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Alzheimer’s disease (AD) is an age-related disease that affects a large proportion of
the elderly. Currently, the neuroimaging techniques [e.g., magnetic resonance imaging
(MRI) and positron emission tomography (PET)] are promising modalities for AD
diagnosis. Since not all brain regions are affected by AD, a common technique is
to study some region-of-interests (ROIs) that are believed to be closely related to
AD. Conventional methods used ROIs, identified by the handcrafted features through
Automated Anatomical Labeling (AAL) atlas rather than utilizing the original images
which may induce missing informative features. In addition, they learned their framework
based on the discriminative patches instead of full images for AD diagnosis in multistage
learning scheme. In this paper, we integrate the original image features from MRI
and PET with their ROIs features in one learning process. Furthermore, we use the
ROIs features for forcing the network to focus on the regions that is highly related to
AD and hence, the performance of the AD diagnosis can be improved. Specifically,
we first obtain the ROIs features from the AAL, then we register every ROI with its
corresponding region of the original image to get a synthetic image for each modality of
every subject. Then, we employ the convolutional auto-encoder network for learning the
synthetic image features and the convolutional neural network (CNN) for learning the
original image features. Meanwhile, we concatenate the features from both networks
after each convolution layer. Finally, the highly learned features from the MRI and PET
are concatenated for brain disease classification. Experiments are carried out on the
ADNI datasets including ADNI-1 and ADNI-2 to evaluate our method performance.
Our method demonstrates a higher performance in brain disease classification than
the recent studies.

Keywords: Alzheimer’s disease, multimodal images, convolutional auto-encoder, convolutional neural networks,
anatomical volumes of interest
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INTRODUCTION

Alzheimer’s disease (AD) is the main cause of dementia that
normally worsens over time (Khachaturian, 1985; Kucmanski
et al., 2016; Anter et al., 2019). The memory loss and cognitive
impairment are the most common symptoms of AD. The mild
cognitive impairment (MCI) is an intermediate stage between
healthy people and AD that can be classified into two subgroups;
stable MCI (sMCI) and progressive MCI (pMCI) (Chen et al.,
2016). As there is no treatment to revert AD, the early detection
of AD is the only way to prevent patients from losing their
memory and other cognitive abilities from deterioration (Hao
et al., 2020). Therefore, researchers utilized the neuroimaging
data [e.g., magnetic resonance imaging (MRI) and positron
emission tomography (PET)] to identify AD due to their
abilities to provide a complementary structural and functional
information of human brain (Zhu et al., 2017; Bi et al., 2020;
Folego et al., 2020).

Various machine learning methods have been proposed in
literature for AD diagnosis from single and multimodal images.
Zu et al. (2016) jointly selected a subset of relevant features from
multiple modalities via a group sparsity regularizer and fused the
selected features for AD diagnosis. Zhang et al. (2018) utilized
the neuroimaging and genetic data for learning a multi-layer
multi-view classification technique for AD diagnosis. Zhang et al.
(2011) proposed a framework that used a kernel combination
method for brain disease classification. Liu et al. (2012) combined
multiple individual classifiers such that each classifier utilized
different subsets of local patches. Liu et al. (2014a) developed
a multitask feature selection method to preserve inter-modality
relationship by imposing a constraint and employed support
vector machine (SVM) to combine the significant features for AD
diagnosis. Min et al. (2014) registered each subject with multiple
atlases and calculated the correlation among them to select the
relevant features then used the SVM for classification. Zhang
et al. (2012) developed a multimodal multi-task learning that
selected the significant features from each modality. They also
used SVM to fuse the features for brain disease classification
and regression. Liu et al. (2014b) developed a hierarchical
ensemble classification method that gradually transformed the
high-dimensional imaging into a compact representation by
constructing multi-level classifiers. Tong et al. (2017) calculated
the pairwise similarity matrix from multi-modal data then fused
the similarities from each modality for classification. Zhou et al.
(2019a) developed a latent representation learning framework
that used all the available samples then projected the latent
representations to the label space for classification.

Recently, various deep learning techniques have been also
proposed in literature for AD diagnosis. Feng et al. (2019)
designed a technique based on convolutional neural network
(CNN) and fully stacked bidirectional long short-term memory
for learning the neuroimaging data (MRI and PET) for AD
diagnosis. In Abdelaziz et al. (2021), we designed a framework
for classification and regression using neuroimaging and genetic
data using CNN. Zhou et al. (2019b) developed a framework
to discriminate patients with AD from healthy subjects using
deep neural network in three stages. Liu et al. (2018b) developed

a CNN model based on discriminative anatomical landmarks
from MRI data for joint classification and regression. Suk
et al. (2014) developed a deep learning framework that utilized
a restricted Boltzmann machine for computer-aided AD/MCI
diagnosis. In another work, Cheng et al. (2017) combined
various learned features from local brain images using 3D-
CNNs for classification. Similarly, Liu et al. (2018a) fused the
learned multi-level and multi-modality features using cascaded
CNNs model for improving the performance of AD. Also,
Basaia et al. (2019) utilized the 3D T1-weighted images for
predicting the individual diagnosis of AD and discriminating
sMCI from pMCI using CNN.

Although the above-mentioned techniques achieved good
performance, they still have some limitations. First, they only
used either the handcrafted features or the original image.
Second, they used the relevant patches instead of full image
for classification. Specifically, they firstly selected the relevant
discriminative patches relevant to AD. Then, the relevant patches
are used for classification. Third, they either used MRI or PET
for brain disease classification. Fourth, most methods adopted
multistage learning scheme to learn from the multi-modal data.
However, this learning scheme requires extensive processing and
memory resources.

To address the above limitations, we develop a novel
technique that takes the advantages of learning from both original
neuroimaging features and their brain region-of-interests (ROIs)
features. In addition, we use the ROIs features for forcing the
network toward the regions that are highly related to AD.
Specifically, we first convert the 116 ROIs features from the
Automated Anatomical Labeling (AAL) atlas into the image
space by registering every ROI with its corresponding region
of the original image. Hence, for every subject, we have the
original image and the synthetic image. Afterward, we train the
original images using a CNN while train the synthetic images
using a convolutional auto-encoder. Note that, we separately
train the CNN and the convolutional auto-encoder for every
modality. Meanwhile, we concatenate the features from CNN
and convolutional auto-encoder after each convolution layer for
each modality. Finally, the highly learned features from both
modalities are concatenated for classification.

The objectives of this work are as follows. First, we aim
to develop a method that uses multimodal neuroimaging data
and boost attention to the highly related AD regions. Second,
integrate the original neuroimaging features with their ROIs
features in one framework. Meanwhile, we force the deep learning
network to focus on the regions that are highly related to AD.
Third, develop a method that converts the ROIs features to
image space in order to utilize it as 3D image in deep learning
framework. Finally, develop a deep learning model that utilizes
the multimodal data in only one stage.

The remainder of this work is organized as follows. The
neuroimaging dataset and its preprocessing are presented in
section “Materials and Methods.” Furthermore, the methodology
is introduced in section “Methodology.” The experimental results
are given in section “Results and Discussions.” Lastly, conclusions
and future work are summarized in section “Conclusions and
Future Work.”
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TABLE 1 | Number of subjects utilized in our work.

Dataset Modality NC sMCI pMCI AD Total

ADNI-1 MRI 213 211 159 180 763

PET 97 121 75 91 384

ADNI-2 MRI 167 152 129 127 575

PET 167 152 129 127 575

Common 264 273 204 218 959

MATERIALS AND METHODS

Subjects
In this study, we employed the public database of Alzheimer’s
Disease Neuroimaging Initiative (ADNI)1 that has ADNI-1 and
ADNI-2 phases for evaluating the proposed method. Table 1
presents the number of subjects in ADNI-1 and ADNI-2 datasets
used in our study. Furthermore, we assess the efficiency of our
method by using the common subjects between MRI and PET
such that the number of the subjects is 959 including; 264 NC,
273 sMCI, 204 pMCI, and 218 AD.

Data Preprocessing
Figure 1 shows the preprocessing pipeline of the neuroimaging
data. We perform the preprocessing of the neuroimaging data
including MRI and PET as previously described by Zhou et al.
(2019b). For the MRI preprocessing (Figure 1A), we first employ
the MIPAV program for correcting the anterior commissure-
posterior commissure (AC–PC). Then, N3 algorithm was
applied to correct the bias field of the processed AC-PC
images. Afterward, we perform the brain extraction using the
skull-stripping technique in Min et al. (2014) followed by
removing the cerebellum. Furthermore, we register the skull-
stripped image with Montreal Neurological Institute template
(Lancaster et al., 2000).

Following that, the three brain tissues [white matter (WM),
gray matter (GM), and cerebrospinal fluid (CSF)] are extracted
by employing the FAST algorithm in the FSL package (Zhang
et al., 2001). Finally, to calculate the GM feature for each ROI in
each subject, we register the segmented GM tissue with the atlas
(Tzourio-Mazoyer et al., 2002) and normalize the corresponding
GM volume to the total intracranial volume. On the other hand,
Figure 1B shows the PET preprocessing pipeline. Firstly, the
affine registration is employed to register each PET data with their
corresponding T1 MR images. Then, we compute the PET ROIs
features by averaging the intensity of each ROI.

METHODOLOGY

Overview of the Proposed Method
The proposed framework for AD diagnosis using multimodality
neuroimaging data is shown in Figure 2. In our framework,
we employ the CNN to learn original features from MRI and
PET and the convolutional auto-encoder to learn the 116 ROIs

1https://adni.loni.usc.edu/

features in one framework. However, they cannot be used directly
without converting the ROIs features to an image space. Thus,
we convert the ROIs to image space with the aid of AAL
by registering every ROI with its corresponding region of the
original image as shown in Figures 3, 4. Hence, we create the
synthetic images for MRI and PET modalities. Furthermore,
we generate the synthetic MRI and PET images with only 32
ROIs features by registering only the regions in Table 2 as these
regions are highly related to AD (Sun et al., 2009). Then, we
develop a deep learning model that learns the synthetic images by
convolutional auto-encoder and the original neuroimaging data
by using CNN. Note that, we separately train the CNN and the
convolutional auto-encoder for every modality. Meanwhile, we
concatenate the features generated from each modality with those
from the convolutional encoder after each convolution layer to
force the network to focus on the selected regions related to AD.
Finally, the highly features from MRI and PET are concatenated
for brain disease classification.

Convolutional Auto-Encoder
The convolutional auto-encoder is a type of auto-encoder
designed specifically for image and multidimensional data
processing. It extends the basic structure of the simple
auto-encoder by replacing the completely linked layers to
convolutional, down-sampling, and up-sampling layers (Guo
et al., 2017). In literature, convolutional auto-encoder has been
widely used in many different tasks such image de-noising
(Ahmed et al., 2021), anomaly detection (Kolberg et al., 2021),
and deep clustering (Snover et al., 2021).

Generally, the conventional auto-encoder is used to extract
a latent feature representation of the input data without the
need of labels and it comprises two main components; encoder
f (x) and decoderg (x) (Wang et al., 2021). The encoder uses a
mapping function to generate a latent features representation
of the input data then the latent representation is used to
reconstruct the input image using the decoder network. The
applied loss function between the encoder input x and decoder
output x̂ = g

(
f (x)

)
is the mean squared errors (MSE) as

follow:
min

1
N

∑
i

(
xi−g

(
f (xi)

))
, (1)

where the total number of inputs is N and
the latent representation output at the Z-
layer are calculated for the i-th subject as:

zi = f (xi)→ zi ∈ RZ. (2)

In this work, we use convolutional auto-encoder such
that the input data is the synthetic images generated
by registering every ROI with its corresponding region
of the original image. On the other hand, the decoder
uses the latent feature representation of the input data
to reconstruct the synthetic images with only 32 ROIs
highly related to AD as given in Table 2 (Sun et al., 2009).
We reconstruct these regions to increase the attention
to these regions and hence, increase the performance of
disease classification.
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FIGURE 1 | Neuroimaging data preprocessing pipeline: (A) MRI and (B) PET.

FIGURE 2 | Proposed framework that utilizes convolutional auto-encoder and CNN for brain disease classification.

In the proposed architecture, we use three convolutional
layers for each synthetic image such that the rectified linear
unit (ReLU) activation function and batch normalization are

used after each convolutional layer. Meanwhile, after each
convolution layer, the convoluted output is concatenated with the
convoluted output generated from original images from CNN.
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FIGURE 3 | Example of generating the synthetic MRI image.

FIGURE 4 | Example of generating the synthetic PET image.

Then, the decoder process is the same as encoder process but
in reverse order for extracting the synthetic images with regions
highly related to AD.

Convolutional Neural Networks
The CNN is one of the most common deep learning techniques
used for extracting the high learned features from the input
data (LeCun et al., 1989). CNN has been frequently utilized
in many different tasks such a face recognition, breast cancer
diagnosis, AD diagnosis, and brain tumor detection (Díaz-Pernas
et al., 2021; Naveen and Sivakumar, 2021; Zhang et al., 2021). It
includes three main layers, namely convolutional, pooling, and

fully connected (FC) layer (Bailer et al., 2018). The convolution
layer is made up of various convolution kernels that are used to
compute various input feature representations. In addition, the
max-pooling is used for down sampling the convoluted output
and hence it reduces the features dimensionality. Finally, the FC
layer is used to equip the network with classification capabilities.

In our CNN model, we use three convolutional layers for each
original image such that the ReLU and batch normalization are
used after each convolutional layer. Meanwhile, the convoluted
output is concatenated with the convoluted output generated
from synthetic images. Then, the flattened layer is employed
independently in each of the neuroimaging data to flatten
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TABLE 2 | Highly AAL-related ROIs to AD.

Index Name Index Name

35 Cingulum_Post_L 59 Parietal_Sup_L

36 Cingulum_Post_R 60 Parietal_Sup_R

37 Hippocampus_L 61 Parietal_Inf_L

38 Hippocampus_R 62 Parietal_Inf_R

39 ParaHippocampal_L 67 Precuneus_L

40 ParaHippocampal_R 68 Precuneus_R

41 Amygdala_L 81 Temporal_Sup_L

42 Amygdala_R 82 Temporal_Sup_R

49 Occipital_Sup_L 83 Temporal_Pole_Sup_L

50 Occipital_Sup_R 84 Temporal_Pole_Sup_R

51 Occipital_Mid_L 85 Temporal_Mid_L

52 Occipital_Mid_R 86 Temporal_Mid_R

53 Occipital_Inf_L 87 Temporal_Pole_Mid_L

54 Occipital_Inf_R 88 Temporal_Pole_Mid_R

55 Fusiform_L 89 Temporal_Inf_L

56 Fusiform_R 90 Temporal_Inf_R

the last convoluted output. Finally, the Softmax activation
function is employed for identifying the disease. Note that, we
utilize dropout layer in order to avoid the potential overfitting.
Furthermore, the highly learned features from MRI and PET are
concatenated and went through series of FC for classification.

RESULTS AND DISCUSSION

Experimental Settings
In our study, we apply a different configuration of our method
to show its efficiency in three different binary tasks (AD vs. NC,
MCI vs. NC, and pMCI vs. sMCI). In addition, we compare the
proposed method with many state-of-the-art machine learning
and deep learning studies.

At the beginning, we randomly initialized the network with
mean equal to 0 and standard deviation (SD) equal to 1. In
addition, the binary cross-entropy and MSE were employed as
loss functions for the CNN and convolutional auto-encoder,
respectively. Furthermore, the optimizer was set to Adam, the
number of epochs was set to 100, the batch size was set to 30,
the learning rate was set to 10−4, and k was equal to 10 for
k-fold cross-validation. Note that, we employ 10 independent
experiments and average all the results with mean and SD.

We assess the performance of the proposed method
using different evaluation measures including; accuracy (ACC),
sensitivity (SEN), specificity (SPE), precision (PRE), and F1 score
(F1). These measures are defined as follow:

Acc =
TP+TN

TP+FN+TN+FP
, (3)

Sen =
TP

TP+FN
, (4)

Spe =
TN

TN+FP
, (5)

F1 =
2TP

2TP+FN+FP
, (6)

where TP, TN, FP, and FN are the number of true positives, true
negatives, false positives, and false negatives, respectively.

Comparison Methods
We verify the effectiveness the performance of the proposed
method by comparing it to different machine learning methods
including; Liu et al. (2014b), Tong et al. (2017), and Zhou et al.
(2019a). Also, we compare it with different deep learning studies
including; Suk et al. (2014), Cheng et al. (2017), Liu et al. (2018a;
2018b), Basaia et al. (2019), Feng et al. (2019), Zhou et al.
(2019b), and Abdelaziz et al. (2021).

Effects of Different Configuration of Our
Method
Table 3 and Figure 5 compare between different configuration
of the standard and the proposed method. It is clear that,
involving synthetic images not only increases the performance
of the single modality but also the combination of modalities.
Specifically, using only the MRI modality (standard MRI)
achieves a classification accuracy of 90.64, 81.15, and 74.53%
for NC vs. AD, MCI vs. NC, and pMCI vs. sMCI, respectively.
While only using PET modality (standard PET) achieves 89.58,
78.34, and 70.77% for NC vs. AD, MCI vs. NC, and pMCI vs.
sMCI, respectively. However, combining MRI and PET (standard
MRI-PET) improves the accuracy and achieves 96.80, 90.38,
and 81. 95% for NC vs. AD, MCI vs. NC, and pMCI vs.
sMCI, respectively.

On the other hand, the synthetic MRI with 116 ROIs features
(proposed MRI 116) achieves 96.39, 82.19, and 70.46% for NC
vs. AD, MCI vs. NC, and pMCI vs. sMCI, respectively. Similarly,
the synthetic PET with 116 ROIs features (proposed PET 116)
achieves 91.97, 70.84, and 69.24% for NC vs. AD, MCI vs. NC,
and pMCI vs. sMCI, respectively. Fusing the synthetic MRI and
PET with 116 ROIs features (proposed MRI-PET 116) achieves
97.22, 92.31, and 85.79% for NC vs. AD, MCI vs. NC, and
pMCI vs. sMCI, respectively. It is clear that the synthetic image
(MRI and/or PET) can effectively improve the classification
accuracy of the disease.

Furthermore, the synthetic MRI with 32 ROIs features
(proposed MRI 32) achieves a classification accuracy of 96.76,
82.82, and 85.70% for NC vs. AD, MCI vs. NC, and pMCI vs.
sMCI, respectively. In addition, the synthetic PET with 32 ROIs
features (proposed PET 32) achieves 94.71, 78.42, and 81.05% for
NC vs. AD, MCI vs. NC, and pMCI vs. sMCI, respectively. Finally,
combining MRI and PET with only 32 ROIs features (proposed
MRI-PET 32) achieves 98.24, 94.59, and 87.25% for NC vs. AD,
MCI vs. NC, and pMCI vs. sMCI, respectively.

These results verify the effectiveness of the proposed method
for discrimination between AD and stages of the disease. Also,
these results show the importance of reconstructing the synthetic
images with only 32 ROIs features. Moreover, the multimodal
data fusion increases the performance of AD diagnosis compared
to single modality.
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TABLE 3 | Classification comparison between the standard and the proposed method in three different binary disease classification tasks (%).

Tasks Method ACC SEN SPE PRE F1

NC vs. AD Standard MRI 90.64 ± 2.89 87.84 ± 5.38 94.04 ± 2.42 94.74 ± 1.98 91.07 ± 3.04

Standard PET 89.58 ± 1.39 90.00 ± 2.08 89.08 ± 2.93 90.95 ± 2.15 90.44 ± 1.25

Standard MRI-PET 96.80 ± 0.63 97.50 ± 1.03 95.96 ± 1.64 96.72 ± 1.28 97.10 ± 0.57

Proposed MRI 116 96.39 ± 2.94 98.90 ± 3.34 93.35 ± 6.68 95.02 ± 4.86 96.81 ± 2.57

Proposed PET 116 91.97 ± 3.55 91.10 ± 8.65 93.03 ± 9.55 94.91 ± 6.50 92.47 ± 3.39

Proposed MRI-PET 116 97.22 ± 2.74 97.92 ± 4.29 96.38 ± 4.48 97.17 ± 3.42 97.46 ± 2.55

Proposed MRI 32 96.76 ± 2.48 99.96 ± 0.12 92.89 ± 5.47 94.61 ± 4.07 97.17 ± 2.15

Proposed PET 32 94.71 ± 4.30 97.95 ± 6.47 90.78 ± 8.94 93.32 ± 6.36 95.30 ± 3.95

Proposed MRI-PET 32 98.24 ± 3.03 98.82 ± 3.19 97.52 ± 6.15 98.19 ± 4.40 98.43 ± 2.66

MCI vs. NC Standard MRI 81.15 ± 2.32 52.31 ± 7.69 97.11 ± 1.12 91.11 ± 2.59 66.10 ± 6.05

Standard PET 78.34 ± 1.42 53.82 ± 4.71 91.91 ± 1.62 78.77 ± 1.62 63.81 ± 3.37

Standard MRI-PET 90.38 ± 2.21 77.76 ± 5.64 97.36 ± 1.51 94.28 ± 2.94 85.12 ± 3.77

Proposed MRI 116 82.19 ± 3.68 70.61 ± 20.35 88.59 ± 12.22 83.74 ± 16.15 72.83 ± 7.85

Proposed PET 116 70.84 ± 7.98 35.64 ± 24.26 90.31 ± 18.37 82.10 ± 21.00 42.58 ± 21.15

Proposed MRI-PET 116 92.31 ± 2.87 91.63 ± 9.83 92.68 ± 7.40 89.28 ± 10.16 89.50 ± 3.29

Proposed MRI 32 82.82 ± 4.45 59.05 ± 13.81 95.97 ± 8.48 93.50 ± 13.72 70.47 ± 8.24

Proposed PET 32 78.42 ± 8.38 46.10 ± 15.18 96.31 ± 10.88 93.69 ± 17.41 59.57 ± 15.33

Proposed MRI-PET 32 94.59 ± 4.50 90.26 ± 8.82 96.98 ± 4.86 94.95 ± 8.13 92.19 ± 6.36

pMCI vs. sMCI Standard MRI 74.53 ± 2.83 88.17 ± 14.02 56.27 ± 15.37 73.79 ± 4.61 79.44 ± 4.54

Standard PET 70.77 ± 2.34 91.46 ± 2.26 43.09 ± 6.82 68.36 ± 2.36 78.20 ± 1.33

Standard MRI-PET 81.95 ± 5.91 83.15 ± 17.53 80.34 ± 11.72 80.34 ± 11.72 83.18 ± 7.97

Proposed MRI 116 70.46 ± 5.58 81.72 ± 20.15 55.39 ± 26.33 73.80 ± 10.20 75.11 ± 7.49

Proposed PET 116 69.24 ± 7.85 73.11 ± 23.19 64.07 ± 26.14 76.32 ± 11.15 71.60 ± 11.16

Proposed MRI-PET 116 85.79 ± 4.89 86.45 ± 12.13 84.90 ± 13.04 89.72 ± 7.76 87.18 ± 5.04

Proposed MRI 32 85.70 ± 6.03 90.00 ± 14.65 79.95 ± 18.15 87.85 ± 9.10 87.47 ± 6.17

Proposed PET 32 81.05 ± 7.47 79.16 ± 19.51 83.58 ± 14.89 88.50 ± 8.76 81.64 ± 9.77

Proposed MRI-PET 32 87.25 ± 5.68 94.25 ± 8.65 77.89 ± 16.18 86.33 ± 9.14 89.49 ± 4.52

In Figure 6, we present the t-SNE feature visualization
between the standard and proposed method for NC vs. AD, MCI
vs. NC, and pMCI vs. sMCI, respectively. It is easily shown that,
our proposed method achieves a better feature discrimination
than competing methods. Furthermore, our proposed method
has a high intra-class difference for pMCI vs. sMCI. It is noted
that, the pMCI vs. sMCI is considered the most challenging
classification task since the difference is very subtle. However,
our results are better than compared methods (Table 3). This
concludes that, our proposed method has the best feature
discrimination for different classification tasks.

We also plot the ROC curves between different configuration
of the standard and proposed method as shown in Figure 7. It
is clear that, our method has the best area under the ROC curve
(AUC) compared to the single modality or combination between
modalities. Specifically, the AUC of standard MRI-PET achieves
0.963, 0.874, and 0.816 for NC vs. AD, MCI vs. NC, and pMCI vs.
sMCI, respectively. On the other hand, the AUC of the proposed
MRI-PET 32 is 0.977, 0.933, and 0.858 for NC vs. AD, MCI vs.
NC, and pMCI vs. sMCI, respectively.

Comparison With Previous Studies
We verify the effectiveness of our method by comparing it many
competing methods for NC vs. AD, MCI vs. NC, and pMCI
vs. sMCI as shown in Table 4. It is clear that, identifying of

the brain disease is increased by our method compared to the
recent studies. However, most of recent studies utilized only
ROIs instead of utilizing the original images which may induce
missing informative features. Furthermore, they mostly used
only patches instead of full image for learning their network.
Moreover, they often divided the whole learning process into
many stages for AD diagnosis.

Hence, in this paper, we develop a technique for utilizing
the full neuroimaging data in only one learning process. We
integrate the original neuroimaging data with its ROIs features
for forcing the network toward the regions with highly related to
AD and hence, the early detection of AD improved. Moreover,
we evaluate the effectiveness of our method using ADNI-1 and
ADNI-2 dataset. Our method achieves the best performance
compared to the recent studies in brain disease classification.

Discussion
In this study, we exhibit the performance of our method via three
different tasks as shown in Table 4. It is clear that, our method
has better performance in most cases. However, the recent studies
used ROIs, identified by the handcrafted features through AAL
atlas rather than utilizing the original images, which may induce
missing informative features. In addition, they trained their
network based on the most important patches instead of full
images for AD diagnosis in multistage learning scheme. Thus,
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FIGURE 5 | Classification accuracies comparison between the standard and the proposed method in three different tasks.

FIGURE 6 | The t-SNE visualization comparison of features between the standard and the proposed method for the three different classification tasks.

we integrate the original image features from MRI and PET with
ROIs features in one framework. Moreover, we employ the ROIs
features for increasing the attention to the highly regions related
to AD and hence, the classifier performance improved.

Specifically, we firstly adapt the 116 ROIs features to be
suitable for concatenation with the original images by registering

every ROI with its corresponding region of the original image and
hence, we have one synthetic image for each of neuroimaging
subject. Then, we develop a deep learning technique that uses
the MRI and PET in only one stage. Also, we learn the original
images and synthetic images by applying the CNN to the original
images and convolutional auto-encoder to synthetic images such
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FIGURE 7 | ROC curves comparison between the standard and the proposed method for three the different classification tasks.

TABLE 4 | Algorithm comparisons for the three different classification tasks.

Algorithm Subject Modality NC vs. AD MCI vs. NC pMCI vs. sMCI

ACC SEN SPE ACC SEN SPE ACC SEN SPE

Liu et al., 2014b 198 AD + 229
NC + 225 MCI

MRI 92.0 90.9 93.0 85.3 82.3 88.2 – –

Tong et al., 2017 37 AD + 35 NC + 75
MCI

PET + MRI + CSF +
genetic

91.4 – – 77.4 – – – – –

Zhou et al., 2019a 171 AD + 204
NC + 157 pMCI + 205
sMCI

PET + MRI + SNPs – – – – – – 74.3 – –

Feng et al., 2019 93 AD + 100 NC + 204
MCI

PET + MRI 94.82 97.70 92.45 – – – – – –

Zhou et al., 2019b 190 AD + 226
NC + 389 MCI

PET + MRI + SNPs 91.35 91.75 90.90 – – – – – –

Liu et al., 2018b 370 AD + 440
NC + 149 pMCI + 562
sMCI

MRI 90.9 87.9 93.3 – – – 73.5 74.4 73.4

Abdelaziz et al.,
2021

186 AD + 226
NC + 389 MCI

PET + MRI + SNPs 98.22 97.78 98.76 – – – – – –

Suk et al., 2014 93 AD + 101 NC + 76
pMCI + 128 sMCI

MRI 92.38 91.54 94.56 – – – 72.42 36.70 90.98

Cheng et al., 2017 199 AD + 229 NC MRI 86.36 85.93 87.15 – – – – – –

Liu et al., 2018a 93 AD + 100 NC + 76
pMCI + 128 sMCI

MRI 92.75 93.48 91.30 – – – 76.90 42.11 82.43

Basaia et al., 2019 294 AD + 352
NC + 253 pMCI + 510
sMCI

MRI 99.2 98.9 99.5 – – – 75.1 74.8 75.3

Ours 218 AD + 264
NC + 204 pMCI + 273
sMCI

PET + MRI 98.24 98.82 97.52 94.59 90.26 96.98 87.25 94.25 77.89

that we combine their features after each convolution layer. Then,
the highly learned features from the MRI and PET are combined
for classification.

From the experimental results, it is clear that our technique
has a superior performance to most of the recent studies in
brain disease classification. The primary explanation is that, the
proposed technique takes the advantages of the 116 ROIs features
and the original images in one framework. Moreover, we apply
the synthetic images with only 32 ROIs at the output of the
convolutional auto-encoder to force the network to focus on
these regions related to AD. This leads to extract the high learned
features related to AD after each convolution layer and hence, it

improves the diagnosis of AD. Furthermore, we fuse the learned
features from multimodal data for classification. This leads to
improve the AD diagnosis as shown in Table 4.

The major contributions of our work are as follows. First, we
developed a technique that utilizes the original neuroimaging
including MRI and PET and their 116 ROIs features in one
unified framework. Furthermore, we took the advantages of
the 116 ROIs features by converting them to synthetic image
by registering every ROI with its corresponding region of
the original image. Second, we utilized ADNI-1 and ADNI-2
neuroimaging data for learning the proposed method. Further,
Our method has the best performance compared to the
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competing machine learning and deep learning techniques in
brain disease classification. Third, we introduced a deep learning
technique that utilizes the multimodal data including MRI and
PET in only one stage for brain disease classification.

CONCLUSION AND FUTURE WORK

In this work, we diagnose AD by developing a novel framework
that utilized the neuroimaging data (MRI and PET) in one unified
framework. Initially, we converted the 116 ROIs features to
synthetic images by registering every ROI with its corresponding
region of the original image to get one more synthetic image
for each modality of every subject. Then, we separately learned
each of the neuroimaging and their synthetic images using CNN
and convolutional auto-encoder, respectively. In addition, we
fused the synthetic features generated from the convolutional
auto-encoder with the original image features generated from
CNN after each convolution layer to enhance attention to the
highly related AD regions. The highly learned features from
neuroimaging data were concatenated for identifying the brain
disease classification. In this paper, we utilize ADNI-1 and
ADNI-2 neuroimaging data for effective training of the proposed
method. Experimental results proved the effectiveness of the
proposed method compared to the state-of-the-art methods.

Despite our method achieves better performance than most of
the recent studies, it still has few limitations First, our technique
utilized only the neuroimaging data and ignores the genetic data.

However, the combination between neuroimaging and genetic
data improves the accuracy of AD diagnosis. Second, we did not
consider the estimation of the clinical scores which is considered
as one of the important measurements for identifying the patient’s
status. Third, we did not consider the relationship among 116
ROIs features during the learning process.
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