of origin, gliomas are classified astrocytoma, 

anaplastic astrocytoma, glioblastoma and oligodendro-
gliomas. Among the gliomas, glioblastoma multiforme 
(GBM) is the most aggressive and lethal form of cancer 
and accounts for more than half of brain tumors in adults 
[3]. The median patient survival time is only 8–15 months 
after standard treatment with surgery, chemotherapy, 
radiation and biotherapy [4, 5]. The main reason for the 
lack of effective treatment and poor prognosis of GBM 
patients is that the mechanism of GBM is not thoroughly 
studied [6]. Thus, the precision medicine which based on 
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discovering tumor biomarkers and therapeutic targets 
are desperately needed to treat GBM. Our research focus 
on the differentially expressed long non-coding RNAs 
(lncRNAs), microRNAs (miRNAs), and mRNAs in GBM 
and the role of competitive endogenous RNAs (ceRNAs) 
network in the pathogenesis and prognosis of GBM.

Noncoding RNAs (ncRNAs), a class of RNAs with 
limited protein encoding abilities that are commonly 
expressed in many tumors including GBM, have received 
considerable attention [7]. The lncRNAs, a subtype of 
ncRNA longer than 200 nucleotides, account for 80% 
of all ncRNAs [8]. The miRNA, a single chain ncRNAs 
of around 22 nucleotides in length, influence the gene 
expression by binding to the 3′-UTR of their respective 
target genes [9]. They are key regulators that mediate 
tumor development and pathology, such as proliferation, 
transcription, post-transcriptional modifications, inva-
sion, apoptosis, and cell metabolism [10]. However, the 
functions of lncRNAs and miRNA in gene expression 
regulation are not well characterized.

Tumorgenesis is a complex process regulated by vari-
ous gene networks which one of them is the interac-
tion of lncRNAs with miRNAs, mRNAs or other 
molecules [11]. Salmena et al. presented the ceRNA net-
work hypothesis which is a novel regulatory mechanism 
between noncoding RNAs and coding RNAs [12]. The 
ceRNA is a complicated posttranscriptional regulatory 
network that lncRNAs, mRNAs, and other RNAs act-
ing as miRNA sponges to competitively bound miRNAs 
through miRNA response elements (MREs) [13]. These 
ceRNA modules exert a crucial role in occurrence and 
development of tumors by regulating the expression lev-
els of various RNAs and proteins [14].

Accumulating data have confirmed that lncRNA–
miRNA–mRNA regulatory network exerts a power-
ful effect in the progression and pathogenesis of many 
tumors, including GBM [15–17]. Long non-coding RNA 
taurine upregulated 1 (TUG1) enhances tumor-induced 
angiogenesis and VEGF expression through inhibiting 
microRNA-299 in human glioblastoma [18]. LncRNA-
SOX2OT-miR-194-5p/miR-122-SOX3-TDGF-1 path-
way forms a positive feedback loop and regulates the 
biological behaviors of glioblastoma stem cells (GSCs) 
[19]. However, systematic studies for ceRNA networks in 
GBM are also scarce yet.

In this study, the expression profiles of lncRNAs, miR-
NAs and mRNAs were systematic analysis between 8 
GBM tissues and 8 normal brain tissues from GEO data-
base in total. Then, we performed a ceRNA network 
associated with GBM, including 3 lncRNAs, five miR-
NAs, and sixty mRNAs. According to the differential 
expression and overall survival analysis from the Cancer 
Genome Atlas (TCGA) databases, two mRNAs (C1s and 

HSD3B7) were prognostic biomarkers for GBM patients. 
These candidate genes involved in the ceRNA network 
may provide clues and ideas for exploring the pathogen-
esis and accurate diagnostic biomarkers for GBM.

Materials and methods
Raw data
The datasets used in the present study were downloaded 
from the National Center of Biotechnology Informa-
tion (NCBI) Gene Expression Omnibus (GEO) (https​
://www.ncbi.nlm.nih.gov/geo/) [20]. The original gene 
expression profiles were obtained from GSE51146 data-
set (no paper published) and GSE65626 dataset. The 
GSE51146 dataset includes gene expression profiles from 
5 glioblastoma multiform biopsy specimens and 5 normal 
brain tissues. The platform used in GSE51146 dataset is 
GPL15314 Arraystar Human LncRNA microarray V2.0 
(Agilent_033010 Probe Name version). The GSE65626 
dataset includes microRNA expression profiles from 3 
glioblastoma multiforme specimens (3 tumours and 3 
normal tissues). The platform used in GSE65626 data-
set is GPL19117 [miRNA-4] Affymetrix Multispecies 
miRNA-4 Array. The original gene expression profiles of 
C1s and HSD3B7 were obtained from GSE4290 dataset. 
The GSE4290 dataset includes gene expression profiles 
from 81 glioblastoma multiform samples and 23 normal 
brain tissues [21]. The platform used in GSE4290 data-
set is GPL570 Affymetrix Human Genome U133 Plus 2.0 
Array.

Identification of differentially expressed genes
GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r​/) is an 
interactive web tool, based on R language limma pack-
age [22], that can be used to compare two or more groups 
of samples to identify differential expression in a GEO 
series. In the present study, GEO2R was used to filter 
differentially expressed mRNAs and miRNAs between 
normal and tumor samples separately in each of the 
datasets. The false discovery rate (FDR) is a method of 
conceptualizing the rate of type I errors in null hypoth-
esis testing when conducting multiple comparisons. 
GEO2R calculates the FDR automatically. The multiple 
t test was used to detect statistically significant genes at 
the same time with FDR correction. Fold change (FC) > 2 
and P-value < 0.05 were set as the cut-off criteria. Then, 
probes without a corresponding gene symbol were then 
filtered.

Gene function analysis
Gene ontology (GO) enrichment analysis and kyoto ency-
clopedia of genes and genomes (KEGG) pathway analysis 
of mRNAs was implemented with DAVID (https​://david​
.ncifc​rf.gov/). Briefly, gene identifiers were first converted 
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into their Homo.sapiens Entrez gene IDs using the latest 
database. If multiple identifiers correspond to the same 
Entrez gene ID, they will be considered as a single Entrez 
gene ID in downstream analyses. For each given gene list, 
pathway and process enrichment analysis was carried 
out with the following ontology sources: KEGG Pathway, 
GO biological processes (BP), cellular component (CC) 
and molecular function (MF). The species was limited to 
Homo.sapiens and all genes in the genome were used as 
the enrichment background. More specifically, p-values 
are calculated based on accumulative hyper geometric 
distribution, q-values are calculated using the Banjamini-
Hochberg procedure to account for multiple testing [23]. 
Kappa scores were used as the similarity metric when 
performing hierarchical clustering on the enriched terms 
and then sub-trees with similarity > 0.3 are considered a 
cluster. The most statistically significant term within a 
cluster is chosen as the one representing the cluster.

WGCNA analysis
Samples clustering were performed to demonstrate the 
relationship between expression profile and clinical 
traits. After raw data preprocessing, weighted gene co-
repression network analysis (WGCNA) were performed 
to identify significant gene modules according to a pre-
viously described algorithm [24]. Probe sets were first 
filtered based on the variance of expression value across 
all samples. Probe sets with duplicated gene symbols 
were also removed based on expression variance. The 
R package WGCNA [25] was applied for this analysis. 
Briefly, Person’s correlation coefficients were calculated 
for selected genes in a pair wise manner yielding a simi-
larity matrix (Sij). The soft threshold (power) was set as 
12. The matrix was transformed into an adjacency matrix 
(aij) using a power function using formula aij = Power 
(Sij, β) ≡ |Sij| β. Average linkage hierarchical cluster-
ing was then performed to identify modules of densely 
interconnected genes. Network interconnectedness was 
measured by calculating the topological overlap using the 
TOM dist function with a signed TOM-Type. Average 
hierarchical clustering was performed to group the genes 
based on the topological overlap dissimilarity measure 
(1-TOM) of their connection strengths. Network mod-
ules were identified using a dynamic tree cut algorithm 
with minimum cluster size of 30 and merging threshold 
function at 0.25. Genes that were not assigned to specific 
modules were assigned to the color grey.

Prediction of the mRNA‑miRNA‑lncRNA interactions
The interactions between the differentially expressed 
miRNAs and differentially expressed mRNAs were 
predicted using miRWalk 3.0 (http://mirwa​lk.umm.
uni-heide​lberg​.de/), which integrated the prediction 

results of both TargetScan [26] and miRDB [27], and 
the score ≥ 0.95 was considered as cutoff criterion for 
the prediction analysis in miRWalk. Only the interacion 
of miRNA and mRNA with opposite expression was 
included in the present study. The interaction between 
miRNA and lncRNA was predicted by using DIANA-
LncBase v2.0 [28] and the score ≥ 0.4 was considered as 
cut off criterion for the prediction analysis in the pre-
diction module of LncBase.The predicted targets were 
intersected with DEGs, the miRNAs, and mRNAs were 
selected for construcion of miRNA-mRNA regulatory 
network. Cytoscape software (version 3.40) was used to 
visualize the regulatory network.

Patients and tissue samples
The use of these archival tissues in this study was 
reviewed and approved by the Ethics Committee of the 
Yijishan Hospital of Wannan Medical College. Archival 
human non-glioma patient samples and glioma tissue 
samples were obtained from Department of Neurosur-
gery, Yijishan Hospital of Wannan Medical College. The 
samples taken during the surgery were immediately fro-
zen in − 80  °C and then used for RNA isolation. Glio-
mas were graded according to the WHO classification of 
tumors [29].

Cell lines and culture
The human normal glial cell line (HEB) and human 
GBM cell lines (U87MG, U251) which used in this study 
were obtained from American Type Culture Collection 
(Manassas, VA). All cell lines were cultured in Dulbecco’s 
modified eagle medium (DMEM) (Hyclone, GE Health-
care Life Sciences, Logan, UT, USA) at 37 °C in a humidi-
fied atmosphere containing 5% CO2. All media were 
supplemented with 10%(v/v) fetal bovine serum (FBS) 
(Gibco, Life Technologies, Grand Island, NY). Briefly, 
When the human cells are near the end of exponential 
growth (roughly 70% to 90% confluent), remove and dis-
card culture medium and wash the cells with PBS. Add 
Trypsin–EDTA solution to flask and until cell layer is 
dispersed. Add DMEM medium and aspirate cells to EP 
tube. Resuspend the cell pellet and add appropriate ali-
quots of the cell suspension to new flask. Incubate cul-
tures at 37 °C.

RNA isolation and real‑time qPCR analysis
Total RNA was isolated from the frozen brain tissues and 
cells using TRIzol reagent (Ambion, life technologies, 
Carlsbad, CA, USA) according to the previous descrip-
tion [30]. For mRNA detection, total RNA was used to 
reverse transcribe C1s and HSD3B7 by a Revert Aid First 
Strand cDNA Synthesis Kit (Thermo Scientific, Vilnius, 
Lithuania, USA). RT-qPCR was performed using Quanti 
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Nova™ SYBR® Green PCR Kit (Qiagen, Hilden, Ger-
many). Primer sequences for qPCR: C1s Forward, AGG​
CAC​CTC​TTC​CGA​CTA​CAACC; C1s Reverse, CCT​
TGA​GGCGA ACA​GCA​CGATC; HSD3B7 Forward, 
CTA​CTG​GCT​GCT​GGT​GTT​CCTG; HSD3B7 Reverse, 
CTG​ACG​GTG​AAG​GTG​GTG​TTGG. The amplification 
was performed on a Bio-Rad CXF96 PCR detection sys-
tem (Bio-Rad, Hercules, CA, USA). The expressions of 
the mRNAs were normalized to GAPDH which used as 
endogenous controls. The relative gene expression lev-
els were calculated with the comparative cycle thresh-
old (2−ΔΔCt) method. For RT-PCR analysis of tissues, 
results were analyzed also using the 2−ΔΔCt method. 
Fold change of RT-PCR was presented as 2−ΔΔCt, where 
ΔCt = CtRNAs − CtGAPDH. Then select the ΔCt value of 
a tissue as a control. ΔΔCt tissues = ΔCt control − ΔCt tissues 
and Fold change (Relative mRNA expression) = 2−ΔΔCt.

Statistical analyses
All procedures were performed in triplicate. The Data 
were presented as the mean ± standard deviation (SD). 
Statistical analyses were performed using GraphPad 
Prism 5 (La Jolla, California, USA). The significance of 
the differences was determined by Student’s t-test. Differ-
ences were considered statistically significant at *p < 0.05, 
**p < 0.01 and ***p < 0.001.

Supplementary methods are described in Additional 
file 1.

Results
Screening differentially expressed lncRNAs, miRNAs 
and mRNAs
Firstly, the genome wide mRNA and lncRNA expres-
sion profiles in GBM were analyzed in GSE51146 data-
set (including 5 GBM biopsy specimens and 5 normal 
brain tissues) by GEO2R. Fold change (FC) > 2 and 
P-value < 0.05 were set as the cut-off criteria. Com-
pared with normal brain, we found that 1531 and 1882 
genes were identified significantly up- and down-regu-
lated in GBM, respectively (Fig. 1a, b) (Additional file 2: 
Table  S1). Using the same method with miRNAs, there 
were 305 (including 152 up and 153 down) differentially 
expressed miRNAs between GBM and normal brain 
groups from GSE65626 dataset (including 3 GBM speci-
mens and 3 normal brain tissues) (Fig. 1c, d) (Additional 
file 3: Table S2).

Co‑expression analysis of lncRNA and mRNA
To explore biologic function of lncRNAs and mRNAs 
in GBM, we need to define the regulatory relation-
ship between lncRNAs and mRNAs. Because lncRNAs 
could compete with miRNA target mRNAs, we just 
focused on an lncRNA–mRNA competing interaction 

pair which the expression of lncRNA and mRNA is 
positively correlated. We analyzed the co-expres-
sion of lncRNA and mRNA from GSE51146 dataset 
by WGCNA package. As shown in Fig.  2, a heatmap 
with correlation coefficient (R) and significant differ-
ence (P-value) showed the correlation between module 
eigengenes with GBM. Finally, we get the co-expression 
Pink module (R = 0.92, p = 0.0001) which the lncRNAs 
and mRNAs in the module were significantly correla-
tion with GBM.

Then we tried to build the co-expression network dia-
gram for the Pink module. The screening threshold for 
co-expression relationships is set to weight > 0.02; mean-
while, lncRNAs and mRNAs were differentially expressed 
genes and had the same expression trend. As shown in 
Fig.  3a, the co-expression network of the pink mod-
ule was constructed. In total, 5928 potential lncRNA 
and mRNA pairs were constructed (Additional file  4: 
Table S3). Then we computed the all genes’ node degree 
which is a basic topological feature of co-expression net-
work (Additional file  5: Table  S4). The node degree can 
directly reflect the importance of the gene in the network. 
A gene with a relatively large degree may have more 
important clinical and biological value [31]. As a result, 7 
lncRNAs were obtained, including RP11-268F1.3, RP11-
547C13.1, lincRNA-GPC4, RP11-90M5.4, RP11-339N8.1, 
RP4-764D2.1, GS1-466O4.2, which degrees were over 
100.

The lncRNAs, miRNAs and mRNAs regulatory networks 
in GBM
To further study the influence of 7 lncRNAs regulation 
on mRNAs expression in GBM, we identified lncRNA-
miRNA-mRNA ceRNA modules by integrating matched 
expression profiles of lncRNAs, miRNAs and mRNAs 
(Additional file  6: Fig. S1). The miRNA interacted with 
lncRNA were identified by intersecting the miRNA 
which predicted by using DIANA-LncBase v2.0 and dif-
ferentially expressed miRNAs from Fig. 1. Then we used 
miRWalk 3.0 to identify the mRNAs which targeted 
with miRNAs acquired from the above analysis. Three 
lncRNA-miRNA-mRNA ceRNA modules were per-
formed after the target mRNAs of miRNA intersect with 
the mRNAs in the co-expression network of the Pink 
module from Fig. 3 (Fig. 3b) (Additional file 7: Table S5). 
In the first module, lncRNA RP11-547C13.1 competed 
with 51 mRNAs to target with miR-346. In the second 
module, lncRNA RP11-268F1.3 and 47 mRNAs com-
peted with 2 miRNAs (miR-132-3p and miR-381-3p). 
While the third module contained single lncRNA (RP11-
90M5.4), 2 miRNAs (miR-874-3p and miR-584-3p) and 
52 mRNAs.
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Gene ontology and KEGG pathway analyses
We further investigated the biological function and 
pathways of mRNAs in ceRNA network by GO and 
KEGG pathway analysis (Additional file  8: Table  S6). 
As shown in Fig.  4a, mRNAs in ceRNA network were 
classified as 23 biological processes (BP) terms, 8 cel-
lular components (CC) terms and 4 molecular func-
tions (MF) terms using GO enrichment analysis. The 
significantly enriched BP terms were related to innate 
immune response, cell differentiation, glucose trans-
port, positive regulation of insulin secretion. The 
most significantly enriched CC term was immunologi-
cal synapse, and the most significantly enriched term 
under the MF classification was protein binding. KEGG 

pathway analysis revealed that the mRNAs in ceRNA 
network were mainly involved in the T cell receptor 
signaling pathway, primary immunodeficiency and Ras 
signaling pathway (Fig. 4b).

Clinical validation of candidate mRNA
To test whether the mRNAs in ceRNA network had 
clinical significance,we verified the gene expression and 
its relationship with patient overall survival by using 
the GBM samples from TCGA and GEO database. We 
found that the expression of C1s and HSD3B7 were 
significantly increased in GBM vs. controls and corre-
lated with overall survival in patients simultaneously 
(Fig.  5a–c). By TCGA database, the expression of C1s 
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or HSD3B7 in GBM based on patient’s age and gender 
were presented in (Additional file 9: Fig. S2). RT-qPCR 
showed that the expression levels of C1s and HSD3B7 
in GBM cell lines were significantly higher than that in 
normal glial cell line (Fig.  5d). Then we further deter-
mined the expression of C1s and HSD3B7 in GBM and 
normal brain tissues which collected from the Yijis-
han Hospital of Wannan Medical College. The results 
shown that the expression of C1s and HSD3B7 were 
up-regulated in GBM tissues as compared to the nor-
mal brain tissues (Fig.  5e) (Additional file  10: Fig. S3). 

These results suggest that high expression of C1s and 
HSD3B7 may play biomarkers for GBM diagnosis.

We then investigated the lnRNA and miRNA involved 
in the regulation of C1s and HSD3B7. According to the 
ceRNA network, miR-132-3p, miR-346, miR-584-3p 
and miR-874-3p may target C1s, and miR-132-3p, miR-
346, miR-381-3p and miR-584-3p may target HSD3B7. 
Therefore, we detected the expression levels of C1s and 
HSD3B7 in GBM cells transfected with miRNA mim-
ics and NC. Compared with the NC, overexpression 
of miR-132-3p, miR-346, miR-584-3p and miR-874-3p 
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significantly increased the expression level of C1s. How-
ever, the expression of HSD3B7 was almost unaffected 
by the interacting miRNA (Additional file  11: Fig. S4 A 
and B). To confirm the connection between the lnRNA 
and miRNA which regulated C1s, we constructed lucif-
erase reporters containing full-length lncRNA RP11-
268F1.3, RP11-547C13.1, RP11-90M5.4. The miR-132-3p, 
miR-346 and miR-874-3p mimics significantly reduced 
the luciferase activities of the corresponding lncRNA 
reporters (Additional file 11: Fig. S4 C and D). Expression 
analysis indicated that C1s was decreased upon RP11-
268F1.3, RP11-547C13.1 and RP11-90M5.4 knockdown 
(Additional file  11: Fig. S4 E). Collectively, these data 
indicated that lncRNA RP11-268F1.3, RP11-547C13.1 
and RP11-90M5.4 serves as ceRNA through direct bind-
ing with corresponding miRNAs in GBM.

Discussion
GBM is the most malignant type of CNS tumors with 
complex biology and poor prognosis. The study on the 
molecular mechanism of GBM is of great significance to 
the treatment and survival of patients. With the appli-
cation of high-throughput technology and the progress 

of bioinformatics technology, the underlying mecha-
nism and efficient biomarkers of GBM have been greatly 
improved [32]. In this study, the transcriptional expres-
sion and clinically relevant pathological features of lnR-
NAs, miRNAs and mRNAs were collected from the 
TCGA and GEO databases. Based on comprehensive 
integration of the lncRNA, miRNA and mRNA data, 
ceRNA networks were constructed and two candidate 
biomarkers (C1s and HSD3B7) that may be associated 
with GBM prognosis were identified.

One of the mRNAs that we screened from the prognos-
tic ceRNA network was C1s which is a major constitu-
ent of the human complement subcomponent C1. C1s 
interacts with two other complement components C1r 
and C1q to form the C1 complex (C1qC1r2C1s2). C1 
complex, the first component of the serum complement 
system, responds to clear pathogens and initiate inflam-
mation by leading to the production of opsonins and 
anaphylatoxins [33, 34]. Previous study shows that C1s is 
expressed in the liver, brain and kidney [35]. It has been 
demonstrated that C1s deficiency was associated with 
ICR-Derived Glomerulonephritis (ICGN) and systemic 
lupus erythematosus [36, 37]. However, little research has 
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Fig. 5  The expression and overall survival of C1s and HSD3B7 in ceRNAs network. a The differences between expression levels of C1s and HSD3B7 
in GBM and normal samples from TCGA database. b The differences between expression levels of C1s and HSD3B7 in GBM and normal samples 
from GEO database. c The relationships between the expression levels of C1s or HSD3B7 and overall survival of patients with GBM from TCGA 
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of C1s and HSD3B7 in GBM and normal glial cells. RT-qPCR detected the mRNA expression of C1s and HSD3B7 in HEB, U87MG, U251 cells. e 
The differences between expression levels of C1s and HSD3B7 in GBM and normal samples from Yijishan Hospital. RT-qPCR detected the mRNA 
expression of C1s and HSD3B7. Data are mean ± SD from three independent experiments.*p < 0.05, **p < 0.01, ***p < 0.001
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been done on the function of C1s in tumors and gliomas. 
In this study, we have proved that the expression of C1s 
was upregulated in GBM tissues and that its overexpres-
sion level presented a poor prognosis in patients with 
GBM (Fig. 5).

Among the prognostic differentially expressed mRNAs, 
HSD3B7 encodes an enzyme which is involved in the ini-
tial stages of the synthesis of bile acids from cholesterol 
and a member of the short-chain dehydrogenase/reduc-
tase superfamily [38]. Mutations in this gene are associ-
ated with a congenital bile acid synthesis defect which 
leads to neonatal cholestasis, but reduces the risk of 
late-onset Parkinson’s disease [39, 40]. 7α25HC, an inter-
mediate product of bile acid synthesis, is degraded by 
HSD3B7. In astrocytes, EBI2 is activated by 7α25HC and 
regulates ERK phosphorylation, Ca2+ signaling, as well as 
astrocyte cell migration [41, 42]. Studies have shown that 
EBI2 might be involved in the recruitment of monocytes 
and macrophages towards GBM [43]. Combined with 
clinical data, we suspect that HSD3B7 may play a role in 
GBM by regulating EBI2 activity.

In addition to mRNAs, we screened 3 lncRNAs 
(lncRNA RP11-268F1.3, RP11-547C13.1, RP11-
90M5.4) and five miRNAs (miR-132-3p, miR-346, miR-
381-3p, miR-584-3p and miR-874-3p) through the 
ceRNA network. In our model, lncRNA RP11-268F1.3, 
RP11-547C13.1 and RP11-90M5.4 functions as a post-
transcriptional modulator by directly interacting with 
miR-132-3p, miR-346 and miR-874-3p, respectively. 
Thereby finally lncRNA regulates the miRNA target C1s. 
As all we know, miRNAs are important post-transcrip-
tional regulators of mRNAs and negatively regulate gene 
expression by either inhibiting protein translation or 
degrading mRNA [9]. Current research reveals that these 
three miRNAs (miR-132-3p, miR-346 and miR-584-3p) 
could affect multiple functions of glioma [44–46]. The 
other two miRNAs (miR-381-3p and miR-874-3p) also 
have been found to involve in biological processes of 
most tumors except gliomas [47, 48].

In this study, GO and KEGG were employed to ana-
lyze the biological function and pathways of mRNAs in 
ceRNA network. We found that most pathways were 
related with cell immunity. In addition, the mRNAs also 
significantly enriched in tumor related pathways, such as 
cell differentiation and Ras signaling pathway (Fig. 4 and 
Additional file 8: Table S6). The biological meaning of cell 
differentiation refers to the process by which cells of the 
same origin gradually produce cell groups with different 
morphological structures and functional characteristics. 
Highly malignant tumor cells are generally associated 
with abnormal differentiation and immaturity [49]. RAS 
encodes a family of small GTPases that includes; NRAS, 
HRAS and KRAS. The GTP-bound RAS, as an active 

form of RAS, is important regulator of tumorgenesis by 
activating the PI3K/AKT/MTOR or RAF/MEK/ERK 
pathways [50].

We identified many GBM related lncRNAs, miRNAs, 
and mRNAs from the ceRNA network, but the relation-
ship between the ceRNA network and GBM remain not 
clear. Therefore, more experiments and clinical practice 
were still needed to verify the effect of ceRNA network 
in GBM. We insist that the genes in the ceRNA network 
are critical for GBM diagnosis and treatment because the 
network was a result of integrated microarray and experi-
mental evidence. In the future, the ceRNA network will 
be improved with the better databases, optimization of 
algorithms, and increased samples. Next, we will explore 
the functions of ceRNAs in GBM.

Conclusions
In summary, a ceRNA network was successfully estab-
lished after screening differentially expressed lncRNAs, 
miRNAs and mRNAs in GBM from the GEO database. 
Overall survival analysis of TCGA database indicated 
that two mRNAs (C1s and HSD3B7) from the ceRNA 
network were significantly correlated with the prognosis 
of GBM patients. Furthermore, the GEO database and 
brain tissues of our hospital confirmed that the expres-
sion levels of C1s and HSD3B7 in GBM tissues and 
cells were higher than those in normal brain tissues and 
cells. Therefore, C1s and HSD3B7 can be further used as 
potential prognostic biomarker for GBM and promising 
targets for treatment.
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