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Abstract

In vivo calcium imaging from axons provides direct interrogation of afferent neural activity, 

informing neural representations that a local circuit receives. Unlike in somata and dendrites, 

axonal recording of neural activity--both electrically and optically--has been difficult to achieve, 

thus preventing comprehensive understanding of neuronal circuit function. Here, we developed an 

active transportation strategy to enrich GCaMP6, a genetically encoded calcium indicator (GECI), 

uniformly in axons with sufficient brightness, signal-to-noise ratio, and photostability to allow 

robust, structure-specific imaging of pre-synaptic activity in awake mice. Axon-targeted GCaMP6 

(axon-GCaMP6) enables frame-to-frame correlation for motion correction in axons and permits 

subcellular-resolution recording of axonal activity in previously inaccessible deep brain areas. We 

used axon-GCaMP6 to record layer-specific local afferents without contamination from somata 

and intermingled dendrites in the cortex. We expect axon-GCaMP6 will facilitate new applications 

in investigating afferent signals relayed by genetically defined neuronal populations within and 

across specific brain regions.

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

To whom correspondence should be addressed: lintian@ucdavis.edu and leopoldo.petreanu@neuro.fchampalimaud.org.
Author contributions
L.P. and L.T initiated the project; G.B. and L.T. designed the projects, developed axon-targeted GCaMP6, performed characterization 
of ADR, photostability and SNR in vitro in dissociated neuronal culture and performed histological characterization of ADR and 
expression in vivo. Y.L. G.M., and N.J. performed in vivo characterization of dLGN axons in V1, deep-brain imaging, and layer-
specific cortical axonal recording in V1. M.F and L.P. performed in vivo characterization of L1 axons in V1 projected from LP and 
area LM and examined frame-to-frame correlation. G.B. analyzed data from in vivo imaging with help from Y.L., M.F., and G.M., 
E.U. performed viral injection. G.B. and L.T. wrote the manuscript with critical input from all authors.

Competing financial interests
The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Nat Neurosci. Author manuscript; available in PMC 2019 August 15.

Published in final edited form as:
Nat Neurosci. 2018 September ; 21(9): 1272–1280. doi:10.1038/s41593-018-0211-4.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Neural circuits consist of large populations of cell bodies connected by axons and dendrites. 

Understanding circuit computations (and even those of single neurons) requires knowing the 

neural representation carried by inputs, local neurons and outputs that lead to input-output 

transformations. Axons are very thin (typically less than 1μm in diameter), branch numerous 

times, can vary in length, and travel the full extent of the brain, thus making activity 

recording difficult. Microelectrode-based recording methods do not allow for the isolation of 

single axons and lack the genetic specificity required to identify the source of the recorded 

input signals. Genetically encoded calcium indicators (GECIs; for review, see 1), such as the 

GCaMP family2,3,4,5, have enabled recordings from the somata and dendrites of genetically 

defined neuronal populations in behaving animals. However, optical recording from 

individual axons and presynaptic structures with GECIs is suboptimal, thus limiting 

comprehensive interrogation of afferent inputs.

Untargeted GCaMPs (u-GCaMPs) preferentially label somatodendritic compartments and 

diffuse poorly to distal axons. Low expression levels of GECIs in pre-synaptic structures 

make even visualization of axons with expression difficult, and functional imaging of dimly 

labeled axons produces poor signal-to-noise ratio (SNR), particularly deep in tissue where 

light scattering requires a high photon budget. Consequently, axonal GECI imaging is 

typically performed only under near-ideal conditions, such as shallow terminal fields of 

relatively short projections6,7,8–10,11,12–14. Even so, low SNR and contamination from 

intermingled dendritic arbors closer to the expression source degrades imaging quality and 

complicates assignment of fluorescence to specific axons due to overlapping dendritic 

signal. Presynaptically-targeted GCaMPs have been developed15, but suffer substantially 

from photobleaching16 due to restricted diffusion in the excitation volume. We thus 

developed an approach for axonal GCaMP imaging that offers greater enrichment and 

photostability than previous techniques.

Results

Engineering and characterization of an axon-enriched GCaMP

To design a high-efficacy axon-enriched GCaMP6, we screened a panel of targeting motifs 

that have been previously reported to drive axonal localization (Supplementary Fig. 1a). We 

chose eight motifs with diverse targeting mechanisms and fused them to either the N- or C-

terminus of GCaMP6m. These motifs included: the 20 residue dipalmitoylation domain 

found at the n-terminus of growth-associated protein-43 (GAP43)17, the 15 residue c-

terminus of the amyloid precursor protein (c-APP)18, the ankyrinB binding motif (ABM) 

derived from the N and P/Q type voltage dependent calcium channels19, the mRNA 

localization zipcode found within the 3’ untranslated region of the tau protein20, the 26 

residue tandem palmitoylation and myristoylation domains found at the n-terminus of the 

Src tyrosine kinase, Lck21,22, the synthetic myosin VI binding domain (MVIBD) derived 

from peptides found in Optineurin and Disabled homolog 223, the 20 residue palmitoylation 

domain found at the c-terminus of Paralemmin24, and finally the full-length synaptophysin, 

which was previously reported to target GCaMP effectively to axons15, but also rapidly 

photobleaches during in vivo imaging16 (Fig. 1a and Supplementary Fig. 1a).
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We first characterized the expression pattern of each construct in dissociated rat 

hippocampal neuronal culture. We measured a normalized axon-to-dendrite ratio (nADR)25 

to determine the extent to which each probe localized to axonal and somatodendritic 

compartments relative to a co-expressed, untargeted red fluorophore (mRuby2) (Fig. 1 b-c 

and Supplementary Fig. 1b). The 20 residue dipalmitoylation domain derived from the N-

terminus of GAP43 drove the highest enrichment of GCaMP6m in axons (Fig. 1b, 

Supplementary Fig. 1b), with ~5-fold increased nADR compared to u-GCaMP6m (nADR of 

GAP43-GCaMP6m: 4.83±0.78, nADR of u-GCaMP6m: 0.76±0.08, P = 3.09E-5) (Fig 1c). 

The GAP43 motif also targeted GCaMP6s and GCaMP6f to axons with equally increased 

nADR with GCaMP6m (nADR of GAP43-GCaMP6s: 5.65±1.03, nADR of GAP43-

GCaMP6f: 4.58±0.44, P = 8.72E-5 and 2.19E-6, respectively). In contrast, direct tethering to 

a presynaptic protein (i.e., synaptophysin-GCaMP15 (syGCaMP)) as previously reported 

only moderately targeted the probe to axons, about a 2-fold increase compared to u-

GCaMP6m (nADR: 1.70±0.11, P = 0.23). The GAP43-fused GCaMP6m showed rapid 

enrichment in axons as early as two days post-transfection, remained stable across 5 days 

(Supplementary Fig. 1c), and displayed more consistent labeling across axonal arbors than 

u-GCaMP6m or syGCaMP6m (Supplementary Fig. 1d, e). We refer to GAP43-fused 

GCaMP6 as axon-GCaMP6 and further characterized it in vivo.

We next sought to determine the targeting efficiency of axon-GCaMP6 in long-range axons 

in vivo. We engineered bicistronic constructs encoding either axon-GCaMP6s or u-

GCaMP6s followed by a P2A peptide-fused untargeted red fluorophore (mRuby3)26 such 

that red fluorescence allowed normalization of expression levels (Fig. 1d). We labeled 

neurons in dorsal lateral geniculate nucleus of the thalamus (dLGN) with recombinant adeno 

associated virus (rAAV) encoding axon-GCaMP6s-P2A-mRuby3 or u-GCaMP6s-P2A-

mRuby3. We achieved similar patterns and levels of transduction of red fluorescence using 

both viruses (Supplementary Fig. 2 and 3). Strikingly, in animals injected with axon-

GCaMP6s-P2A-mRuby3, we found that somata and dendritic arbors of dLGN neurons were 

essentially devoid of green fluorescence after 2-weeks of expression, while the axons of this 

cell population were brightly labeled in V1 (Fig. 1e). To calculate nADR, we calculated the 

ratio of green fluorescence from dLGN axons in layer 4 (L4), the primary target of the 

dLGN axons within V1, to those from somata within dLGN, and normalized to the ratio of 

red fluorescence. Similar to what we observed in dissociated neuronal culture, axon-

GCaMP6s displayed about ~5-fold increase to nADR over u-GCaMP6s (axon-GCaMP6s: 

2.54±0.28; u-GCaMP6s: 0.50±0.06; P = 4.37E-16)(Fig. 1f). These data suggested that axon-

GCaMP6s was actively transported into distal axons.

We then sought to characterize the photostability and diffusibility of axon-GCaMP6m using 

Fluorescence Loss in Photobleaching (FLIP) and Fluorescence Recovery After 

Photobleaching (FRAP) assays (Fig. 2a, d; Supplementary Fig. 4a-e). Axon-GCaMP6m 

diffuses rapidly between adjacent axonal compartments at a rate similar to u-GCaMP6m 

(mobile fraction of axon-GCaMP6m: 0.77±0.02; mobile fraction for u-GCaMP6m: 

0.90±0.03) (Fig. 2b, c and Supplementary Fig. 4d, e). High diffusibility led to fast 

replenishment of bleached molecules, thus greatly reducing effective photobleaching of 

axon-GCaMP6m (Fig. 2e). In contrast, syGCaMP6m displayed significantly reduced 
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diffusibility, resulting in rapid photobleaching consistent with previous in vivo 

observations16 (mobile fraction for syGCaMP6m: 0.28±0.01) (Fig. 2c, e and Supplementary 

Fig. 4c). Additionally, the dipalitoylation modification of axon-GCaMP6m provided better 

photostability than some of the other targeting motifs that either contained myristoylation 

domains (e.g., Lck) or multiple binding sites for transport effectors (e.g., MVIBD), which is 

consistent with previously reported results27 (Supplementary Fig. 4c).

To confirm that axon-GCaMP is more photostable in vivo, we labeled dLGN with rAAV 

encoding u-GCaMP6s, syGCaMP6s, or axon-GCaMP6s (Fig. 2f) followed by continuous 

two-photon excitation through a cranial window in awake, behaving animals. Upon hundreds 

of seconds of illumination, the fluorescence of dLGN projections in superficial V1 labeled 

with either u-GCaMP6s or axon-GCaMP6s largely remain unchanged (Fig. 2g, 

Supplementary Fig. 4f). In contrast, the fluorescence signals of syGCaMP6s labeled 

projections decreased by more than 50% during the initial 400 seconds of illumination (Fig. 

2g, Supplementary Fig. 4f).

Finally, we characterized the sensitivity of axon-GCaMP6 in response to field potential 

stimuli. We transfected axon-GCaMP6s-P2A-mRuby3 or u-GCaMP6s-P2A-mRuby3 into 

cultured hippocampal neurons. After five days of expression in dissociated neuronal culture, 

the ratio of green-to-red fluorescence of axons expressing axon-GCaMP6s was about 5-fold 

higher than those labeled with u-GCaMP6s (axon-GCaMP6s: 0.100, u-GCaMP6s: 0.023) 

(Fig. 2h and Supplementary Fig. 5a). In response to a variety of field potential stimuli 

(30Hz), fluorescence changes (ΔF/F0) of axon-GCaMP6s were similar to u-GCaMP6s, with 

higher basal fluorescence levels (Supplementary Fig. 5b) and lower noise, resulting in ~2-

fold enhancement in SNR (for details, see Methods) across all stimuli (Fig. 2i, j, 

Supplementary Fig. 5b). Kinetics (Supplementary Fig. 5c, d), size of detected regions of 

interest (ROIs, ~0.5-10um2) 28 (Supplementary Fig. 5e, f), and fluorescence brightness from 

the secondary fluorophore, mRuby3 (Supplementary Fig 5g, h), were similar between axon-

GCaMP6s and u-GCaMP6s. We therefore conclude that increased probe enrichment in 

axons was the primary driver of the observed enhancement to SNR displayed by axon-

GCaMP6s.

In vivo imaging of distal afferent calcium signals with axon-GCaMPs

We sought to determine whether improved properties of axon-GCaMP6 could enable in vivo 

applications that are difficult with u-GCaMP. Thalamocortical projections to sensory 

cortices, such as those projected from dLGN and lateral posterior nucleus of the thalamus 

(LP), are dimly labeled by u-GCaMPs9,11,12. To determine the effect of axonal enrichment 

on SNR, we imaged the response to drifting gratings of dLGN (Fig. 3a-e, Supplementary 

Fig. 6a-c) and LP (Fig. 3f-j, Supplementary Fig. 6d-f) cells at their axon terminals in layer 1 

(L1) of V1.

We successfully recorded calcium signals in thalamocortical axons in superficial layer of V1 

in response to drifting grating stimuli11,12 (Fig. 3c, h). Axons labeled with axon-GCaMP6s 

displayed a ~7-fold increase in normalized basal green fluorescence over u-GCaMP6s for 

dLGN axons (5.86 (axon-GCAMP6s), 0.85 (u-GCaMP6s); P = 2.15E-259). LP axons 

similarly showed an ~4-fold increase (19.47 (axon-GCaMP6s), 5.08 (u-GCaMP6s); P = 
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1.24e-319) (Fig. 3b, e, g, j and Supplementary movie 1). While u-GCamP6s expressing 

axons displayed bright fluorescent varicosities that are likely boutons 6,7,29, axon-GCaMP6s 

fluorescence was relatively homogenous in both axonal shafts and varicosities (Fig. 3b, g). 

Because signal amplitude is generally lower in the axonal shaft than in varicose structures 

(Supplementary Fig. 7, see also 29), we drew ROIs over varicosities (for details, see 

Methods) and measured visual responses of thalamocortical axonal populations. SNR (for 

details, see Methods) of axon-GCaMP6s in response to drifting gratings was significantly 

improved for dLGN axons (2.73 (axon-GCAMP6s), 1.54 (u-GCaMP6s); P = 9.56E-130) as 

well as LP axons (1.57 (axon-GCaMP6s), 0.98 (u-GCaMP6s); P = 1.13E-95) (Fig. 3d, e, i, 

j). Consistent with our dissociated neuronal culture data, a similar ΔF/F0 was observed 

across both constructs for dLGN axons (0.72 (axon-GCAMP6s), 0.40 (u-GCaMP6s); P = 

5.41E-73) and LP axons (0.86 (axon-GCaMP6s), 0.83 (u-GCaMP6s); P = 0.44) 

(Supplementary Fig. 6b, c, e, f).

We next compared the sensitivity of axon-GCaMP6s with syGCaMP6s. Because 

syGCaMP6s bleaches more rapidly than other GCaMP6s designs (Supplementary Fig. 4f, 

Supplementary Fig. 8 a-c), we observed trial number-dependent rundown of ∆F/F and SNR 

(Supplementary Fig. 8 c-e). We then compared the brightness of ROIs only in the first 25 

seconds of imaging. At this early period of the imaging session, brightness of axon-

GCaMP6s was less than 2-fold higher than syGCaMP6s (5.57 (axon-GCaMP6s), 3.45 

(syGCaMP6s); P = 3.13E-19) (Supplementary Fig. 8 f, g). When averaged across all trials, 

syGCaMP6s exhibited comparable ΔF/F (0.72 (axon-GCaMP6s), 0.65 (syGCaMP6s); P = 

0.016) and significantly lower SNR (2.73 (axon-GCaMP6s), 1.63 (syGCaMP6s); P = 

1.14E-25) than axon-GCaMP6s (Supplementary Fig. 8 h-k).

In addition, we examined axonal enrichment and SNR of GCaMP6f when fused to the 

GAP43 targeting motif. As expected, we observed 9-fold increase in normalized basal green 

fluorescence (5.99 (axon-GCaMP6f), 0.60 (u-GCaMP6f); P = 9.87E-98) and 1.5-fold 

increase in SNR over u-GCaMP6f for dLGN axons(1.27 (axon-GCaMP6f), 0.78 (u-

GCaMP6f); P = 1.20E-09, Kolmogorov-Smirnov test) (Supplementary Fig. 9).

We did not observe significant differences in population orientation or direction preference 

between axon-GCaMP6s and u-GCaMP6s labeled thalamocortical axons (Supplementary 

Fig. 10 a-f). Further, the kinetics of responses were not perturbed beyond what would be 

expected for higher levels of GCaMP indicator expression 30 (Supplementary Fig. 10 g-i). 

Together, these data suggest that axon-GCaMP6s expression did not alter neuronal 

physiology. Our data thus show that axon-GCaMP6s enriches in long-range axons resulting 

in enhanced SNR in vivo without interfering with circuit properties.

Axon-GCaMP6 can also be efficiently expressed in short, cortico-cortical projections at 

early time points following viral induction when u-GCaMP is only minimally expressed 

(Supplementary Fig. 11a). Two weeks after injection of u-GCaMP6s or axon-GCaMP6s 

virus into lateromedial (LM) visual cortex, we observed minimal expression of u-GCaMP6s 

in LM axons in V1 and only 20% of analyzed ROIs were visually responsive. In contrast, 

axon-GCaMP6s enriched in axons displaying bright axonal and bouton labeling with 80% of 

axons responding to visual stimuli. The SNR was increased 3-fold (1.09 (axon-GCaMP6s), 
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0.35 (u-GCaMP6s); P = 5.62E-12), while ∆F/F0 showed a 2-fold improvement (0.65 (axon-

GCaMP6s), 0.30 (u-GCaMP6s); P = 1.06E-07) (Supplementary Fig. 11), suggesting active 

transportation of axon-GCaMP6 allows imaging at earlier time points in axons.

The enhanced brightness and photostability offered by axon-GCaMP6 now permits robust 

cross correlation-based correction of motion artifact in axonal structures (Fig. 3k, l, m). 

Motion artifacts plague imaging experiments in awake, behaving animals, but are usually 

correctable (at least in part) with brightly labeled cell bodies. Image registration in axons is 

especially challenging if the axons are only dimly labeled, particularly as axons are tiny and 

can easily move within the imaging plane. These difficulties are especially pronounced at 

commonly used acquisition speeds, which leads to limited photon budget and poorly defined 

structural information for performing motion correction. As such, axonal motion artifacts are 

frequently uncorrectable. The increased brightness and photostability of axon-GCaMP6s at 

distal axons (Fig. 3b, e, g, j; Supplementary Fig. 11 b, f) greatly increases frame-to-frame 

correlations relative to u-GCaMP6s (5-10 fold) (correlations normalized to u-GCaMP6s, 

dLGN axons: 4.83; LP axons: 4.76; LM axons: 10.41) (Fig. 3k, l, m; Supplementary Fig. 

11e), allowing efficient motion artifact correction in axonal structures31.

Axon-GCaMP enables imaging of thalamic boutons in deep cortical layers in vivo

The small size and dim fluorescence of axons and boutons similarly presents difficulties for 

imaging deep structures, such as in the subgranular layers of cortex. Even with adaptive 

optics, tuning properties of thalamic axons are difficult to obtain more than 400 μm below 

the pia using u-GCaMP6s11. As a comparison, boutons of axons projecting from dLGN to 

the supra- and subgranular layers of V1 were imaged with u-GCaMP6s and axon-GCaMP6s 

in head-fixed, awake mice. Average fluorescence intensity was recorded in 100 μm bins 

down to 500 μm, and normalized to the square of the excitation laser power (Fig. 4a, b). 

Axon-GCaMP6s was brighter (Fig. 4b) while providing better contrast (Supplementary Fig. 

12) than u-GCaMP6s at all depths. This enhanced brightness facilitated the first recordings 

of dLGN L5/6 axons at depths down to 600μm (Fig. 4c, d, e). Orientation-specific 

fluorescence transients (∆F/F0) were clearly observable and from these transients, we 

calculated orientation tuning curves of these deep cortical axons (Fig. 4c, d, e). Similarly, 

axon-GCaMP6f was also brighter at all depths than u-GCaMP6f. Especially at 600 μm, 

axon-GCaMP6f allowed for effective recordings of orientation-specific tuning, whereas no 

fluorescence signal sources were observable with u-GCaMP6f (Supplementary Fig. 13). 

Thus, axon-GCaMP6 allows in vivo interrogation of previously inaccessible axons deep 

within tissue.

Axon-GCaMP enables layer-specific imaging of local afferents in vivo

Lastly, we utilized a cre-dependent axon-GCaMP6 to record orientation and direction tuning 

of axons projecting from L4 V1 neurons in each recipient cortical layer without 

contamination of signal from somato-dendritic sources (Fig. 5). L4 excitatory neurons were 

labeled in Scnn1a-Tg3-Cre mice using rAAV encoding FLEx-axon-GCaMP6s-P2A-mRuby3 

or FLEx-GCaMP6s-P2A-mRuby3 driven by the human synapsin1 promoter (Fig. 5a, b). 

Three weeks after infection, we observed L4 axons labeled with axon-GCaMP6s ramifying 

across all cortical layers, whereas u-GCaMP6s primarily labeled the somato-dendritic 
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compartments of L4 neurons (Fig. 5c). L4 axons and boutons were easily identifiable from 

intermingled dendritic structures within different cortical layers (Fig. 5c). The average 

green-to-red ratio of axon-GCaMP6s in axons was about 5-fold higher than that of u-

GCaMP6s (axon-GCaMP6s: 2.25, u-GCaMP6s: 0.53; P < 4.94E-324) (Fig. 5d). In contrast, 

the green-to-red ratio of axon-GCaMP6s in dendrites was 6-fold lower compared to u-

GCaMP6s, indicating specific axonal enrichment of axon-GCaMP6s (axon-GCaMP6s: 0.21, 

u-GCaMP6s: 1.24; P = 1.57E-26) (Fig. 5e).

In agreement with our histological results, no dendritic structures were observed in the in 

vivo 2-photon fields of view (Fig. 5f and Supplementary Fig. 14a). In contrast, animals 

transduced by u-GCaMP6 showed numerous intermingled dendritic structures 

(Supplementary Fig. 14b). Using axon-GCaMP6s, we were able to readily detect the 

response (Fig. 5g-i) and calculate the orientation tuning properties of individual boutons 

from L4 neurons throughout their projection fields across cortical depths to 600 μm (Fig. 5i, 

Supplementary Fig. 15).

In addition, axon-GCaMP6s permits layer-specific output recording of axons projected from 

other cortical layers as well. When rAAV-hSynapsin-FLEx-axon-GCaMP6s was introduced 

to V1 of Rbp4-Cre or Ntsr1-Cre driver mouse lines to restrict expression to L5 or L6, 

respectively, single-bouton tuning properties were clearly detectable in their recipient layers 

(Supplementary Fig. 14). Thus, axon-GCaMP6s permits recordings of local afferents down 

to individual boutons even when dendritic structures of transduced cells are present within 

the same tissue volume.

Discussion

We have overcome the limitations of genetically encoded calcium indicators to allow robust 

imaging of afferent calcium transients deep in tissue, with structural specificity and with 

greater SNR. We achieved this by creating an axon-targeted GECI, axon-GCaMP6, which 

enriches exclusively in local or distal axons with enhanced brightness and photostability, 

thus expanding calcium imaging beyond the soma and dendrites. Although presynaptic-

targeted GCaMPs, such as SyGCaMP6, have been developed, imaging with sensors that 

localize tightly to pre-synaptic compartments suffers substantially from photobleaching (Fig. 

2g). In contrast, axon-GCaMP6 is diffusible, photostable, and displays enhanced SNR. The 

enrichment of axon-GCaMP6 in axons offers enhanced frame-to-frame cross-correlation 

without extensive averaging, which greatly facilitates motion correction of axons in vivo.

Axon-GCaMPs enable new applications of calcium imaging with subcellular resolution in 

deep cortical layers non-invasively. Thalamic axons ramify in both supra- and subgranular 

layers. However, in vivo calcium imaging of thalamic boutons has been limited to superficial 

layers (<400 µm below pia) with untargeted GCaMP6s or GCaMP6f even with the aid of 

adaptive optics. With axon-GCaMP6s and axon-GCaMP6f, the tuning properties of 

individual thalamocortical boutons in subgranular layers now can be readily imaged without 

the aid of adaptive optics while preserving good SNR, which will open the door for new 

studies of long-range communication in deeper tissue. As an example application, it is now 

established that infragranular layers including L532,33 and L634 receive direct 
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thalamocortical innervation from primary thalamic nuclei. Previous methods have left axons 

which forms these connections functionally inaccessible. Deeper imaging made possible by 

axon-GCaMP6 will alleviate this methodological gap.

Finally, we utilized axon-GCaMP6 to record orientation and direction tuning of layer-

specific axonal inputs projected from local neurons while excluding signal from their 

extensively intermingled dendritic structures. Recording from local axonal inputs with layer 

specificity remains difficult largely due to contamination from intermingled dendritic 

structures. Generally, it remains unclear what information is provided by local afferents on a 

layer by layer basis. Axon-GCaMP6 allows direct interrogation of these signals with 

requisite spatial resolution while avoiding contaminating signal from transduced dendrites.

Long-term, high-level expression of GECIs in the mouse brain can result in prolonged 

response or nonfunctional indicators and perturb circuit function. In the case of axon-

GCaMP6, the enrichment in axons did not perturb neuronal physiology as evidenced by 

similar kinetics and properties of orientation tuning to those of untargeted GCaMP6 after 

long-term expression (4-6 weeks). Although we did not observe adverse effects in our 

experiments, physiological impact should be carefully examined in each experimental 

preparation. Possible interference with synaptic physiology should also be examined.

Axon-GCaMP will be useful in a number of other applications and brain regions, and the 

targeting tag might be transferable to other payloads. The axonal targeting sequence is only 

20 amino acids, which will allow easy fusion with both red-shifted35,36 and FRET-based 

GECIs37–41 or other genetically encoded sensors of neural activity, such as neurotransmitter 

sensors42. Axonal enrichment may be particularly useful for red indicators as this approach 

enhances brightness in small subcellular compartments without extensive optimizing of 

basal fluorescence of the indicator itself. In addition, it may be possible to target actuators43 

to axons to allow axonal-specific activation of input signals.

Though axon-GCaMP6 is a superior tool for afferent imaging in the mammalian brain, axon-

GCaMP6 is not intended as a replacement for monitoring synaptic calcium using syGCaMP. 

Indeed, syGCaMP indicators have proven their utility for uncovering the coupling between 

pre-synaptic calcium and vesicular release in both dissociated neuronal cultures44,45 , flies46, 

and larval zebrafish47. It has also been used to address systems-level questions in the more 

optically accessible larval zebrafish48,49. However, in mouse brain, we observed significant 

photobleaching of syGCaMP (Fig. 2g), which precludes imaging for longer than a few 

minutes. When expressed in dissociated neurons, syGCaMP displayed significantly reduced 

diffusibility, limiting replenishment of photobleached molecules in boutons. The fast 

photobleaching in vivo is therefore presumably due to slow replenishment of bleached 

molecules into the imaged volume during prolonged imaging experiments. As the axon-

GCaMP targeting strategy maintains fast diffusibility, it is more photostable than syGCaMP6 

both in vitro and in vivo.

In vivo, axon-GCaMP6 reports axonal calcium transients in both axonal shafts and putative 

boutons more effectively than u-GCaMP6. We also observed that fluorescence responses of 

axon-GCaMP6 in shafts were smaller than those in putative boutons (Supplementary Fig. 7), 
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consistent with previous observations that calcium signals in axons concentrated in the 

proximity of boutons (see also 29,50). When combined with post-hoc structural analysis, it is 

possible to delineate calcium signals originating in axon shafts or putative boutons. 

However, when recording afferent signals from specific axons in vivo, the interest is often 

focused on information encoded by axonal signals. Therefore, differentiating signals at 

synapses versus axons does not usually add additional information for answering questions 

at systems level. Axon-GCaMP6 allows more effective analysis of Ca2+ signals within 

axonal shaft compartments which exhibit signals that are highly correlated with those found 

in boutons of the same axon 6,14. As axonal imaging becomes a rich area of research that 

needs calcium indicators that are photo-stable, bright and capable of specifically reporting 

axonal signals, we expect this specialized GCaMP6 will greatly facilitate recordings from 

afferent signals of any length with subcellular resolution.

Online Methods

Protein engineering

All constructs were designed using a combination of overlap extension cloning and gBlock 

gene fragments (Integrated DNA Technologies). All constructs were flanked by BamHI with 

downstream Kozak sequence and start codons as well as HindIII for final subcloning onto 

pAAV-hSynapsin1 vectors. Alternatively, constructs were flanked by SacI and AflII sites for 

subcloning into custom pAAV-hSynapsin1-FLEx vectors.

Concurrent two-color fluorophore expression was achieved by the use of either two plasmids 

with mRuby2 as the red reference fluorophore or a bicistronic approach in which the 

GCaMP construct was separated by a P2A sequence1 from a downstream mRuby3. The two-

plasmid approach was used for all in vitro characterization while the bicistronic approach 

was used for in vivo characterization. Functional assays were performed with no reference 

fluorophore.

Dissociated hippocampal neuronal culture

For ADR and diffusion analyses, primary hippocampal neuronal cultures were prepared as 

described previously2. Briefly, P0 or E18 pups were decapitated, and the brains were 

dissected into ice-cold neural dissection solution (NDS, 10 mM HEPES (Sigma) in Hank’s 

Balanced Salt Solution (HBSS, Thermo Fisher Scientific), pH 7.4). Hippocampi were 

removed, enzymatically digested with papain (~60 units), washed with pre-warmed plating 

medium (PM, Minimal Essential Medium (Thermo Fisher Scientific) supplemented by 10% 

fetal bovine serum (Thermo Fisher Scientific) and 100U/mL Penicillin-Streptomycin 

(Thermo-Fisher Scientific)) and then mechanically digested by trituration. Cells were plated 

on 35mm MatTek glass bottom dishes (MatTek) coated with Matrigel matrix (BD 

Biosciences) or a mixture of poly-L-ornithine (Sigma-Aldrich) and laminin (Sigma-

Aldrich), and kept at 37 °C, 5% CO2 in PM for ~24 h and then in Neurobasal medium 

(Thermo Fisher Scientific) supplemented by 10% B27 (Thermo Fisher Scientific) for the 

experiment duration with half medium exchanges every 4 days. On the fifth day in vitro 

(DIV), cells used for ADR and FRAP/FLIP experiments were transfected by Effectene 

(Qiagen) following the manufacturer’s recommendation with the following modification: for 
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100μL transfection complex, we included only 5μL Effectene reagent. Such cells were 

subsequently used for imaging experiments between 2 and 5 days post-transfection. Cells 

used for SNR analysis were transduced on DIV5 by rAAV-hSynapsin-GCaMP6s-P2A-
mRuby3-WPRE-SV40 or rAAV-hSyanspin-axon-GCaMP6s-P2A-mRuby3-WPRE-SV40 to 

drive near-complete transduction of all cultured neurons. All cultures were imaged on a laser 

scanning confocal microscope (Zeiss 710) equipped with 405, 488, 514, 561, and 633 laser 

lines. Band limits for detection of GCaMP fluorescence were set between 493 and 541nm 

while collection of mRuby fluorescence was beyond 590nm. Prior to imaging, cultures were 

washed and incubated in HBSS containing 2mM MgCl2 and CaCl2 to minimize background 

due to fluorescent culture medium components. For experiments requiring field stimulation, 

an RC-37FS perfusion insert (Warner Instruments) was fitted into the MatTek. During such 

experiments, spontaneous network activity was suppressed by inclusion of 20μM of 6-

cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 40μM of D-(−)-2-Amino-5-

phosphopentanoic acid (D-APV) to the imaging medium. All data collected for quantitative 

comparisons was collected with identical imaging parameters with the exception that the 

laser power was adjusted to just below saturation for the imaged cell or fields’ brightest 

feature.

Quantification of axon to dendrite ratio

Calculation of the normalized ratio was performed following the method of Lewis et al3. 

Specifically, an un-normalized ratio of fluorescence between the axon and somatodendritic 

compartments was calculated as:

uADR =
FTestFP, Axon

FTestFP, Somatodendritic

where FTestFP refers to the background-subtracted average fluorescence of GCaMP within 

the indicated structure. This measure was then normalized to similar values for mRuby2 as:

nADR = uADR
FRe f FP, Axon

FRe f FP, Somatodendritic

where FRefFP refers to the background-subtracted average fluorescence of mRuby2 within 

the indicated structure. Normalizing to the distribution of red fluorescence thus controls for 

differences in diffusivity across different cells.

Fluorescence loss in photobleaching and fluorescence recovery after photobleaching

For FLIP experiments, axonal segments greater than 100 μm from the soma were targeted 

for imaging. After a baseline of 10 images, images were acquired alternating with 

application of bleaching pulses over a 10 μm circle centered in the imaged frame. The same 

488 nm line from a 25 mW Argon laser was used as the bleaching excitation with a pixel 

dwell time of 1.58 μs. Loss of fluorescence was then tracked within a background-subtracted 

region of interest covering the axon within the bleached circle. For these experiments, all 

fields of view included an axon that was not directly attached to the bleached segment. 
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Fluorescence within this control axon segment was monitored to ensure that imaging did not 

cause greater than a 5% decrease in baseline fluorescence. Imaging sessions in which the 

control process fluorescence dropped by greater than this threshold were discarded.

FRAP was also performed to extract diffusion coefficients of axonal GCaMP variants4. 

Imaging and bleaching parameters were identical to those used in the FLIP experiments with 

the exception that a single bleaching pulse was applied. To drive sufficient bleaching, 

experiments were conducted in imaging medium supplemented by 5 μM of the calcium 

ionophore ionomycin, effectively increasing the extinction coefficient of the GCaMP5. 

Normalized post bleach profiles, fPostbleach(x), were determined by dividing the fluorescence 

profile directly following the bleaching epoch by that preceding the bleach event. Diffusion 

occurring between consecutive imaging acquisitions was then corrected for by fitting the 

effective bleach radius, re, and bleach depth, K, of the normalized bleach profile to the 

equation:

f Postbleach x = 1 − Ke
−x2

re
2

FRAP curves were then determined by fitting the recovery time course, F(t), to the equation:

F t = 1 − a F0 − F∞ e

−t
τslow + a F0 − F∞ e

−t
τ f ast + F∞

where a, F0, F∞, τslow and τfast are free parameters corresponding to the double exponential 

fraction, the initial post-bleach fluorescence, the steady-state fluorescence recovery level, 

and the slow and fast exponential recovery rates, respectively. The time to half recovery, t1/2, 

was then determined as the time point where F t1 2
=  

F∞ −  F0
2 . Finally, the diffusion 

coefficient, D, was recovered using the nominal user selected bleach radius, rn, with the 

expression:

D =
re
2 + rn

2

8τ1 2

Characterization of performance in dissociated neuronal culture

To quantify performance of GCaMP-labelled cell culture, we performed electrical field 

stimulation experiments in dissociated hippocampal culture. In cultures densely transduced 

by virus, confocal imaging was performed on intermingled fields of axons within fields of 

view greater than 100 μm from the nearest visible dendritic segment. Axons imaged for this 

study were first masked using the mRuby3 fluorescence signal. These masks were 

segmented using ICY plugin split ROI6 into ROIs with normal distribution and mean size 

around that of typical ROIs used in in vivo imaging experiments (0.8-10μm2). Time-lapse 

calcium imaging stacks were acquired from these axons based on the GCaMP fluorescence 
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signal. After a 5 second baseline, 1, 2, 5, 10, 20, 40, or 80 field potentials were applied at 

1V, 1ms square wave pulse at 30Hz under the control of Ephus software7. mRuby3-based 

ROIs were then analyzed with the average of the baseline period, F0, used to calculate the 

fluorescent transients ΔF/F0, as ΔF/F0 = (F − F0)/F0. SNR was then calculated as the 

maximum ΔF/F0 divided by the standard deviation of the baseline period.

Animal procedures

All animal procedures were conducted according to the Portuguese Direcção Geral de 

Veterinária and the United States National Institutes of Health guidelines for animal research 

and approved by the Institutional Animal Care and Use Committee at the University of 

California, Davis, the Howard Hughes Medical Institute, or the Champalimaud Center for 

the Unknown. Wild-type mice were used for in vivo functional imaging of visual thalamic 

axons as well as LM cortico-cortical projections (older than P60, C57BL/6J). Scnn1a-Tg3-

Cre mice (Jax no. 009613), Rbp4-Cre mice (MMRRC no. 031125-UCD), and Ntsr1-Cre 

mice (MMRRC no. 030648-UCD) of both sexes (older than P60) were used for in vivo 

functional imaging of cortical afferents from L4, L5, and L6 neurons, respectively. Sample 

sizes (number of mice, cells and/or boutons) for each experiment are stated in main text.

Viral injections

Injection procedures were essentially identical to those described in 8,9 with a few 

exceptions. Briefly, virus injection was performed using a glass pipette beveled at 45° with a 

15-20-μm opening and back-filled with mineral oil. A fitted plunger controlled by a 

hydraulic manipulator (Narashige, MO10 or World Precision Instruments, UMP3) was 

inserted into the pipette and used to load and inject the viral solution.

For confirmation of enhanced axonal expression of axon-GCaMP6s in living mice, ~20-40 

nL of rAAV2/1-hSynapsin1-GCaMP6s-P2A-mRuby3-WPRE-SV40 (~2 × 1013 viral genome 

(vg) per mL) or rAAV2/1-hSynapsin1-axon-GCaMP6sP2A-mRuby3-WPRE-SV40 (~3.2 × 

1013 vg per mL) was slowly injected into dLGN (2.1 mm posterior to Bregma; 2.3 mm 

lateral from midline; 2.5 mm below pia). For axon-specific labeling of local cortical 

connections in V1, ~20-40nL of rAAV2/1-hSynapsin1-axon-GCaMP6s-WPRE-SV40 (~1.2 

× 1013 vg per mL) was injected to cortical L4 (Scnn1a-Tg3-Cre mice: three injection sites in 

left hemisphere centered at 3.4 mm posterior to Bregma; 2.7 mm lateral from midline; 0.3 

mm below pia; injection sites are ~250 μm apart). Additionally, we produced these viruses 

under a 2/5 serotype to test differences in transduction efficiency. We did not find apparent 

differences across serotypes (data not shown).

For calcium imaging of thalamocortical and LM cortico-cortical projections, ~20-80 nL of 

rAAV2/1-hSynapsin1-GCaMP6s-WPRE-SV40 (~2-4 × 1013 infectious units per ml) or 

rAAV2/1-hSynapsin1-axon-GCaMP6s-WPRE-SV40 solution (~4 × 1013 infectious units per 

ml) was slowly injected into dLGN, LP (1.9 mm posterior to Bregma; 1.4 mm lateral from 

midline; 2.7 mm below Bregma), or LM (coordinates determined by intrinsic optical 

imaging10,11). For imaging of cortical neurons and local axon projections ~20-40 nl of 

rAAV1-hSynapsin1-FLEx-GCaMP6s-WPRE-SV40 (~2.4 × 1013 infectious units per ml) or 

rAAV1-hSynapsin1-FLEx-axon-GCaMP6s-WPRE-SV40 (~3.1 × 1012) was injected per 
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injection site into V1 for cortical L4 (Scnn1a-Tg3-Cre mice), cortical L5 (Rbp4-Cre mice), 

or cortical L6 (Ntsr1-Cre mice) (three injection sites in left hemisphere centered at 3.4 mm 

posterior to Bregma; 2.7 mm lateral from midline; 0.4 mm below pia; injection sites were 

~250 μm apart) somatic or local cortical axon imaging, respectively. All calcium imaging 

data of u-GCaMP6+ dLGN axons was first reported by Sun and co-workers8.

Head plate/cranial window implantation

Craniotomy and head plate implantation were carried out at the same time as virus injection 

for calcium imaging experiments. A 2.5-4 mm diameter craniotomy was made over the left 

V1 (center: 3.4 mm posterior to Bregma; 2.7 mm lateral from midline) of the anaesthetized 

mice with dura left intact. For experiments using adaptive optical correction of aberration, 2 

μL of red fluorescent bead solution (2-μm diameter; 1:500 in saline; Life Technologies, 

F-8826) was deposited on the dura surface. A glass window made of either a single coverslip 

(Fisher Scientific no. 1.5) or two coverslips bonded with ultraviolet cured optical adhesives 

(Norland Optical Adhesives 61) was embedded in the craniotomy and sealed in place with 

cyanoacrylate. A titanium head-post was attached to the skull with cyanoacrylate glue and 

dental acrylic.

Visual stimulation

Visual stimuli were presented on a screen 13-17 cm distant at an angle of ~40° relative to the 

long axis of the animal on the contralateral side of imaged V1. The stimuli were composed 

of square gratings with 100% contrast, 0.04-0.07 cycles per degree, drifting at 26 degrees 

per second, yielding a temporal frequency of ~2Hz. For all projections, this stimulus was 

presented at 8 or 12 different orientations in a pseudorandom sequence. For dLGN 

recordings, stimuli were 12 s each, during which time the stimulus was static for the first and 

last 3 s, and drifting during the middle 6 s. For LP and LM recordings, baseline recordings 

were acquired for 2 s during which time a gray screen of mean intensity was presented, 

followed by a drifting grating for 2 s, and finally ending with 2 s presentation of the gray 

screen. A total of ten trials were presented for each stimulus orientation in the dLGN and LP 

recordings and twenty trials were per orientation were presented for LM recordings.

Two-photon imaging

Imaging was performed with two-photon fluorescence microscopes 2-4 weeks after virus 

injection, when most neurons in dLGN, LP, and cortex exhibited nuclear-excluded 

expression5 of GCaMP6s. Recording from LM axons were done 14-16 days after viral 

injection. For dLGN recordings, mice were head-fixed, awake, and restrained. LP and LM 

recordings were taken in animals lightly anesthetized with 1% isoflurane and an 

intramuscular injection of chlorprothexene at 1 mg/kg during the imaging period. When 

imaging awake animals, mice were habituated to experimental handling by being head-fixed 

onto the sample stage with its body restrained under a half-cylindrical cover 1 week after 

surgery. This procedure was repeated 3-4 times for each animal, and each time for 15-60 

min. Each experimental session lasted between 45 min to 3 h. Multiple sections were 

imaged within the same mouse. GCaMP6 was excited at 900-940nm with a Ti:Sapphire 

laser (Ultra II, Coherent) or an optical parametric oscillator (InSight DeepSee, Spectra-

physics) that was focused by either a Nikon 16×, 0.8 NA or an Olympus 25×, 1.05 NA 
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objective. Emitted fluorescence photons were detected by a photomultiplier tube 

(H7422PA-40, Hamamatsu).

Axonal images from the brain surface down to up to 600 μm below pia were acquired using 

custom LabVIEW software or ScanImage57. Images of thalamocortical can cortico-cortical 

axons in L1 were taken from 0-80 μm below the pia. For comparison of depth characteristics 

of u-GCaMP6s and axon-GCaMP6s, imaging fields were binned at 100 μm intervals down 

to a depth of 450 μm. All imaging areas were confirmed to be in V1 by stereotactic 

coordinates (3.4 ± 0.6 mm posterior to Bregma and 2.7 ± 0.6 mm lateral from midline) or 

intrinsic signal imaging. Typical images for dLGN and V1 axons had 256 × 256 pixels, at 

0.3 μm per pixel and ~2-3 Hz frame rate. Typical images of LP and LM axons were acquired 

at 512 × 512 pixels, at 0.3-0.35 μm per pixel with a ~15 Hz frame rate.

Fixed tissue preparation

Following viral injection at time points specified within the main text, mice were deeply 

anaesthetized with isoflurane and transcardially perfused with PBS and then 4% 

paraformaldehyde (wt/vol). Brains were removed and post fixed overnight in 

paraformaldehyde. Coronal brain slices were cut to 30-60 μm thickness using a vibratome 

(V1200S, Leica) or cryostat (CM1860, Leica). Fluorescence images of these sectioned 

brains were acquired on a laser scanning confocal microscope (Zeiss LSM 710) equipped 

with 405-, 488-, 514-, 561, and 633-nm excitation laser lines. Images were collected using 

the following Plan-Apochromat objectives: 10×/0.45 NA (optical section step of 2 μm), 

20×/0.8 NA (optical section step of 1.0 μm), 40×/1.3 NA oil immersion (optical section step 

of 0.5 μm), and 63×/1.4 NA oil immersion (optical section step of 0.5 μm). For all 

calculations of ADR, images were first acquired in the somatic field with laser power set at a 

level just below saturation of all features in each channel. These same settings were applied 

during image acquisition in the axonal fields. nADR was then calculated as described in 

Quantification of dendrite to axon ratio with somata from an entire slice used as the somatic 

component and layer 4 axonal projections used as the axonal component.

In vivo image analysis

Lateral motion artifact in 2-photon imaging stacks was corrected using a cross-correlation 

based registration algorithm12 where cross-correlation was used to determine translational 

shifts in images. In each image stack, the mean projection was used as the registration 

reference. Several rounds of registration and re-averaging of the stack were performed to 

decrease ∑k Δxk
2 + Δyk

2 , where Δxk and Δyk represent the horizontal and vertical shifts of the 

kth image, respectively. This process was repeated once for LP and LM data and for up to 7 

iterations for the dLGN8 data.

ROI selection:

In average or standard deviation images of registered image stacks, labeled axons appeared 

as bright spots in u-GCaMP6 and as filled axonal shafts and varicosities in axon-GCaMP6. 

For analysis of both u-GCaMP6 and axon-GCaMP6 experiments, circular ROIs (0.8-4μm2) 

were manually drawn over varicosities that likely correspond to presynaptic boutons9,13.
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Characterizing ΔF/F and SNR in vivo:

For stacks derived from LP and LM axons, F0 was calculated as the average of the baseline 

fluorescence for each stimulus presentation. For dLGN axons, the mode of the fluorescence 

intensity histogram from each ROI was used as F0. Fluorescence transients were then 

calculated as ΔF/F0 = (F − F0)/F0. Averaged ΔF/F0 traces were then derived from the mean 

across ten trials of the same orientation. Resultant traces were then averaged over the period 

of stimulus presentation to derive a ΔF/F0 value for each ROI. The standard deviation of the 

ΔF/F0 signal during the period prior to presenting the moving visual stimulus was calculated 

across trials and the resultant values were averaged together. SNR was calculated by 

dividing the ΔF/F0 value by the standard deviation.

To characterize the tuning properties of axonal boutons, we followed the previously 

described procedure8. Briefly, the response R of each ROI to a visual stimulus was defined 

as the average ΔF/F across the window of drifting gratings. For ROIs with significantly 

different responses across the drifting directions (one-way ANOVA, P < 0.05), we fit their 

normalized response tuning curves to grating drifting angle θ with a bimodal Gaussian 

function14.

R θ = Ro f f set + Rpre f e
−

ang(θ − θpre f )2

2σ2
+ Roppoe

−
ang θ − θpre f + 180 2

2σ2

Here θpref is the preferred orientation, Roffset is a constant offset, and Rpref and Roppo are the 

responses at θpref and θpref − 180 degrees, respectively. ang(x) = min(x, x − 360, x + 360) 

wraps angular values onto the interval 0° to 180°. For the dLGN data, only ROIs whose 

tuning curves were well fit by the bimodal Gaussian function were considered orientation 

selective. In LP and LM data, ROIs were considered visually responsive if a two-sided t-test 

between the fluorescence values during the baseline and stimulus period resulted in 

significance at an alpha value of 0.001.

For determining the frame to frame correlations, we calculated the 2-D correlation between 

frames of registered image stacks using the Matlab function corr2. Brightness of imaged 

varicosities from the dLGN thalamocortical projections was determined by normalizing 

pixel fluorescence value to the square of the excitation laser intensity15. Contrast was then 

determined by taking profiles across axonal structures and normalizing these profiles to the 

peak intensity.

Statistical methods

All statistical analyses were performed in Matlab (Mathworks) or Prism (GraphPad). We 

used parametric and non-parametric ANOVA, Wilcoxon’s rank-sum test, and Kolmogorov-

Smirnov test. All tests were two-tailed. Error bars are standard error of the mean or standard 

deviation as indicated in figure legends and main text. No statistical methods were used to 

predetermine sample size. However, sample sizes are consistent with those reported in 

previous publications11,12. The data collection was randomized in the organization of the 
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experimental conditions and visual stimulus presentations. Data collection and analysis were 

not performed blind to the condition of the experiments. Data distribution was assumed to be 

normal but this was not formally tested. No animals and data points were excluded from the 

analyses.

Data, reagent and code availability

The data that support the findings of this study are presented in the paper and the 

supplementary materials and all raw imaging data are available upon request. All routine 

analysis methods are included in the Methods section and MATLAB codes are deposited in 

github (https://github.com/gerardj-broussard/BroussardEtAl2018.git). Plasmids encoding 

axon-GCaMP and bicistronic variants (Accession numbers: MH282423, MH282424, 

MH282425, MH282426, MH282427, MH282429, MH282430, MH282432) have been made 

available in the Addgene plasmid repository (plasmid number 111261-112010).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Axonal enrichement of GCaMP sensor driven by GAP43 targeting motif in dissociated 
cells and in vivo.
(a) Schematic representation of untargeted GCaMP6 (u-GCaMP6), vesicle protein 

synaptophysin-fused GCaMP6 (syGCaMP6) and GAP43-targeted GCaMP6 (axon-

GCaMP6). (b) Representative images showing enhanced axon localization of axon-

GCaMP6m compared to u-GCaMP6m in dissociated neuronal culture. Results were found to 

be consistent across 3 different cultures per construct. Scale bars: insets 20μm, cell traces 

100μm. (c) Normalized Axon to Dendrite Ratio (nADR, see Methods for description). 

Average nADRs of axon-GCaMP6m (4.83±0.78) represent an approximate 5-fold increase 

compared to u-GCaMP6m (0.76±0.08) or syGCaMP6m (1.77±0.11). Data as mean ± s.e.m. 

F(2,27) = 26.52, P = 8.36E-7, n.s. = 0.23, ****P = 3.09E-5, One-way ANOVA with Tukey-

Kramer multiple comparisons test; n = 8–10 cells from three cultures for each construct. (d-
f) Characterization of ADR of thalamocortical axons in V1. (d) Schematic representation of 
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viral injection site of adeno associated virus encoding biscistronic constructs in mouse 

dLGN. (e) Representative images showing densely labeled L4 axons projected from dLGN 

labeled with axon-GCaMP6s, whereas cell somata were nearly devoid of labeling. Results 

were consistent across four animals per construct. Scale bars: 100μm (cortex), 500μm 

(thalamus). (f) Histogram of nADR values derived for both constructs with medians 

indicated by vertical line. Axon-GCaMP6s, 2.54±0.28; u-GCaMP6s, 0.50±0.06; data as 

median ± s.e.m.; P = 4.37E-16, Wilcoxon’s rank-sum test; n = 56 slices analyzed for axon-

GCaMP6s and n = 37 for u-GCaMP6s from 3 animals per construct.
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Figure 2: Axon-GCaMP maintains photostability and displays enhanced SNR.
(a-e) Characterization of photostability and diffusibility. Schematic representation of the 

FRAP (a) and FLIP (d) experiments. (b) Representative pseudo-linescans from u-

GCaMP6m, axon-GCaMP6m, and syGCaMP6m FRAP demonstrated rapid recovery of 

fluorescence for uGCaMP6m and axon-GCaMP6m, but not in the case of the syGCaMP6m. 

Experiment was repeated on two independent cultures per construct with similar results. (c) 

Mobile fraction of uGCaMP6m, syGCaMP6m, and axon-GCaMP6m as assessed by FRAP. 

Data plotted as mean ± s.e.m. X2(2,11) = 9.85, P = 0.0073; *n.s. = 0.26, ***P = 0.0048, 

Kruskal-Wallis test with Dunn’s test for multiple comparisons; n = 4 cells from 2 plates per 

construct. (e) Time course of normalized fluorescence intensity changes during FLIP 

experiments. Data plotted as mean (solid line) ± s.e.m. (shaded regions); n = 3 cells per 

construct. (f-g) Characterization of photostability in vivo. (f) Schematic representation of 

viral injection in dLGN followed by in vivo imaging axons projecting to V1. (g) Time 
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course of fluorescence intensity normalized to the first 50 seconds of acquisition during 

imaging of dLGN projection. Data plotted as mean (solid line) ± s.e.m. (shaded regions); n = 

377, 70, and 236 for u-GCaMP6s, syGCaMP6s, and axon-GCaMP6s, respectively. 

Individual traces were smoothed by a 100 time-point boxcar filter to emphasize low 

frequency components of data. (h) (top) Schematic representation of bicistronic constructs 

expressed in dissociated neuronal culture. (bottom) Representative images showing 

increased green fluorescence in axons when labeled with axon-GCaMP6m, whereas u-

GCaMP6m primarily labels somato-dedritic compartments of neurons. Experimental data 

was derived from 3 independent cultures per construct with similar results. Scale bar: 

somatic image 10μm, axonal image 3μm. (i-j) Average ΔF/F (i) and SNR (j) in response to 

indicated number of field potential stimuli. Inset shows reduced baseline noise in single-trial 

time-lapse traces of axon-GCaMP6s in response to 20FP stimuli. Data plotted as mean peak 

values ± s.d.; n = 9 imaging sessions from 3 transductions per construct.
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Figure 3: Axon-GCaMP6s improves SNR and image-wise correlations in long-distance axons.
(a, f) Schematic representation of viral injection in dLGN (a) and LP (f), followed by in vivo 
imaging in V1 of projected axons. (b, g) Representative images of L1 axons projected from 

dLGN (b) and LP (g) demonstrating enhanced brightness of axon-GCaMP6s expressing 

axons. Experiments were performed in at least 3 animals per construct injection site pair 

with similar results. Scale bars:10 μm. (c,h) (left) Fluorescence of a representative ROI in 

response to the indicated grating directions (10 trials per direction) of axon-GCaMP6s and 

u-GCaMP6s in dLGN (c) and LP (h). Data presented with averages in dark colors and 
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individual trials in light colors. Scale bars 3 seconds, 100% ΔF/F. (right) Polar plots of 

tuning properties of the selected ROIs. (d, i) Trial-averaged traces of SNR time course from 

all responsive ROIs to preferred stimulus direction. Point at which moving stimulus 

presented indicated by vertical dotted black line. (e, j) (top) Cumulative distribution of 

normalized fluorescence intensity of axon-GCaMP6s and u-GCaMP6s in dLGN (e) and LP 

(j) axons projecting to V1. (dLGN: axon-GCaMP6s, 5.85; u-GCaMP6s, 0.85; LP: axon-

GCaMP6s, 19.47; u-GCaMP6s, 5.08; P = 2.15E-259 and 1.24e-319, respectively by the 

Kolmogorov-Smirnov test). (bottom) Cumulative distribution of SNR of individual ROIs 

with median values indicated by vertical lines as well as color-coded numeric values (dLGN: 

axon-GCaMP6s, 2.73; u-GCaMP6s, 1.54; LP: axon-GCaMP6s, 1.07; u-GCaMP6s, 0.64; P = 

9.56E-130 and 1.13E-95, respectively by the Kolmogorov-Smirnov test). For (e) n=712 

ROIs from 4 animals for axon-GCaMP6s and n=14478 ROIs for u-GCaMP6s from 19 

animals. For (j) n=1393 ROIs from 3 animals for axon-GCaMP6s and n=917 ROIs from 4 

animals for u-GCaMP6s. (k-m) axon-GCaMP6s improves frame to frame correlations. (k) 

Representative frames from one imaging session per construct in L1 dLGN experiments 

showing enhancements to image structure for axon-GCaMP6s. The text above and below the 

images demonstrates the procedure for calculating the frame-to-frame correlations. Scale 

bar: 10μm. (l, m) Axon-GCaMP6s permits significantly improved frame-to-frame 

correlations for image registration. Time course of image-wise correlation values for dLGN 

(l) and LP (m) boutons. Data plotted as mean (solid line) ± s.e.m. (shaded regions); n = 6 

imaging sessions from two animals for each construct.
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Figure 4: Imaging thalamocortical afferents deep in cortical tissue with axon-GCaMP6s
(a) Experimental schematic demonstrating that brighter axon-GCaMP6s axons can be 

imaged at deeper layers within tissue than u-GCaMP6s axons. (b) Comparison of axon-

GCaMP6s and u-GCaMP6s fluorescence normalized to the square of the excitation laser 

power as a function of imaging depth (Data plotted as individual ROIs with binned values 

(light color) and binned means ± s.e.m (dark colors), and log-linear fit across the depth). 

F(1,1396) = 1242.35, P < 4.94E-324, ANCOVA. For u-GCaMP6s we analyzed 500 ROIs 

from 2 imaging sessions per depth from each of 4 animals, for axon-GCaMP6s 900 ROIs 
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from 2 imaging sessions per depth from 3 animals. (c) Representative images of dLGN 

axons projecting to V1 with overlays indicating analyzed ROI location at 580μm (top) and 

600μm (bottom) below pia. Results were similar across three tested animals. Scale bars 3 

μm. (d-e) Response properties of individual ROIs deep in tissue. (d) Average ΔF/F traces 

aligned to stimulus direction of ROIs indicated in (c) with baseline indicated by dotted black 

line. Data plotted as mean (black line) ± s.e.m. (gray shading). n = 10 trials per direction. (e) 

Tuning curves for individual ROIs.
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Figure 5: Axon-GCaMP6s permits layer specific recording of axons projected from local neurons 
without contamination from somatodendritic signals.
(a) Schematic representation of labeling L4 neurons with Cre-dependent adeno associated 

virus encoding axon-GCaMP6s or u-GCaMP6s in Scnn1a-Cre-Tg3 mice. (b) Expected 

pattern of transduction: axon-GCaMP6s strongly labeling axons with weak labeling in the 

somatodendritic compartment and the reverse pattern for u-GCaMP6s. (c) Representative 

images showing expression patterns of axon-GCaMP6s (top) or u-GCaMP6s (bottom) fused 

to P2A-mRuby3. Axon-GCaMP6s is enriched in axons, whereas u-GCaMP6s more strongly 
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labels somatodendritic compartments. Inset shows representative zoomed-in images in L1 

and L4. This result was consistently found in two animals per construct. Scale bar: somatic 

image 100μm, inset images 10μm. (d-e) Distributions of green-to-red ratio at axons (d) or 

dendrites (e). Distribution medians indicated by vertical lines. Axon-GCaMP6s displayed 

significantly enhanced green-to-red ratio in axons, but dramatically decreased green-to-red 

ratio in dendrites, compared to u-GCaMP6s. P < 4.94E-324 and P = 1.57E-26, Wilcoxon’s 

rank sum test; data from n = 1200 ROIs from 2 animals for both constructs. (f-i) Axon-

GCaMP6s enabled layer-specific tuning properties of axons across cortical layers in V1. 

Data were derived from 2 imaging sessions per depth in 2 animals. (f) Representative images 

of axons at indicated depth with overlays indicating analyzed ROIs. (g) Color-coded tuning 

map demonstrating pixel-wise tuning across analyzed images. (h) Average ΔF/F traces 

aligned to stimulus direction of individual ROIs with baseline indicated by dotted black line. 

Data plotted as mean (black line) ± s.e.m. (gray shading). n = 10 trials per direction. (i) 
Tuning curves for individual ROIs.
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