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Abstract

Management authorities seldom have the capacity to comprehensively address the full
suite of anthropogenic stressors, particularly in the coastal zone where numerous threats
can act simultaneously to impact reefs and other ecosystems. This situation requires tools
to prioritise management interventions that result in optimum ecological outcomes under a
set of constraints. Here we develop one such tool, introducing a Bayesian Belief Network to
model the ecological condition of inshore coral reefs in Moreton Bay (Australia) under a
range of management actions. Empirical field data was used to model a suite of possible
ecological responses of coral reef assemblages to five key management actions both in the
sea (e.g. expansion of reserves, mangrove & seagrass restoration, fishing restrictions) and
on land (e.g. lower inputs of sediment and sewage from treatment plants). Models show
that expanding marine reserves (a ‘marine action’) and reducing sediment inputs from the
catchments (a ‘land action’) were the most effective investments to achieve a better status
of reefs in the Bay, with both having been included in >58% of scenarios with positive out-
comes, and >98% of the most effective (5" percentile) scenarios. Heightened fishing
restrictions, restoring habitats, and reducing nutrient discharges from wastewater treatment
plants have additional, albeit smaller effects. There was no evidence that combining individ-
ual management actions would consistently produce sizeable synergistic until after maxi-
mum investment on both marine reserves (i.e. increasing reserve extent from 31 to 62% of
reefs) and sediments (i.e. rehabilitating 6350 km of waterways within catchments to reduce
sediment loads by 50%) were implemented. The method presented here provides a useful
tool to prioritize environmental actions in situations where multiple competing management
interventions exist for coral reefs and in other systems subjected to multiple stressor from
the land and the sea.
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Introduction

In coastal marine environments, urbanisation, habitat loss, fishing, sediments, and pollutant
inputs (e.g. wastewater) degrade ecosystem condition [1, 2]. Judicious and efficient conserva-
tion strategies are, therefore, needed to maintain the condition and functioning of such systems
[3], especially as funding limitations often restrict the capacity of management agencies to
comprehensively address all threats. Achieving maximum benefit from management interven-
tions requires that management actions be prioritised, preferably in a quantitative manner,
with the management actions having greatest ecological benefit implemented first. Ideally,
effective prioritisation of actions will result in net benefits that are greater than the sum of indi-
vidual actions (i.e. synergistic effects) [4-6]. The likelihood and scale of any such synergistic
outcomes are, however, rarely quantified [7].

Marine spatial planning integrates multiple forms of management interventions that are
done both in the sea (e.g. fishing restrictions or habitat restoration), and on land (e.g. reducing
catchment erosion and other runoff) (e.g. [8]). For example, it is well established that no-take
marine reserves work best when they are implemented together with other management inter-
ventions that aim to reduce other external impacts (e.g. eutrophication, sediments). For coral
reefs, assessments of the efficacy of management actions have been mostly conducted in reef
systems with relatively lower impacts from terrestrial sources [9, 10]. By contrast, inshore reefs
situated within coastal embayments or estuaries are subjected to several threats from the adja-
cent land and catchments. Consequently, these are excellent model systems for testing how dif-
ferent management actions on land and in the nearshore zone will benefit inshore marine
systems because: 1) the response of reefs to stressors (especially sediments, nutrients and fish-
ing) is generally well understood, 2) management actions to mitigate the effects of stressors are
widely implemented (e.g. fishing restrictions, wastewater treatment), and 3) although effects
might vary between ecosystems, key threats and their ecological effects are broadly comparable
to those affecting other nearshore ecosystems (e.g. oyster reefs, kelp forests, seagrass beds),
imparting generality within a broader environmental management context [2, 11].

In this study, we use a Bayesian belief network (BBN) incorporating empirical ecological data
of ecosystem components and processes to determine which combinations of different interven-
tions might have the greatest influence on the ecological condition of coral reefs within broader
Moreton Bay, central eastern Australia (as opposed to the scale of individual reefs). BBNs are
directed graphical models that illustrate causative links between nodes (i.e. variables) via arcs (i.e.
arrows). BBNs are mathematically simple, and easy to interpret, thereby allowing increased easy
of interpretation, greater scrutiny and simpler interpretation by practitioners [6].

Our principal objective is to develop a tool that is useful to prioritise management actions
by modelling the potential ecological outcomes resulting from different combinations in the
number and type of management actions. We show that synergistic benefits of multiple inter-
ventions are difficult to achieve, so management should focus on prioritising the implementa-
tion of actions that maximise combined ecological benefits, and consider these as separate,
additive improvements to ecosystem condition. We suggest that similar approaches would be
valuable for a range of different systems, but particularly inshore coral reef systems that are
affected by a diversity of human threats.

Methods

Study System

The inshore coral reefs of Moreton Bay in subtropical eastern Australia (27°18’S; 153°17’E, Fig
1) provide an ideal location to model the relative effectiveness of, and interaction between,
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Fig 1. Map of study locations, ecosystem types, marine reserves, and major estuaries entering central Moreton Bay, Australia. Habitat layers

courtesy Queensland Herbarium.

doi:10.1371/journal.pone.0164934.9001

multiple different approaches for ecosystem management. Moreton Bay is managed as part of
a high-use marine park. It lies adjacent to the city of Brisbane (population ~2 million people
increasing ~2% annually; [12]), is bounded by three barriers islands, receives input from several
estuaries that drain highly-modified catchments and transport large sediment and nutrient
loads to the Bay [13]. Importantly, the ecological effects of human impacts on Moreton Bay are
well understood; there have been multiple, long-term (>10 years), quantitative studies that
have examined how human actions alter ecological assemblages and ecosystem functions in
the bay (reviewed by [14, 15, 16]).

Moreton Bay’s reefs are positioned within a shallow (<15 m), heterogeneous seascape of
mangrove forests, seagrasses, and sandy and muddy seafloor [17, 18] (Fig 1). Reefs are gener-
ally dominated by massive corals, especially favids and gonioporids, and can have up to 50%
cover of macroalgae [19]. Previous studies have shown that reef fish assemblages [17, 20], eco-
logical functions [21] and MPA effectiveness [22] are influenced more by the spatial attributes
of habitats within broader seascapes than by indices of water quality. Conversely, water clarity
and water column nutrient concentrations regulate the cover of macroalgae on reefs and the
effect of herbivory on algae is highly variable (both spatially and temporally) and low compared
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with tropical reefs [21, 23]. Consequently, water quality metrics (especially water column nutri-
ent concentration and water clarity) have varied effects on reef health in Moreton Bay. These
factors do not correlate with fish community structure, but correlate strongly with macroalgae,
and therefore, benthic community structure.

Relatively nutrient poor and clear oceanic water enters the bay via two passages formed
between barrier islands in the north and east (Fig 1). In the west, several estuaries drain a total
catchment area of 22,700 km? (Fig 1). Catchments contain large areas of grazing pastures
(35%) and urban areas (7%), resulting in significant levels of catchment-derived sediment and
nutrient entering the bay from channel erosion [13, 24]. Variable riverine runoff causes signifi-
cant alterations to both benthic and pelagic community structure throughout the region over
seasonal scales [20, 25].

Since the late 1990s, wastewater treatment plants have been upgraded to biological nutrient
removal and this has resulted in significant reductions of effluent releases to the bay [26-28].
Treated sewage effluent does, however, still contribute 90% of point-source derived nutrients
to the Bay [29].

Currently, 31% of Moreton Bay’s coral reefs are protected by no-take marine reserves,
which achieves the 30% representative habitat protection targets recommended by the World
Parks Congress [30]. Some studies, however, recommend up to 50% of total protection for the
marine environment, particularly for systems and habitats of significance like the subtropical
reefs of Moreton Bay [31, 32].

Development of Conceptual Diagrams

We constructed a conceptual model based on our current understanding of the causative rela-
tionships between management actions (i.e. a management technique that can be altered in
scope or focus) and ecosystem components within Moreton Bay (Fig 2). Our conceptual frame-
work can be divided into five levels: 1) management actions; 2) specified and measurable out-
comes of management actions (target nodes); 3) quantifiable components of ecosystems,
including ecological functions (field measure nodes); 4) the ecosystem components of the fish
or benthic assemblages (component nodes); and 5) coral reef condition, a measure of ecosys-
tem health, where good coral reef health is defined as a reef dominated by scleractinian corals,
with low macroalgal cover (as has been the case historically in Moreton Bay [33]) and a high
abundance of a diverse array of coral reef fishes (output node). S1 Table provides justifications
and sources for all links between nodes.

The model comprises five levels: 1) management interventions (input/management nodes);
2) measurable outcomes of management (target nodes); 3) quantifiable components of ecosys-
tems (field measure nodes); 4) fish or benthic assemblages (component nodes); and 5) overall
coral reef condition (output node) for inshore reefs in Moreton Bay, Australia (cf. S1 Table for
justifications of links between nodes for this systems).

Construction and Testing of the Bayesian Belief Network Model

The conceptual framework was tested using a Bayesian Belief Network (BBN) in Netica v5.12
[34]. For detailed descriptions of BBN analyses and theories see [35]. Relationships between
nodes for target, field measure, component and output nodes were calculated in Netica using
published ecological data for 11 reefs in Moreton Bay over two seasons (22 total cases; see 52
Table), with each node containing high and low states. Given that the network was calculated
using information from multiple cases across Moreton Bay, conclusions made are generalised
to the scale of all reefs across the bay, rather than to specific reef sites. An added benefit of this
approach is that our model incorporates all likely environmental and biological conditions
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Fig 2. Conceptual diagram outlining the relationship between management actions and various components linked to coral reefs in Moreton

Bay.

doi:10.1371/journal.pone.0164934.9002

present on reefs within Moreton Bay within a year, making conclusions broadly applicable at
the scale of whole-of-system management.

The five management nodes that we tested were: 1) fishing restrictions in the form of bag
and size limits; 2) spatial extent of no-take marine reserves; 3) restoration of habitats within the
bay; 4) levels of catchment-derived sediments; and 5) discharge levels from sewage treatment
plants (Table 1; for further justifications see S1 Appendix). We implement a suite of possible
management scenarios for each management node that are calculated relative to current and his-
toric levels of management. Consequently, we implemented four actions for each management/
input node through: 1) maintaining current management levels; increasing the scale of manage-
ment actions (i.e. interventions) either 2) levels that are likely to be politically and socially agree-
able (henceforth ‘intervention 1’), or 3) to the full levels of management scope and intensity of
management interventions that, based on current scientific evidence for the bay, are likely to
have the greatest benefits (henceforth ‘intervention 2’; see Table 1); or 4) reducing management
actions (henceforth ‘reductions’) (Fig 2; Table 1). Management reductions were modelled to
quantify effects of possible limitations to the operating budgets of management agencies, and to
assess potentially worsening conditions for certain management nodes (e.g. ongoing habitat loss
or increasing effluent releases with increasing population). Full justifications and explanations of
underlying data for management scenarios are available in S1 Appendix. We explicitly emphasize
that the range of management interventions modelled here represent a subset of all potential
management interventions that could possibly be implemented and our results should be consid-
ered in this context. Notwithstanding these constraints, the scenarios presented are reasonable
and plausible combinations of management actions that may occur.
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Table 1. Summary of levels and justifications for management node inputs. Here, Intervention 1 relates to management levels that are likely to be
politically and socially agreeable, and Intervention 2 relates to the full levels of management scope and intensity of management interventions that, based on
current scientific evidence, are likely to have the greatest benefits. Detailed information on the selection of these levels and the data underlying the chosen

percentiles is provided S1 Appendix.

Management | Intervention 1 Intervention 2 Reduction Primary Justification
Node % Management level | % Management level |% Change Management level
Change Change

Marine 50% 46% of coral reefs 100% 61% of coral reefs 50% 15.5% of coral reefs | Representative habitat

reserves increase | protected increase | protected reduction protected protection levels
recommended by World Parks
Congress [32].

Sediments 25% 3175 km of 50% 6350 km of 25% 3175 km of further Levels calculated relative to

reduction | catchment waterway | reduction | catchment waterway | increase catchment waterway | the proposed sediment control

restoration

levels recommended to
maintain Moreton Bay’s
ecosystem health [13].

restoration degradation

Habitat 10% 925 ha seagrass and | 20% 1850 ha seagrass 10% 925 ha seagrass and | Changes relative to current
restoration increase | 1290 ha mangrove increase | and 2580 ha reduction 1290 ha mangrove | data relating to habitat loss and
increases mangrove increases loss gain in the region [36, 37].
Sewage 20% 4mg/L total nitrogen | 40% 3mg/L total nitrogen | 20% 6mg/L total nitrogen | Current standards dictate a
releases reduction | and 2.4 mg/L total reduction | and 1.8 mg/L total increase and 3.6 mg/L total maximum of 5mg/L total
phosphorus from phosphorus from phosphorus from nitrogen and 3mg/L total
releases releases releases phosphorus entering the
marine environment via
outflows.
Fishing 5% 5% increase in the 10% 10% increase inthe | 10% 5% reductioninthe | Calculated relative to current
restrictions increase | abundance of increase | abundance of reduction abundance of fishing effort within Moreton
targeted fish targeted fish targeted fish Bay [38, 39].

doi:10.1371/journal.pone.0164934.t001

Management decisions are rarely made on the basis of scientific decisions alone, and always
incorporate social and economic constraints. Importantly, this model was not designed to
incorporate all conceivable components of ecosystem management (i.e. all ecological factors as
well as social and economic factors), but rather to evaluate the potential ecological benefits of
likely management interventions, thereby providing managers with a set of criteria or targets to
aim for.

BBNs condition calculations on assumed response ratios, so results are necessarily contin-
gent on the response ratios selected. Altering the response ratios of the effects of management
nodes on target nodes (i.e. does an x % change in a management node’s influence result in a 1:1
change in target measurements in the bay?) would have an impact on the outcome for mod-
elled reef condition. However, these changes are mathematically simple: a 1:2 change would
result in a doubling of the effect of the management node on the target node, whilst a 2:1
change would result in a halving of that effect, and so on. These effects are trivial to calculate.

To test the model, we first conducted sensitivity analyses on the BBN to determine how sen-
sitive findings at the coral reef condition output node were to findings at all other nodes. We
then tested all possible combinations of management input nodes (n = 1024) to determine
their relative influence on the likelihood of obtaining a good coral reef condition.

Results

Increasing Marine Reserves and Reducing Sedimentation Are Most
Important for Coral Reef Health

Increasing the area of marine reserves had the greatest positive effect on coral reef condition
(Fig 3A). Positive effects of increasing the area of marine reserves ranked highly in most of our
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Fig 3. Performance of management actions: (A) likelihood of a change in state when only a single action is
implemented); (B) the proportion of outcomes that resulted in positive effects on coral reef condition; (C) the
proportion of outcomes that resulted in above median effects on coral reef condition; and (D) the proportion
of outcomes that resulted in the highest 5% of positive effects on coral reef condition. See Table 1 for full
details of each management option.

doi:10.1371/journal.pone.0164934.9003

model outputs (Fig 3A): they were included in 63% of all outputs showing positive net benefits,
in 87% of outputs where net benefits were greater than the median, and in all of the top 5% of
model outputs (Fig 3B-3D). Decreasing catchment-derived sediments was the next most
important management intervention for increasing the modelled condition of coral reefs (Fig
3A). The positive effects of lower sediment inputs occurred in: 58% of all scenarios with posi-
tive outcomes, 60% of above median outcomes and 98% of the highest 5% of outcomes (Fig
3B-3D). The three remaining management interventions (i.e. lower releases of treated sewage,
stricter bag and length limits for recreational fishers and mangrove and seagrass restoration)
were comparatively less influential compared with larger effects modelled for increasing the
area of marine reserves or decreasing the volume of sediment inputs (Fig 3).

Management reductions were included in some of the combinations of management inter-
ventions that were considered to be of high ecological benefit (i.e. those in Fig 3D). These
reductions, however, were only ever included for the lower ranked interventions of habitat res-
toration and fishing restrictions (i.e. red bars in Fig 3D). Overall, the highest-ranking suite of
management interventions that contained at least one management reduction was 25% less
effective than the highest modelled outcome.

The influence of individual management interventions on coral reef condition varied, but
doubling the overall level of management interventions (i.e. implementing Intervention 2
instead of Intervention 1) always resulted in at least double the ecological benefits for coral
reefs, irrespective of the particular focus of management (Fig 4; for further detail on manage-
ment interventions, see Table 1). In general, when management interventions were imple-
mented sequentially, from highest to lowest influence, their combined ecological effects on
coral reef condition were mostly additive (Fig 4). Our models did not show sizeable synergistic
effects on the likelihood of good coral reef condition until marine reserve extent was doubled,
and sediments were halved (Fig 4). We did, however, find that synergistic effects were present
in many combinations of management interventions, however, these effects were consistently
below 2% (Fig 5). Models suggest that greater benefits can be potentially be achieved by imple-
mented two management actions (reductions in sediment inputs and larger marine reserves) at
greater intensity (intervention level 2) rather than implementing more management actions at
a lower level of intensity (intervention 1) (Fig 4).

Bayesian Network Less Sensitive to Lower Node Positions

In our network, modifying the values of component and field measure nodes typically had a
greater influence on coral reef condition than changes to target or input/management nodes
(Table 2). There were, however, several important exceptions to this pattern; varying the level
of herbivory and coral recruitment (both field measure nodes) had a greater effect on benthic
assemblages (a component node) and subsequent coral reef condition than did changes to fish-
related component or field measure nodes. For example, the benthic component node had
almost three times more influence on coral reef condition than did the fish component node,
despite being located one arc higher in the network. In turn, both coral and macroalgae cover
(field measure nodes) had a greater influence on coral reef condition than their counterpart
fish nodes (i.e. of piscivores, herbivores and carnivores).

PLOS ONE | DOI:10.1371/journal.pone.0164934 October 20, 2016 8/17
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Discussion

Most ecosystems experience a range of impacts, but the capacity of managers to address all
stressors is usually constrained by available resources. Consequently, it is critical that manage-
ment interventions are prioritised according to their likely ecological benefits [40, 41]. Using
empirical data collected from field studies of inshore coral reefs in Moreton Bay, Australia, we
developed an approach for prioritising management interventions, which also identified
opportunities where multiple interventions may have synergistic effects on the ecological con-
dition of coral reefs. Our model shows that marine spatial planning will have the greatest eco-
logical benefits for coral reefs in Moreton Bay where managers focus their investment on
increasing the extent of marine reserves and simultaneously decreasing sediment loads that
enter the Bay from adjacent river catchments. It is not intended to assess the efficiency, in mon-
etary terms, of actual investment decisions. Optimising land-sea management for inshore coral
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reefs, therefore, requires management strategies that address impacts in both marine and ter-
restrial realms [41-43]. We show that synergistic benefits of multiple management interven-
tions are unlikely to be achieved unless best recommendations from science are employed

fully. The modelling approach that we developed in this study can be used to prioritize invest-
ment across the land-sea interface and ensure that impacts are addressed in the most cost effec-
tive sequence possible.

When management interventions where implemented in order of importance (i.e. from
those that had the greatest to lowest influence) the ecological benefits for coral reef condition
were typically additive (Fig 4). Management interventions did not have measurable synergistic
effects on coral reef condition until the highest interventions recommended by science were
employed for the cover of marine reserves and reductions in sediments (see Intervention 2,
step 2; Fig 4). The synergistic benefits of management actions on both marine reserves and sed-
iments were, however, consistently small (<2% improvement in modelled reef condition
which is likely no greater than natural variation), compared to the significant costs required for
their implementation [13, 32, 44]. In our model, synergistic benefits for coral reefs in in More-
ton Bay require increasing the spatial extent of marine reserves from 31 to 62% [32], and reha-
bilitating 6,350 km of riparian land in adjoining catchments to reduce sediment loads (Table 1)
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Table 2. Sensitivity analysis for output node (coral reef condition) to values at all other nodes in the Bayesian belief network. Nodes with a greater
entropy reduction value have a greater influence on the outcome of the output node.

Node

Coral reef condition
Benthos

Coral

Fish

Coral Recruitment
Macroalgae
Herbivores

Water Clarity
Piscivores

Carnivores

Herbivory

Fishing Pressure
Connectivity

Nitrogen

Marine Reserve extent
Sediments

Treated Sewage Releases
Fishing Restrictions
Habitat Restoration
Phosphorus

doi:10.1371/journal.pone.0164934.t002

Node Type Entropy Reduction Value Percent of max
Output 0.973 100
Component 0.273 28
Field Measure 0.156 16
Component 0.068 6.99
Field Measure 0.032 3.33
Field Measure 0.031 3.2
Field Measure 0.017 1.75
Target 0.017 1.72
Field Measure 0.016 1.66
Field Measure 0.01 1.03
Field Measure 0.009 0.943
Target 0.007 0.759
Target 0.005 0.544
Target 0.004 0.375
Input/Management 0.0009 0.092
Input/Management 0.0003 0.032
Input/Management 0.0002 0.024
Input/Management 0.0001 0.013
Input/Management 0.00008 0.008
Target 0.00003 0.002

[13]. This level of investment is probably not feasible, given other social and ecological plan-
ning considerations in the region. Nevertheless, this finding accentuates the importance of

prioritising management actions to explicitly address quantitative targets and to optimise likely
return on investment [7, 41]. To maximise cost effectiveness, managers might, therefore, adopt
a strategy that seeks to: 1) implement interventions with the highest benefits on ecological con-
dition up to intervention one (in this case increase marine reserves to 46% protection and
reduce sediments by 25%), thereby increasing ecological outcomes for investments, 2) spend
remaining moneys across the other interventions, thereby maximising the joint ecological ben-
efits all interventions (i.e. move towards the right of Fig 5); and 3) once intervention one has
been reached for all actions, seek to increase investment up to intervention two for the major
actions, thereby increasing the likelihood of synergistic effects. Importantly, under such
approach, it is vital for changes in management actions to be made in concert, rather than in
separate pieces of legislation under different jurisdictions or organisations. This is a simple and
effective approach for optimising land-sea management for coastal ecosystems, and one which
might overcome much of the uncertainty that can be associated with investments in coastal
conservation and ecosystem management [45-47].

Increasing the spatial extent of marine reserves and reducing sediments were the two man-
agement interventions that resulted in the greatest ecological benefits for reefs in Moreton Bay.
These management interventions are important, but they can also be expensive and must be
balanced against other social, economic and political considerations. It is, therefore, critical
that any changes to the marine reserves or catchment rehabilitation programs are done to max-
imise cost-effectiveness [48-50]. Given our current understanding of factors affecting perfor-
mance, it is clear that any new marine reserves should be: 1) located to maximise positive
effects of connectivity (i.e. with seagrasses and mangroves) on fish assemblages and ecological
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functions [51]; 2) big enough to protect species with large home ranges [52]; and 3) placed at
reefs that are impacted less frequently by the chronic effects of flooding, sediments and eutro-
phication [19, 53, 54]. Furthermore, spending money improving the condition of the catch-
ment is important because terrestrial-based stressors can override marine-based protections
(e.g.[19, 55]). Reducing catchment-born sediments is a significant challenge, both within
Moreton Bay [44, 56], and more broadly [57, 58], requiring managers to focus on 1) revegetat-
ing catchment verge vegetation and rehabilitation [13, 59], 2) maintaining current levels of
remnant vegetation in the catchment at the highest possible levels [60, 61], and 3) implement
ideas of intelligent design of urban water runoff systems [62, 63]. Given the significant levels of
catchment revegetation required to reduce loads by the scientifically reccommended 50% [13],
it would seem that this intervention, and associated synergistic effects between marine reserves
and sediments are unlikely. Such findings surrounding the importance of controlling harvest-
ing through marine reserves and reducing the influence of catchment-borne sediments agree
with many previous articles [2, 19, 52].

Management interventions that reduced eutrophication by limiting treated sewage releases
were clearly placed third to reserves and sedimentation in importance to reef health. Limiting
fishing effects (through restrictions on take) and enhanced the restoration of ecologically
linked habitats (e.g. mangroves and seagrass) were less important to coral reef condition than
either marine reserves, sediments or sewage. However, we show that implementing manage-
ment interventions which address any of these key impacts resulted in positive and quantifiable
ecological benefits for coral reefs in Moreton Bay. This is crucial, as managers should not
underestimate the capacity of these management actions to assist in incremental improvements
in overall ecosystem condition. Further improvements will be made to sewage releases as tech-
nology advances, however, this may be offset by significant population growth within the
region in future years [12], meaning that reductions in total effluent release (in terms of kg/y)
are of low likelihood; a problem of global significance [64, 65]. Increasing the strictness of fish-
ing size and bag limits is likely to be one of the more financially viable interventions discussed
here, as such regulations are already policed [38]; however, such changes are likely to be politi-
cally and socially difficult to implement, and there is some uncertainty surrounding the capac-
ity for these rules to deter fishers from reducing overall catch [66, 67] and the degree to which
potential changes result in positive ecological outcomes [68, 69]. Finally, restoring up to 1850
ha and 2580 ha of seagrass and mangroves, respectively, is a significant challenge for such a
small return (~2.3%), meaning that such interventions which aim only to improve coral reefs
are likely financially limited. Marine habitat restoration has proven successful in many systems,
but must be optimised and prioritised in much the same way that marine reserve placement is
[7,70].

Global changes (i.e. warming, sea level rise) have the potential to change and override local
stressors and management [71]. Although the current study did not incorporate such effects,
the long-term influences of these changes should always be considered [72]. Further, there has
been extensive research conducted on the importance of microbial communities for coral reef
health (e.g. [73]). Whilst microbial data is not currently available for the study system, we
acknowledge that the inclusion of such data into the model might have been beneficial. In any
case, the effects of such factors are likely to be lower than the impacts of our top three most
includes factors.

Conclusions

In this study, we provide model estimates of ecological benefits of management actions using
empirical ecological data to show that optimising land-sea management for inshore coral reefs
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requires management strategies that address impacts in both marine (marine reserves) and ter-
restrial (sediments) realms. In our study, interventions did not have synergistic effects on coral
reef condition until after maximum investment to increase the cover of marine reserves and
decrease sediments; both of which are likely to be difficult to achieve both financially and polit-
ically. Synergistic benefits were also very small compared to the significant costs required for
their implementation. In combination, these findings indicate that synergistic effects of multi-
ple management actions on ecosystem condition are unlikely within our study system. There-
fore, to maximise cost effectiveness in other similar systems, which have been heavily degraded
by multiple human impacts, we suggest that managers should consider adopting a strategy that
seeks to; 1) maximise the ecological benefits of joint ecological effects by implementing actions
with the highest ecological outcomes up to intervention one first, 2) spend further moneys, up
the the total managerial budget, evenly across remaining actions, and then 3) seek increasing
the likelihood of synergistic effects by increasing investment up to intervention in the same
order as step 1. This is a simple and effective approach for prioritizing investment across the
land-sea interface for inshore coral reefs, and other coastal ecosystems that are similarly
afflicted by multiple human impacts.
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