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Abstract

Purpose: To assess the performance of different machine learning (ML) approaches

in identifying risk factors for diabetic ketoacidosis (DKA) and predicting DKA.

Methods: This study applied flexible ML (XGBoost, distributed random forest [DRF]

and feedforward network) and conventional ML approaches (logistic regression and

least absolute shrinkage and selection operator [LASSO]) to 3400 DKA cases and

11 780 controls nested in adults with type 1 diabetes identified from Optum® de-

identified Electronic Health Record dataset (2007–2018). Area under the curve

(AUC), accuracy, sensitivity and specificity were computed using fivefold cross valida-

tion, and their 95% confidence intervals (CI) were established using 1000 bootstrap

samples. The importance of predictors was compared across these models.

Results: In the training set, XGBoost and feedforward network yielded higher AUC

values (0.89 and 0.86, respectively) than logistic regression (0.83), LASSO (0.83) and

DRF (0.81). However, the AUC values were similar (0.82) among these approaches in

the test set (95% CI range, 0.80–0.84). While the accuracy values >0.8 and the speci-

ficity values >0.9 for all models, the sensitivity values were only 0.4. The differences in

these metrics across these models were minimal in the test set. All approaches selected

some known risk factors for DKA as the top 10 features. XGBoost and DRF included

more laboratory measurements or vital signs compared with conventional ML

approaches, while feedforward network included more social demographics.

Conclusions: In our empirical study, all ML approaches demonstrated similar perfor-

mance, and identified overlapping, but different, top 10 predictors. The difference in

selected top predictors needs further research.
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1 | INTRODUCTION

Artificial intelligence including machine learning (ML) has been increas-

ingly used to analyze healthcare data including electronic health records

(EHR).1 ML is a natural extension to conventional analysis approaches

such as logistic regression, and has been widely used to learn complex

relationships or patterns from data to make accurate predictions.1,2

Conventional analysis approaches are commonly used to identify risk

factors for a disease or outcome in clinical epidemiology. However,

there is limited data on performance of different ML approaches in such

studies, and the theoretical superiority of more flexible ML such as

XGBoost and distributed random forest (DRF) over conventional ML

approaches has not been consistently observed in real-world settings.3

Diabetic ketoacidosis (DKA) is an acute life-threatening but pre-

ventable complication of type 1 diabetes (T1D).4 In the United States,

DKA hospitalization had increased by 54.9% from 2009 to 2014 after

a decline in 2000–2009.5 Because DKA is caused by insulin deficiency

that is often precipitated by discontinuation of insulin or inadequate

insulin treatment, it is important to identify risk factors for DKA and

to predict DKA for effective T1D management. However, no predic-

tion model for DKA is developed and used in clinical practice. Given

the growing use of ML in clinical prediction including phar-

macoepidemiology6 with limited model performance assessment, we

conducted a study to assess the empirical performances of different

ML approaches in identifying risk factors for DKA and predicting DKA

in adults with T1D using an EHR database.

2 | METHODS

Different ML approaches were applied in a case–control study nested

in adults with T1D to identify risk factors and predict DKA. The

nested case–control design can more readily and efficiently identify

risk factors for DKA compared with a cohort design. Previous studies

have demonstrated that this design can be used for development of

clinical prediction models.7,8

2.1 | Data source

Optum de-identified EHR database was used in this study. It currently

encompasses approximately 80 million patients from all Census

regions in the United States, with at least 5 million patients from each

region. Data on the full spectrum of inpatient and outpatient treat-

ments are collected from more than 140 000 physicians at more than

600 hospitals and 6500 clinics. On average, patients contribute

4 years of medical history to the database. Information such as

patient-reported symptoms and outcomes as well as treatment

rationale is captured directly from providers' notes via natural lan-

guage processing. Approximately 82% of patients in this database are

part of an Integrated Delivery Network, which includes hospital and

emergency care as well as outpatient visits. In addition, about 20% of

patients can be linked with administrative claims data.

2.2 | Study patients

Patients with T1D were identified from Optum EHR database between

January 1, 2007 and September 30, 2018 by adapting the Klompas algo-

rithm.9 The positive predictive value (PPV) of T1D using the Klompas

algorithm was 89% in the original publication and 94.5% in an external

validation study.9,10 For each patient with T1D, the start of follow up

for DKA event was the later of the first date on which a patient met the

diabetes surveillance algorithm criteria or when a patient turned

18 years. The end of follow up was the date of first hospitalized DKA

event during the follow-up, the date of last-recorded clinical activity in

the database, or September 30, 2018, whichever occurred earliest.

Hospitalized DKA event was identified using ICD-9-CM (250.1) or

ICD-10-CM (E1X.1) diagnosis codes which have been reported to have a

PPV of 88.9%.11 Because DKA is an emergency condition and patients

with DKA rarely meet criteria to be safely discharged from emergency

departments,12 outpatient or emergency encounters without subsequent

hospitalization were excluded to minimize false positive cases. The index

date of a case was the date of the first DKA event occurred during the

follow up. The DKA cases included in the study must had ≥1 non-

emergency clinical activity encounter and insulin treatment within

365 days before the index date, had T1D for ≥365 days before the index

KEY POINTS

• Flexible machine learning (ML) approaches do not auto-

matically result in improved performance over conven-

tional ML approaches

• The performances of flexible ML and conventional ML

approaches were similar in predicting diabetic

ketoacidosis (DKA) using an electronic health records

data source

• Flexible ML and conventional ML approaches identified

overlapping, but different, top 10 risk factors for DKA

• Flexible ML approaches only provided the relative impor-

tance for each predictor, while logistic regression could

also estimate odds ratio for each predictor

• Interpretation of the findings of flexible ML approaches is

challenging
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date, and had ≥1 HbA1c measurement within 183 days before the index

date. Cases who were pregnant and those who used antihyperglycemic

agents indicated for type 2 diabetes only (except for metformin) within

365 days prior to or on the index date were excluded.

For each DKA case, up to 10 controls without DKA on the index

date of a case were randomly selected from the T1D cohort using

incidence-density sampling without replacement and matched on

whether a patient's EHR data was linked with claims data. The index

date for controls was assigned as the date of DKA diagnosis of their

matching case. The same inclusion and exclusion criteria for cases

were also applied to controls.

2.3 | Potential predictors

Seven groups of potential predictors (i.e., features in ML) and the T1D

cohort entry year as well as year of the index date were explored.

These groups included social demographics, lifestyle factors, health

service use, treatment, chronic comorbidities, acute medical condi-

tions as well as laboratory test results, vital signs and other common

measurements (Table S1). The selection of predictors was guided by

the background knowledge of DKA and data availability.

2.4 | Statistical methods

The overall structure of patient data that served as input to the analy-

sis algorithm is shown in Figure 1. The whole study subjects were first

randomly split into a training and a test data sets in a ratio of 4:1. The

training set was used in the feature selection preprocessing and model

building. The test set was used to assess each model performance.

2.4.1 | Feature selection preprocessing

We carried out the feature selection preprocessing from all potential

predictors in the training set. First, any features with missing data ≥60%

were removed. This threshold was used to keep as many as laboratory

measurements which were most likely due to an absence of testing.

The remaining features with missing data are listed in Table S2. The

missing records of these features were each imputed with the average

values of the available records of that feature or grouped as “unknown”
where applicable. Otherwise, many patients' records were incomplete

for models to make prediction.13 Second, to avoid collinearity among

the features which can cause unstable estimates and the sign flipping of

the coefficients,14,15 variance inflation factor (VIF) for each feature was

calculated (Table S3). Features with VIF values ≥10 were flagged as

highly correlated features.16 Only one feature with higher clinical utility

or lower missing data percentage was selected within a group of highly

correlated features or those caused sign flipping issue.

2.4.2 | Predictive modeling algorithms

Two conventional and three flexible ML approaches were utilized to

identify important risk factors for DKA from the selected features and

to build prediction models.

Conventional ML approaches included logistic regression and

least absolute shrinkage and selection operator (LASSO). For logistic

regression, backward selection with a cutoff p-value of 0.05 was used

to select statistically significant predictors; adjusted odds ratio

(OR) and its 95% confidence interval (CI) was estimated for each

selected predictor. LASSO is a technique of parameter regularization,

which was applied to a logistic regression. During regularization,

F IGURE 1 Data processing flowchart. DKA, diabetic ketoacidosis; LASSO, least absolute shrinkage and selection operator; T1D, type 1 diabetes
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penalties are introduced to the model building process to avoid over-

fitting and reduce the number of covariates.17

Flexible ML approaches included XGBoost, DRF and feedforward

network. XGBoost is a supervised learning algorithm that implements

a process called boosting to yield accurate models.18 Boosting refers

to the ensemble learning technique of building many models sequen-

tially, with each new model attempting to correct for the deficiencies

in the previous one. DRF generates a forest of classification trees,

rather than a single classification or regression tree. Each of these

trees is a weak learner built on a subset of rows and columns. More

trees can reduce the variance. The classification process takes the

average prediction over all trees to make a final prediction. Neural

networks are learning algorithms inspired by the brain research.

Feedforward network we used is the simplest form of neural network

since its flow of information only moves in forward direction without

circling back.19 It consists of an input layer, an output layer, and sev-

eral hidden layers in between. Each layer includes multiple nodes with

different weights combining with input can determine the output of

the network. During the learning process, these weights are updated

to minimize the loss function.20

2.4.3 | Cross validation

During the training process, k-fold cross validation was conducted for

each modeling. That is, the training set was further split into a training

subset and a validation subset in a ratio of 4:1 to tune hyperparameters.

This process was repeated five times (k = 5). The final model was then

built by aggregating the five cross validation models and evaluated in

the full training data set. Further details are provided in Appendix I.

2.4.4 | Model performance assessment

The model performance was assessed using different metrics below in

the test set.

Area under the receiver operating characteristic (ROC) curve

(AUC): It plots the true positive rate against the false positive rate,21

and ranges from 0 to 1. The value of 1 indicates that the model pre-

dicts perfectly. Accuracy, specificity and sensitivity values were calcu-

lated based on a confusion matrix. To build a confusion matrix, a

specific threshold value is required to determine whether a probability

level gets assigned to a case or a control.22 We chose accuracy as the

metric to optimize to determine the threshold value. Finally, to dem-

onstrate the variability of the model predictions, the 95% CI of AUC,

accuracy, specificity, and sensitivity values were established using

1000 bootstrap samples.23

2.4.5 | Feature importance

For each approach, the feature importance percentage was deter-

mined by calculating the relative influence of each predictor. For

conventional ML approaches, it was derived and ranked by the magni-

tude of standardized coefficient of each selected statistically signifi-

cant predictor.24 For XGBoost and DRF, two factors were considered

to determine the relative importance of each feature: whether the

variable was used to divide the decision tree node and how much pre-

diction error has been reduced as a result of the split. That is, when

split in a feature contributed to a larger decrease in the squared error,

that feature was regarded as one with greater relative influence.25 For

feedforward network, the Gedeon method was used to calculate fea-

ture importance.26 It considers the weights connecting the input fea-

tures to the hidden layers.

TABLE 1 Study population attrition procession

Patient counts (January 01,
2007–September 30, 2018)

Individuals in Optum® de-

identified Electronic Health

Record database

95 823 300

Individuals with diabetes 7 153 077

Individuals with type 1 diabetes 169 779

Individuals aged ≥18 years and

within an Integrated Delivery

Network

130 052

Individuals with at least 1

HbA1c measurement and at

least 1 year of clinical activity

any time

105 816

DKA case and control selection

Potential candidates Potential DKA

Cases

N = 15 454

Potential

Controlsa

N = 105 816

After application of the study

criteria on potential DKA

cases before matching:

• Type 1 diabetes for at least

365 days before index date

• Treated with insulin within

365 days before index date

• At least 1 HbA1c

measurement within

183 days before index date

• Without pregnancy within

365 days before index date

• Without off-label use of

antihyperglycemic agents

indicated for type 2 diabetes

only (except for metformin)

within 365 days before or

on index date

3400 NA

Control selection via incidence

density sampling based on

1:10 matching ratio

3400 34 000

After application of the same

study criteria defined above

on controls

3400 11 780

Abbreviations: DKA, diabetic ketoacidosis; HbA1c, hemoglobin A1c.
aA control could not develop DKA before or at the matched index date

but could become a case after the index date.
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TABLE 2 Selected characteristics of DKA cases and controls

DKA cases N = 3400 Controls N = 11 780 p-Valuea

Calendar year of T1D cohort entry (%)

2007 554 (16.3) 1831 (15.5) 0.111

2008 578 (17.0) 1910 (16.2)

2009 367 (10.8) 1175 (10.0)

2010 414 (12.2) 1469 (12.5)

2011 376 (11.1) 1286 (10.9)

2012 370 (10.9) 1257 (10.7)

2013 283 (8.3) 1009 (8.6)

2014 228 (6.7) 847 (7.2)

2015 131 (3.9) 532 (4.5)

2016 80 (2.4) 361 (3.1)

2017 19 (0.6) 103 (0.9)

Age, years, mean (SD) 42.9 (16.5) 45.4 (16.4) <0.001

Sex (%)

Female 1818 (53.5) 5594 (47.5) <0.001

Male 1579 (46.4) 6184 (52.5)

Unknown 3 (0.1) 2 (0.0)

Race (%)

Caucasian 2929 (86.1) 10 653 (90.4) <0.001

African American 346 (10.2) 584 (5.0)

Asian 12 (0.4) 71 (0.6)

Other/Unknown 113 (3.3) 472 (4.0)

Annual household income, $, mean (SD) 41 773 (8302) 42 935 (8938) <0.001

Insurance type (%)

Commercial 1306 (38.4) 6342 (53.8) <0.001

Medicare 621 (18.3) 1519 (12.9)

Medicaid 514 (15.1) 727 (6.2)

Other payor type 134 (3.9) 353 (3.0)

Uninsured 202 (5.9) 255 (2.2)

Unknown 623 (18.3) 2584 (21.9)

Geographic region (%)

Midwest 2042 (60.1) 6792 (57.7) <0.001

Northeast 315 (9.3) 1389 (11.8)

South 646 (19.0) 2237 (19.0)

West 269 (7.9) 1008 (8.6)

Other/Unknown 128 (3.8) 354 (3.0)

Lifestyle risk factors within 365 days before index date (%)

Alcohol abuse 175 (5.1) 226 (1.9) <0.001

Controlled substance abuse 523 (15.4) 454 (3.9) <0.001

Health service use within 365 days before index date (%)

Visit to endocrinologist 1789 (52.6) 7129 (60.5) <0.001

Visit to primary care 1781 (52.4) 4959 (42.1) <0.001

Chronic comorbidities any time between study start date and index date (%)

Cardiovascular disease 2042 (60.1) 5927 (50.3) <0.001

Diabetic microvascular complications 1981 (58.3) 5160 (43.8) <0.001

Chronic liver disease 244 (7.2) 435 (3.7) <0.001
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A model can be simplified by only including the top 10 features, and

we assessed the AUC of the top 10 feature model for each approach.

The data management was conducted using Palantir Foundry sys-

tem (https://www.palantir.com/palantir-foundry/) housed in Sanofi.

The control selection process via incidence-density sampling was con-

ducted using SAS 9.4 (SAS Institute, Cary, NC), and all other statistical

analyses were performed using R software version 3.4 (www.r-

project.org). We used H2O R package to implement the conventional

and flexible ML processes.27

3 | RESULTS

A total of 3400 DKA cases and 11 780 controls were selected for

the final analysis (Table 1). After the feature selection

preprocessing 43 features were selected to predict DKA and were

described in Table 2. Compared with controls, DKA cases were

younger, had lower socioeconomic status and had more com-

orbidities. The mean of HbA1c level was 9.3% for DKA cases and

8.0% for controls.

TABLE 2 (Continued)

DKA cases N = 3400 Controls N = 11 780 p-Valuea

Chronic kidney disease 859 (25.3) 1328 (11.3) <0.001

Dementia 137 (4.0) 217 (1.8) <0.001

Psychiatric disorder 1743 (51.3) 3580 (30.4) <0.001

Autoimmune disorders 432 (12.7) 1577 (13.4) 0.315

Cancer 377 (11.1) 1264 (10.7) 0.575

Acute medical conditions (%)

Infection within 7 days before index date 230 (6.8) 96 (0.8) <0.001

Major surgery within 7 days before index date 45 (1.3) 6 (0.1) <0.001

Non-DKA hospitalization within 30 days before

index date

610 (17.9) 168 (1.4) <0.001

Treatments (%)

Insulin pump within 7 days before index date 154 (4.5) 153 (1.3) <0.001

Insulin type within 7 days before index date

Intermediate/long-acting insulin 218 (6.4) 309 (2.6) <0.001

Rapid/short-acting insulin 285 (8.4) 512 (4.3) <0.001

Premixed insulin 10 (0.3) 15 (0.1) 0.061

Other medications within 30 days before index date

Systemic steroids 81 (2.4) 101 (0.9) <0.001

Diuretics 132 (3.9) 221 (1.9) <0.001

Antipsychotics 60 (1.8) 57 (0.5) <0.001

Laboratory test results or vital signs within 183 days before index date, mean (SD)b

HbA1c, % 9.3 (1.8) 8.0 (1.4) <0.001

Random blood glucose level, mg/dl 194.6 (60.6) 169.9 (66.3) <0.001

eGFR, ml/min/1.73m2 83.1 (36.9) 96.4 (30.5) <0.001

Total cholesterol, mg/dl 178.5 (46.7) 173.3 (38.3) <0.001

Systolic blood pressure, mm Hg 126.8 (15.6) 124.4 (13.8) <0.001

BMI, kg/m2 26.4 (5.8) 27.9 (5.7) <0.001

Height, cm 169.6 (10.2) 171.1 (10.2) <0.001

White blood cell count, x103 per microliter 9.0 (3.3) 7.6 (2.7) <0.001

Platelet count, x103 per microliter 268.4 (79.7) 254.5 (72.4) <0.001

Temperature, �C 36.7 (0.3) 36.7 (0.3) <0.001

Pulse rate, beats per minute 85.0 (12.8) 78.7 (11.9) <0.001

Respiratory rate, breaths per minute 17.4 (2.1) 16.7 (2.1) <0.001

Hemoglobin, g/dl 12.6 (2.1) 13.4 (1.9) <0.001

Oxygen saturation, SpO2 (pulse oximetry) 97.6 (1.5) 97.6 (1.5) 0.264

Abbreviations: BMI, body mass index; DKA, diabetic ketoacidosis; eGFR, estimated glomerular filtration rate; HbA1c, hemoglobin A1c; SD, standard

deviation.
aBased on univariate analysis.
bBased on non-missing values.
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3.1 | Model performance with full set of features

In the training set, XGBoost outperformed the other 4 approaches with

an AUC of 0.887, followed by feedforward network (AUC = 0.859),

LASSO and logistic regression (AUC = 0.829 for each), and DRF

(AUC = 0.808). In the test set, the AUC values ranged from 0.817 to

0.821 among these models and the difference decreased to 0.004 only

(Table 3). The 95% CI of accuracy values ranged between 0.812 and

0.839. While the specificity values were higher than 0.9 for all models,

the sensitivity values were only as high as 0.4. Consistent with the AUC

findings, the differences in accuracy, sensitivity and specificity between

flexible and conventional ML approaches were all minimal in the test

set (Table 3). The confusion matrices are provided in Table S4.

3.2 | Feature importance

HbA1c level, non-DKA hospitalization, and white blood cell count

were identified as one of top 10 features across all 5 models (Table 4

and Figure S1). Logistic regression and LASSO consistently identified

the same top 10 features with slightly different ranks and most of

them are well-established risk factors for DKA. XGBoost and DRF also

identified almost the same top 10 features and eight were laboratory

test results or vital signs, while feedforward network selected a very

different set of top 10 features and six were social demographics.

Compared with the conventional ML approaches, XGBoost and DRF

identified the same five features in their top 10 features, while

feedforward network identified the same four features.

TABLE 3 The performance of study models with full set of features in the test data set

Models AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Logistic regression 0.821

(0.804–0.837)
0.827

(0.814–0.839)
0.409

(0.321–0.497)
0.947

(0.925–0.969)

LASSO 0.821

(0.805–0.838)
0.827

(0.814–0.839)
0.407

(0.318–0.496)
0.948

(0.925–0.970)

XGBoost 0.819

(0.802–0.836)
0.825

(0.813–0.837)
0.414

(0.311–0.518)
0.944

(0.916–0.971)

DRF 0.817

(0.799–0.834)
0.827

(0.815–0.839)
0.420

(0.319–0.522)
0.944

(0.917–0.971)

Feedforward network 0.817

(0.799–0.834)
0.825

(0.812–0.837)
0.400

(0.291–0.508)
0.947

(0.920–0.975)

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval; DRF, distributed random forest; LASSO, least absolute

shrinkage and selection operator.

TABLE 4 Top 10 features by each study model

Rank

Conventional machine learning Flexible machine learning

Logistic regression LASSO XGBoost DRF Feedforward network

1 Insurance type – uninsured HbA1c HbA1c HbA1c Race – Asian

2 HbA1c Non-DKA hospitalization Non-DKA

hospitalization

White blood cell

count

Insurance type –
uninsured

3 Non-DKA hospitalization Insurance type - uninsured White blood cell

count

Non-DKA

hospitalization

Geographic region –
Northeast

4 BMI BMI Hemoglobin Hemoglobin Race – African American

5 Pulse rate Pulse rate Pulse rate Pulse rate Geographic region –
West

6 Psychiatric disorder Psychiatric disorder BMI Random glucose

level

Platelet count

7 Age Age Oxygen saturation Respiratory rate Gender - female

8 Calendar year of diabetes

cohort entry

Calendar year of diabetes

cohort entry

Random glucose

level

Platelet count HbA1c

9 White blood cell count White blood cell count Platelet count eGFR Non-DKA

hospitalization

10 Acute infection Acute infection eGFR BMI White blood cell count

Abbreviations: BMI, body mass index; DKA, diabetic ketoacidosis; DRF, distributed random forest; eGFR, estimated glomerular filtration rate; HbA1c,

hemoglobin A1c; LASSO, least absolute shrinkage and selection operator.
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In the logistic regression model, there were 16 positive predictors

of DKA (i.e., with increased risk) such as higher HbA1c, non-DKA hos-

pitalization, and so on, and seven negative predictors (i.e., with

decreased risk) such as older age, higher annual household income,

and so on (Table S5).

For each approach, the AUC values of the top 10 feature model

were close to that of the full model in the test set ranging from 0.785

to 0.802 (Figure S2).

4 | DISCUSSION

We evaluated the performance of different ML approaches in a

nested case–control study that used an EHR database to identify risk

factors for DKA in adults with T1D. We found that prediction of DKA

is achievable with either conventional or flexible ML approaches and

that the differences in performance were minimal among these

approaches. All approaches could consistently identify the known risk

factors for DKA including HbA1c and non-DKA hospitalization.

XGBoost and DRF included more laboratory test results or vital signs

in their top 10 features, while feedforward included more social

demographics. The flexible ML approaches only provided the relative

importance for each predictor, while logistic regression could also esti-

mate OR for each predictor. Therefore, interpreting the findings by

the flexible ML approaches is challenging.

In this study, we found that flexible ML approaches offered very

limited improvement over conventional ones in predicting DKA using

an EHR database. In a systematic review of performance comparison

of logistic regression with ML for clinical prediction modeling, the

AUC of logistic regression and ML models were similar when compari-

sons were restricted to studies with low risk of bias.3 Other studies

also reported comparable AUCs between flexible and conventional

ML models.28,29 Although the accuracy and specificity were above 0.8

in this study, sensitivity was only 0.4. The main reason for the low

sensitivity is the probability threshold we used in constructing the

confusion matrix. For simplicity, we chose overall accuracy to optimize

when determining the threshold. As a result, the threshold was set rel-

atively high, which led to low sensitivity and high specificity.

In general, the DKA risk factors that were most often selected by

different models are clinically sensible as a triggering factor for insulin

deficiency or discontinuation of insulin. Known risk factors for DKA

include high HbA1c level, infection, surgery/trauma, younger age,

female sex, low BMI, low socioeconomic status, and so on,4,30 and

either conventional or flexible ML approaches included some of these

factors in their top 10 features. However, XGBoost and DRF included

more laboratory test results or vital sign measurements compared

with conventional models, while feedforward network included more

social demographics. Because each model uses different theories and

algorithms to determine the feature importance, direct comparison

cannot be made to explain the different features selected by various

models. Despite this, one possible explanation for the difference is

that some of the identified laboratory test results or vital signs reflect

underlying causes of DKA, for example increased white blood cell

count and pulse rate with infection, or elevated hemoglobin with

dehydration. Another possible explanation is that some test results

and social demographics are largely interrelated, e.g., high random

blood glucose level and uninsured status may both be associated with

suboptimal diabetes management.

This study has several limitations that should be considered.

First, misclassification of DKA was possible, because we could not

retrieve medical records to validate the outcome. However, the PPV

for the proposed approach of DKA identification was 89%.11 Sec-

ond, unlike administrative claims data, there is no patient enrollment

information in EHR data. To minimize the possibility that the medical

encounters in EHR data are incomplete, the study patients were

selected among those with non-emergency clinical activities

recorded within 1 year prior to the index date, assuming all medical

encounters were captured in the defined time window. In addition,

we applied other inclusion and exclusion criteria which may limit the

implementation of these predictive algorithms in a read-world set-

ting. Third, several laboratory measurements including white blood

cell count had missing data close to 60% and the impact on model

performance from the use of imputation for these features is

unknown. However, the high percentages of these missing values

were driven by controls, suggesting they were most likely to lack

laboratory testing because controls had fewer medical conditions

which could trigger laboratory testing than cases. Fourth, the predic-

tor selection is based on the knowledge of DKA and data availability.

This priori feature selection may limit the learning potential perfor-

mance of some of the more complex ML algorithms and affect the

interpretation of feature importance results. Fifth, each model uses

different theories and algorithms to determine the feature impor-

tance. Therefore, principled comparison cannot be made across

models to explain the differences in feature selection. Last, the

model performance was assessed based on one typical nested case–

control study using an EHR database. This needs to be considered

when interpreting the generalizability of these results.

Overall, the flexible ML approaches offered very limited perfor-

mance improvement over conventional ones in predicting DKA using

structured data recorded in EHR data source in this study. Both con-

ventional and flexible ML approaches identified overlapping, but dif-

ferent top 10 risk factors for DKA. Further research is needed to

determine the conditions under which the flexible ML approaches

would outperform the conventional ones and vice versa and to better

understand the reasons for differences in feature importance ranking

among these approaches.
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