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Background: This study was designed to explore the implications of ferroptosis-related
alterations in glioblastoma patients.

Method: After obtaining the data sets CGGA325, CGGA623, TCGA-GBM, and
GSE83300 online, extensive analysis and mutual verification were performed using R
language-based analytic technology, followed by further immunohistochemistry staining
verification utilizing clinical pathological tissues.

Results: The analysis revealed a substantial difference in the expression of ferroptosis-
related genes between malignant and paracancerous samples, which was compatible
with immunohistochemistry staining results from clinicopathological samples. Three
distinct clustering studies were run sequentially on these data. All of the findings were
consistent and had a high prediction value for glioblastoma. Then, the risk score predicting
model containing 23 genes (CP, EMP1, AKR1C1, FMOD,MYBPH, IFI30, SRPX2, PDLIM1,
MMP19, SPOCD1, FCGBP, NAMPT, SLC11A1, S100A10, TNC, CSMD3, ATP1A2,
CUX2, GALNT9, TNFAIP6, C15orf48, WSCD2, and CBLN1) on the basis of
“Ferroptosis.gene.cluster” was constructed. In the subsequent correlation analysis of
clinical characteristics, tumor mutation burden, HRD, neoantigen burden and
chromosomal instability, mRNAsi, TIDE, and GDSC, all the results indicated that the
risk score model might have a better predictive efficiency.
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Conclusion: In glioblastoma, there were a large number of abnormal ferroptosis-related
alterations, which were significant for the prognosis of patients. The risk score-predicting
model integrating 23 genes would have a higher predictive value.

Keywords: ferroptosis, alterations, predictive models, prognosis, glioblastoma

1 INTRODUCTION

Ferroptosis, a kind of controlled cell death triggered by excessive
lipid peroxidation (Jiang et al., 2021), has been implicated in
tumor suppression mechanisms (Chen et al., 2021) and may play
a critical role in carcinogenesis and precision medicine (Shen
et al., 2018; Liang et al., 2019). Additionally, it has been implicated
in the control of a variety of tumor-associated signaling pathways
(Wu et al., 2019; Lee et al., 2020). CD8+ T lymphocytes have been
shown to be able to modulate tumor ferroptosis in studies in the
field of tumor immunotherapy (Wang et al., 2019). Ferroptosis-
related reports have been published in the fields of chemotherapy,
radiation, and immunotherapy, demonstrating its distinct
potential for tumor treatment (Yee et al., 2020; Liu et al.,
2022; Zhao et al., 2022).

With the advancement of bioinformatics analysis and
sequencing technology, it is becoming increasingly convenient
for us to analyze the genomic alterations associated with certain
diseases using publicly available data (Qu et al., 2016; Chen et al.,
2021). Reports utilizing online data to uncover important genetic
abnormalities in glioblastoma are frequent (Rutledge et al., 2013;
Cimino et al., 2018) but seldom use ferroptosis. This study was
created using R-based bioinformatics analytic tools and publicly
available gene data from Internet sources.

2 MATERIALS AND METHODS

The flow diagram of the study is provided in Supplementary
Figure S1. The specific details were listed as follows.

2.1 Data Download Collection
2.1.1 TCGA-GBM Data Download
Gene expression data (https://tcga-xena-hub.s3.us-east-1.
amazonaws.com/latest/TCGA.GBM.sampleMap%2FHiSeqV2.
gz), genotype data (https://tcga-xena-hub.s3.us-east-1.
amazonaws.com/latest/TCGA.GBM.sampleMap%2FGBM_
clinicalMatrix), survival data of patient samples (https://tcga-
xena-hub.s3.us-east-1.amazonaws.com/latest/survival%2FGBM_
survival.txt.gz), TCGA-GBM mutant “maf” (mutation
annotation format) file (https://portal.gdc.cancer.gov/files/
da904cd3-79d7-4ae3-b6c0-e7127998b3e6), TCGA-GBM gene
copy number data (https://gdc-hub.s3.us-east-1.amazonaws.
com/latest/TCGA-GBM.gistic.tsv.gz), and the masked copy
number segment file of TCGA-GBM were downloaded from
the GDC database by the R package TCGAbiolinks (v 2.16.4).

2.1.2 CGGA Data Download
The data of CGGA, including mRNAseq_693, mRNAseq_325,
and mRNA sequencing data (non-glioma as control), were

downloaded from the following link: http://www.cgga.org.cn/
download.jsp.

2.1.3 GSE83300 Data Download
The GSE83300 data were downloaded from the GEO database by
the R package “GEOquery (v2.54.1).”

2.1.4 The Genomic Damage Information of TCGA
Samples Was Mainly Collected From PMID: 29617664
(Knijnenburg et al., 2018)
mutLoad_nonsilent (TMB): silent mutation load per Mb.
CNA_frac_altered (CNV): fraction of genome altered (fraction
of bps belonging to “altered” segments), where “altered” was
defined as having relative CN >0.1 or <−0.1. HRD_Score:
homologous recombination deficiency score calculated from
three scores (TAI + LST + HRD_LOH). HRD_TAI: number
of subchromosomal regions with allelic imbalance extending to
the telomere. HRD_LST: number of chromosomal breaks
between adjacent regions of at least 10 Mb. HRD_LOH: the
number of LOH regions of intermediate size (>15 MB but <
whole chromosome in length) (Knijnenburg et al., 2018).

2.1.5 Ferroptosis-Involved Information
Ferroptosis was mainly derived from the FerrDb database (http://
www.zhounan.org/ferrdb/) [(PMID: 32760210) and (PMID:
33330074)] (Liang et al., 2020; Zhuo et al., 2020). Then, the
three were merged.

2.1.6 MSigDB Data Download
MSigDB data (Molecular Signatures Database) were downloaded
from the following link: https://www.gsea-msigdb.org/gsea/
msigdb/index.jsp.

2.1.7 Human (Gene Transfer Format) Files Download
The human “gtf” file (Homo_sapiens.GRCh38.99.gtf.gz) was
downloaded from the Ensembl database, and then the symbol
information was collected: (http://www.ensembl.org/info/data/
ftp/index.html). The four data set samples were integrated,
and the ComBat() function of the R package sva was used to
remove the batch effect, and then subsequent analysis was
performed.

2.2 Comprehensive Analysis of
Ferroptosis-Related Genes
2.2.1 Comparison of Ferroptosis-Related Gene
Diseases and Normal Expression
The “non-glioma as control” data downloaded from the CGGA
database were regarded as the normal sample, and then the
difference in ferroptosis-involved gene expression between
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cancer and normal samples in the integrated data was compared;
“wilcox.test()” was used to detect significant differences, and
“ggpubr (v0.4.0)” was used to achieve visualization; **** means
p < 0.0001, *** means p < 0.001, ** means p < 0.01, and * means
p < 0.05.

2.2.2 Mutation and Copy Number Variation Analysis
The gene-level CNV data of TCGA-GBM were downloaded, the
copy number alterations of ferroptosis-related genes were
counted, and then the variation frequency was calculated, and
the R package ggplot2 (v 3.3.2) was used to draw the
statistical graph.

2.2.3 Circos Display and Principal Component
Analysis of the Position on the Chromosome
From the human chromosome “gtf” file, the location
information of the ferroptosis gene was extracted. Then,
the R package RCircos (v1.2.1) was used to draw a gene
circos map for position display. The function “prcomp()”
of R was used to perform the principal component analysis
(PCA) of cancer and normal samples. Then, R packages pca3d
(v0.10.2) and rgl (v0.105.22) were adopted to draw the 3D
version of the PCA.

2.3 Ferroptosis-Involved Cluster Analysis
2.3.1 Cluster Analysis of Ferroptosis-Involved Genes
Based on the expression data of ferroptosis-involved genes in
cancer samples, the package ConsensusClusterPlus (v1.50.0) was
used to perform the unsupervised clustering of ferroptosis genes.
The clustering algorithm used was k-means. Then, combined
with the overall survival (OS) data, the R packages including
survival (v3.2-7) and survminer (v0.4.8) were used to perform
univariate Cox analysis on all ferroptosis-involved genes, and the
differences and expression correlations (Pearson coefficient)
among every ferroptosis genes would be calculated. Finally, the
aforementioned results would be visualized by the Cytoscape
(v3.7.2).

2.3.2 Unsupervised Cluster Analysis of Samples
Based on the expression data of ferroptosis-related genes, the R
package ConsensusClusterPlus (v1.50.0) was used to perform the
unsupervised clustering of cancer samples. The clustering
algorithm used was “pam,” and the distance used was
“pearson.” Then, the R packages of survival and survminer
were used to analyze the survival of the obtained subtypes,
and then the Kaplan–Meier curve would be drawn.

2.4 Gene Set Variation Analysis Function
Enrichment Analyses
Using the R package GSVA (v1.34.0), based on the KEGG data in
MSigDB, functional enrichment analysis were performed on the
samples, and then “limma” (v3.42.2) was used to retrieve the
differential enrichment entries among subtypes, and the relevant
threshold was set as “adj.p.value<0.05 & | logFC|> 0.3”; Finally,
the R package ComplexHeatmap (v2.2.0) was used to draw the
heatmap for visualization.

2.5 The Proportion and Difference of
Immune-Infiltrating Cells in Different
Ferroptosis Clusters Evaluated by Single
Sample Gene Set Enrichment Analysis
The R package “GSVA” was used to calculate the enrichment
score of 28 immune-infiltrating cells in cancer samples. After the
results were obtained, the data would be normalized by the
“scale()” function. According to the formula “(x-min(x))/
(max(x)-min(x),” the data would be distributed from 0 to 1,
and then the “wilcox.test()” was used to evaluate the significance
of the difference in the proportion of immune cells among
different ferroptosis cluster samples. “ggpubr” was used to
achieve visualization. **** means p < 0.0001, *** means p <
0.001, **means p < 0.01, and *means p < 0.05. Finally, the Cox
univariate regression analysis was performed on the proportion
of immune cells, and p < 0.05 was used as the threshold to select
immune cells that were significantly related to the prognosis.

2.6 Correlation Analysis Between Different
Ferroptosis Clusters and Clinical
Characteristics
The proportion of age, gender, chemo_therapy, and IDH1
mutations in different subtypes would be calculated, and
relevant bar graphs would be drawn. Then, the “kruskal.test()”
was used to test the significant difference in feature distributions
among different subtypes.

2.7 Display of Ferroptosis-Related Genes in
Different Ferroptosis Clusters
The expression differences of ferroptosis-related genes in
different ferroptosis cluster subtypes would be counted, and
then a heatmap for visualization would be drawn.

2.8 Screening of Differentially Expressed
Genes in the Ferroptosis Cluster and
Enrichment Analysis of DEGs
The R package “limma”was used to obtain DEGs among different
subtypes. The threshold was set at “|logFC|> 1 and
adj.p.val<0.05.” Afterward, the R package “clusterProfiler
(v3.14.3)” was used for the functional enrichment analysis of
DEGs. “p < 0.05” and “q < 0.2” were taken as the thresholds to
filter the enrichment pathway, the enrichment factor would be
calculated, and then the corresponding bubble chart would be
drawn. The calculation formula of the enrichment factors is:

Enrichment factors = (the number of genes enriched into the
pathway in the gene set)/(total number of genes in the pathway).

2.9 Ferroptosis.Gene.Cluster Obtained
Based on the Cluster Analysis of DEGs
Through unsupervised clustering of samples based on DEGs,
Ferroptosis.gene.cluster was obtained, and the heatmap of DEGs
in different subtypes was drawn. Then, based on

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 9040983

Tian et al. Ferroptosis-Related Alterations and Glioblastoma

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Ferroptosis.gene.cluster for survival analysis, the Kaplan–Meier
survival curve was drawn.

2.10 Construction of “Ferroptosis Gene
Signatures” Based on the DEGs of the
“Ferroptosis Cluster”
First, univariate Cox regression analyses on the DEGs in different
“ferroptosis clusters”were performed, and p< 0.05was taken as the
threshold to screen out genes that were significantly related to
survival. Then, the R package “randomForest (v 4.614)” was used
to perform random forest screening for survival significantly
related genes. The related parameters used were “mtry = 2” and
“ntree = 1,000.” Then, “MeanDecreaseGini> 0.72” was taken as the
threshold to obtain key genes. Based on the expression of key genes,
principal component analysis (PCA) on the sample was performed.
The risk score is calculated by the following formula:

RScorei � ∑(PC1i + PC2i). (1)
Among them, PC1 and PC2 represent the scores of principal

component 1 and component 2, respectively, and “i” represents
the corresponding sample.

2.11 The Evaluation of the Prognostic
Efficacy
After the sample risk score was obtained, the high- and low-risk
score groups were divided by the median node, the survival
analysis was performed in the high- and low-risk score groups,
and then the Kaplan–Meier survival curve was drawn. At the
same time, it was verified in the internal sub-data sets of TCGA,
CGGA (CGGA325/CGGA693), and GSE83300.

After that, the time-based ROC curve was further drawn, and the
AUC values of 1, 3, and 5 years were all greater than 0.6, indicating

FIGURE 1 | Mutations and copy number variations (CNVs) in ferroptosis-related genes. (A) CNV of ferroptosis-related genes. The abscissa axis represents the
name of the related genes; the ordinate axis represents the CNV frequency. The type of CNV represented by red is gain; the type of CNV represented by green is loss. (B)
Waterfall chart of ferroptosis-related genemutations. The ordinate axis on the left represents the names of the top 25 genes, and the ordinate axis on the right represents
the mutation frequency of the corresponding genes; different colors represent different types of gene alterations. (C) SNP of TCGA-GBM samples (C1): the
abscissa axis represents the type of SNP; the ordinate axis represents the mutation percentage. (C2): the abscissa axis represents the type of variants (transitions or
transversions); the ordinate axis represents the percentage of mutations. (C3): the abscissa axis represents the TCGA-GBM samples, in which different colors represent
different SVP types, and the ordinate axis represents the percentage of variation in each sample.
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that the predictive performance of the model was better. Finally,
“ggalluvial (v0.12.3)” and “ggplot2” were used to draw Sankey
diagrams to express the relationship of the data characteristics.

2.12 Correlation Analyses of Risk Score,
“Ferroptosis Gene,” and Pathway Function
The correlation between the risk score and the differential
enrichment pathway score (Pearson correlation coefficient)
and the correlation between the “ferroptosis gene” and the
differential enrichment pathway score (Pearson correlation
coefficient) are further calculated, and the R package “corrplot
(v 0.84)” was used to complete the visualization of relevance.

2.13 Difference Analysis of Risk Score in
Different Groups
2.13.1 Differences in Enrichment Scores Between
High- and Low-Risk Score Groups
The differences in enrichment scores between the high- and low-
risk score groups would be calculated, and the significance of the
difference would be calculated by the R package “wilcox.test()”
and visualized by “ggpubr.” **** means p < 0.0001, *** means p <
0.001, **means p < 0.01, and *means p < 0.05.

2.13.2 Risk Score Differences in Different
Ferroptosis.gene.clusters
The risk score differences in different Ferroptosis.gene.clusters
would be counted. The significance of the difference would be
calculated by the R package “wilcox.test()” and visualized by
“ggpubr.” **** means p < 0.0001, *** means p < 0.001, ** means
p < 0.01, and * means p < 0.05.

2.13.3 Risk Score Differences in Different “Ferroptosis
Clusters”
The risk score differences in different “ferroptosis cluster” would be
counted. The significance of the difference would be calculated by the
R package “wilcox.test()” and visualized by “ggpubr.” **** means p <
0.0001, *** means p < 0.001, ** means p < 0.01, and *means p < 0.05.

2.14 Risk Score Differences in Clinical
Characteristics and Different Molecular
Types
The distribution of risk score in age, gender, chemo_therapy,
IDH1 mutation grouping, “ferroptosis cluster,” and
“Ferroptosis.gene.cluster” was further checked. Then, the
grouped box plot would be drawn, and the significant
difference would be calculated by the R package
“kruskal.test().” **** means p < 0.0001, *** means p < 0.001,
** means p < 0.01, and * means p < 0.05.

The correlation between risk score and mutation load,
homologous recombination deficiency, neoantigen load,
chromosomal instability (TMB, CNV, HRD, HRD_TAI,
HRD_LST, HRD_LOH, DEL, INS, and SNP), and mRNAsi
would be calculated. The linear correlation graph would be drawn.

2.15 The Landscape of the High- and
Low-Risk Score Groups
The R package “TCGAbiolinks (v2.16.4)” was used for the GBM’s
masked copy number segment data download, and the marker file
data were downloaded from the GDC Reference File (https://gdc.
cancer.gov/about-data/gdc-data- processing/gdc-reference-files);
Then, “GenePattern GISTIC_2.0” (https://cloud.genepattern.org/
gp/pages/index.jsf) was used to analyze the alterations of CNV in
the two groups online, and finally, the R package “maftools (v1.0-
2)” was used for visualization.

Based on the “maf” (mutation annotation format) file of GBM
mutation and risk score grouping, the mutation landscape of the
two sets would be drawn by the R package “maftools.”

2.16 Immunotherapy Analysis Results in the
High- and Low-Risk Score Groups (TIDE
Prediction + GDSC)
2.16.1 Analysis Results of GDSC in the High- and
Low-Risk Groups, Estimated by the IC50 Value
The R package “pRRophetic (v0.5)” was used to predict drug
treatment response in the high- and low-risk score groups, and
then the box plot describing the difference would be drawn.
Significant differences among groups were tested by the R
package “wilcox.test().” **** means p < 0.0001, *** means p <
0.001, ** means p < 0.01, and * means p < 0.05.

The TIDE score was used to predict the immunotherapy effect.
The TIDE score could be obtained from the online website (http://
tide.dfci.harvard.edu). Patients with higher TIDE scores enjoyed
poorer therapeutic efficacy of immune checkpoint inhibitors and
were related to the survival rate of those patients with worse anti-
PD-1 and anti-CTLA-4 treatment results. After the TIDE score was
obtained, the difference in different subtypes and risk groupswould
be calculated, and the significant difference would be tested by the
R package “wilcox.test().” **** means p < 0.0001, *** means p < 0.
001, ** means p < 0.01, and * means p < 0.05.

2.16.2 Expression Differences of Immune Check Sites
in the High- and Low-Risk Groups
The expression of immune checkpoints in the high- and low-risk
groups would be further counted and drawn as a box-plot display;
“wilcox.test()” was used to detect the significant difference. ****
means p < 0.0001, *** means p < 0.001, ** means p < 0.01, and *
means p < 0.05.

2.17 Immunohistochemical Validation
Results of Clinical Samples
The glioblastoma samples used for this study were collected from
the First Affiliated Hospital of Shandong First Medical University
& Shandong Provincial Qianfoshan Hospital from June 2019 to
February 2022 with informed consent provided by all
participants. All tumor tissue specimens were surgically
resected followed by formalin fixation and paraffin embedding
(FFPE) for histological evaluation. All HE-stained and
immunohistochemical (IHC)-stained slides were examined and
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confirmed to be glioblastoma by two experienced pathologists
independently according to WHO criteria.

Slides were IHC-stained with specific primary antibodies (mouse
anti-human p53 monoclonal antibody: cat. No. MAB-0674, clone
MX008; mouse anti-human IDH1 R132Hmonoclonal antibody: cat.
No.MAB-0733, cloneMX031; mouse anti-humanKi-67monoclonal
antibody: cat. No. MAB-0672, clone MX006; mouse anti-human

MGMTmonoclonal antibody: cat. No.MAB-0361, cloneMT3.1). All
primary antibodies and secondary antibodies [sheep anti-mouse
immunoglobulin G (IgG) polymer] were purchased from MXB
Biotechnologies, Fuzhou, China. Slides were processed using an
automated Roche BenchMark XT staining system according to the
manufacturer’s protocol. Other genes (Ki-67, MGMT, and IDH1)
were immunohistochemically stained in the same way.

FIGURE 2 | (A) Enrichment score results of differential enrichment items between the two subtypes. Legend column: different colors represent different scores;
cluster column: green represents cluster 1, and red represents cluster 2; type column: different colors represent the names of different databases. (B) Differences in
immune-infiltrating cells in different ferroptosis clusters; the abscissa axis represents different immune-infiltrating cells; the ordinate axis represents the degree of immune
cell infiltration. Cluster column: green represents cluster 1, and red represents cluster 2; ppppmeans p < 0.0001, pppmeans p < 0.001, ppmeans p < 0.01, and pmeans
p < 0.05. (C) Survival risk analysis of immune-infiltrating cells. The type of immune-infiltrating cells was listed on the left side; the HR and the forest plot corresponding to
immune-infiltrating cells were listed on the right side. (D) Correlation analyses between ferroptosis clusters and clinical characteristics: the distribution of different age
patients in cluster 1 and cluster 2. The abscissa axis represents different cluster levels; the ordinate axis represents relative percent. Age column: red means age≤ 60;
green means age >60. (E) Correlation analyses between ferroptosis clusters and clinical characteristics: the distribution of patients receiving chemotherapy in cluster 1
and cluster 2. The abscissa axis represents different cluster levels; the ordinate axis represents relative percent. Chemotherapy column: red represents no
chemotherapy, and green represents chemotherapy. (F) Correlation analyses between ferroptosis clusters and clinical characteristics: the distribution of patients’
gender ratio in cluster 1 and cluster 2. The abscissa axis represents different cluster levels; the ordinate axis represents relative percent. Gender column: red represents
female, and green represents male. (G) Correlation analyses between ferroptosis clusters and clinical characteristics: the distribution of IDH1 mutation status in cluster 1
and cluster 2. The abscissa axis represents different cluster levels; the ordinate axis represents relative percent. IDH1 column: red represents mutant status, and green
represents wild type. (H) Correlation analyses between ferroptosis clusters and clinical characteristics: the distribution of differential enrichment pathway scores in the
two subtypes. The abscissa axis represents different signal pathways; the ordinate axis represents enrichment scores. Cluster column: green represents cluster 1, and
red represents cluster 2. (I) Display of ferroptosis-related genes in different ferroptosis clusters. Age column: different colors represent different age ranges; gender
column: different colors represent different genders; chemotherapy column: different colors represent the status of chemotherapy; IDH1 column: different colors
represent IDH1 mutation status; type column: different colors represent different data types; cluster column: different colors represent different clusters.
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3 RESULTS

3.1 Data Collation
The flow diagram of the study is provided in Supplementary Figure
S1. TCGA-GBM data were downloaded from UCSC Xena. After
removing the samples without survival data, the expression matrix of
116 cancer samples was obtained. CGGA325 and CGGA693 were
downloaded from the CGGA database, and then GBM data were
extracted. After removing the sampleswithout survival data, expression
matrices of 137 and 237 samples were obtained, respectively. The
GSE83300 data were downloaded from the GEO database; survival
data and expression matrices of 50 samples were obtained. After
integrating the three data sets and removing the batch effects, a
total of 590 cancer samples were obtained for subsequent analyses.

Ferroptosis-related genes were downloaded from the database
and two literatures (Liang et al., 2020; Zhuo et al., 2020), and finally
291 ferroptosis-related genes were obtained, of which
257 ferroptosis-related genes were displayed with expression
information. The expression matrix of ferroptosis-related genes
was extracted for subsequent analyses. Basic characteristics of all
the data were provided in (Table 1).

3.2 The Overall Display of
Ferroptosis-Related Genes
3.2.1 Expression Display of Ferroptosis-Related
Genes in Diseases and Normal Samples
Twenty non-glioma data were downloaded from the CGGA
database and taken as the normal control, and then the

expression difference of ferroptosis-related genes between
the cancer and normal samples in the integrated data was
compared. Among them, 239 ferroptosis-related genes were
found to be significantly different between cancer and normal
samples (p < 0.05), indicating that most of the expression of
ferroptosis-related genes were related to GBM
(Supplementary Figure S2).

3.2.2 The Mutations and CNV of Ferroptosis-Related
Genes
The copy number data of ferroptosis-related genes was extracted
from the gene-level copy number variation (CNV) data of TCGA-
GBM (including 628 samples), and then the CNV map was
drawn. Among them, CDKN2A deletion was found in more
than 60% samples, and EGFR duplication was found in 40%
samples (Figure 1A). The mutations of ferroptosis-related genes
were further extracted from the TCGA-GBM “maf” file
(containing 393 samples), and then the top 25 genes were
selected and drawn into a waterfall chart, among which TP53
and EGFR ranked the top two mutation frequencies (>20%). The
C > T variation in SNP was the most common (Figures 1B,C).

3.2.3 Positional Circos Display on Chromosomes and
Principal Component Analysis
The location information of ferroptosis-related genes was
extracted from human chromosomal “gtf” files, and then a
gene circos diagram was drawn for location display. Finally,
the PCA results of the cancer and normal samples were drawn
(Supplementary Figure S3A,B).

FIGURE 3 | “Ferroptosis.gene.cluster” obtained by the clustering analysis of DEGs. (A)Heatmap of DEGs. Age column: different colors represent different age ranges;
gender column: different colors represent different genders; chemotherapy column: different colors represent the status of chemotherapy; IDH1 column: different colors
represent IDH1mutation status; type column: different colors represent different data types; cluster column: different colors represent different clusters; Cluster.gene column:
different colors represent different cluster.gene. (B) Kaplan–Meier survival analysis curve of Ferroptosis.gene.cluster grouping. The abscissa axis represents survival
time, and the ordinate axis represents survival probability. (C) Expression differences of ferroptosis-related genes in the “Ferroptosis.gene.cluster” group. The abscissa axis
represents the name of ferroptosis-related genes; the ordinate axis represents the expression level of the corresponding ferroptosis-related genes. (D) Risk score forest plot
constructed by 23 key genes. The left column represents 23 key genes. The middle parts are p-value and hazard ratio. The right column is the forest plot of 23 key genes.
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3.3 Ferroptosis-Related Cluster Analyses
3.3.1 Cluster Analyses of Ferroptosis-Related Genes
Based on the expression information of ferroptosis-related genes
in cancer samples, the unsupervised clustering of ferroptosis-
related genes was performed, and three subtypes were obtained.
After that, batch Cox univariate regression analyses were
performed on ferroptosis-related genes, and the Pearson
coefficients among different ferroptosis-related genes were
calculated at the same time. Finally, the aforementioned results
were visualized by Cytoscape (Supplementary Figure S3C).

3.3.2 Unsupervised Cluster Analyses of Cancer
Samples
Based on the expression information of ferroptosis-related genes,
unsupervised cluster analyses of cancer samples were performed,
and two cluster subtypes were obtained. After the survival
analysis was performed on the two subtypes, the survival
difference between the two subtypes was significant (p < 0.05)
(Supplementary Figure S3D,E).

3.4 Gene Set Variation Analysis Function
Enrichment Analysis
GSVA was used to perform functional enrichment analysis on the
samples, and then the R package “limma” was used to retrieve
differential enrichment items between the two subtypes; eight
enrichment items were obtained according to the threshold, and
then a heatmap was drawn. Among them, KEGG_COMPLEMENT_
AND_COAGULATION_CASCADES, KEGG_ECM_ RECEP
TOR_INTERACTION, KEGG_GLYCOSAMINOGLYCAN_DEGR
ADATION, KEGG_ GRAFT_VERSUS_HOST_DISEASE,
KEGG_LEISHMANIA_INFECTION, and KEGG_OTHER_
GLYCAN_DEGRADATION were found to be enriched with
higher scores in cluster 1, while KEGG_PROXIMAL_TUBULE_BIC
ARBONATE_RECLAMATION and KEGG_TERPENOID_
BACKBONE_BIOSYNTHESIS were found to be enriched with
higher scores in cluster 2 (Figure 2A).

3.5 The Proportion and Difference of
Immune-Infiltrating Cells in Different
Ferroptosis Clusters Assessed by
Single-Sample Gene Set Enrichment
Analysis
The R package “GSVA” was used to calculate the enrichment
score of 28 types of immune infiltration cells in cancer samples,
and 25 types of immune infiltration cells were found to be
significantly different between the two subtypes. Among them,
activated CD4 T cell, activated dendritic cell, central memory
CD4 T cell, effector memory CD8 T cell, gamma delta T cell,
immature B cell, immature dendritic cell, macrophage, mast cell,
MDSC, memory B cell, natural killer cell, natural killer T cell,
neutrophil, plasmacytoid dendritic cell, regulatory T cell, T
follicular helper cell, type 1 T helper cell, type 17 T helper cell,
and type 2 T helper cell were found to be higher in cluster 1, while
activated B cell, effector memory CD4 T cell, and monocyte were
found to be higher in cluster 2 (Figure 2B).

After that, the univariate Cox regression analysis was
performed on the proportion of immune cells, and the
immune cells that were significantly related to the prognosis
were screened with p < 0.05 as the threshold. Among them,
activated dendritic cell, central memory CD4 T cell, central
memory CD8 T cell, effector memory CD8 T cell, gamma
delta T cell, macrophage, mast cell, MDSC, natural killer
T cell, plasmacytoid dendritic cell, regulatory T cell, and
T cells of both follicular helper cell and type 1 T helper cell
were found to have a significant impact on the survival
(Figure 2C).

3.6 The Correlation Analysis Between
Different Ferroptosis Clusters and Clinical
Characteristics
The proportions of age, gender, chemo_therapy, and IDH1
mutations in different subtypes would be calculated and
plotted as a bar graph. Among them, only age was found to
be significantly different between the two subtypes, and the
remaining characteristics were not found to be significantly
different. Between the two subtypes, seven of the eight
differential enrichment pathway scores were found to be at a
significantly different level, indicating that the two subtypes
were closely related to the enrichment pathways
(Figures 2D–H).

3.7 Display of Ferroptosis-Related Genes in
Different “Ferroptosis Clusters”
The expression differences of ferroptosis-related genes among
different “ferroptosis cluster” subtypes were counted and plotted
as a heatmap (Figure 2I).

3.8 Screening for DEGs in “Ferroptosis
Cluster” and Performing Enrichment
Analysis for DEGs
The R package “limma” was used to screen for DEGs in different
subtypes. Using |logFC|> 1 & FDR <0.05 as the thresholds, 491
DEGs were screened out, including 203 upregulated genes and
288 downregulated genes.

After that, GO and KEGG enrichment analyses of DEGs
were performed. The GO enrichment analysis included three
parts, namely: biological process (BP), cell component (CC),
and molecular function (MF). Among them, the main
pathways of BP enrichment were extracellular matrix
organization and collagen fibril organization; the main
pathways of CC enrichment were collagen-containing
extracellular matrix and complex of collagen trimers; the
main pathways of MF enrichment were extracellular matrix
structural constituent, extracellular matrix structural
constituent conferring tensile strength, and ion-gated
channel activity. The main pathways of KEGG enrichment
were ECM–receptor interaction and nicotine addiction.
Relevant pathways were closely related to the ferroptosis
process (Supplementary Figure S4).
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3.9 “Ferroptosis.gene.cluster” Obtained by
Cluster Analysis Based on DEGs
After unsupervised cluster analysis based on DEGs, two subtypes
of “Ferroptosis.gene.cluster” were obtained, and the DEGs in
different subtypes were displayed. Then, based on
“Ferroptosis.gene.cluster” for survival analysis, the
Kaplan–Meier survival curve was drawn, and the results
showed that the survival curves of the two
“Ferroptosis.gene.cluster” were significantly different. After
that, the expression of ferroptosis-related genes in different
“Ferroptosis.gene.cluster” was further analyzed, among which
196 ferroptosis-related genes were significantly different
between the two “Ferroptosis.gene.clusters” (Figures 3A–C).

3.10 Construction of “Ferroptosis Gene
Signatures” Based on the Risk Scores of
DEGs in the “Ferroptosis Cluster”
Univariate Cox regression analysis was performed on the DEGs
of different “ferroptosis clusters,” and 256 genes that were
significantly related to the survival were screened out with p <
0.05 as the threshold. Then, the R package “randomForest” was

used to perform random forest screening on genes that were
significantly related to the survival, and 23 key genes (FMOD,
MYBPH, IFI30, SRPX2, CP, PDLIM1, MMP19, TNFAIP6,
SPOCD1, FCGBP, NAMPT, SLC11A1, S100A10, TNC, EMP1,
C15orf48, CSMD3, GALNT9, ATP1A2, CUX2, WSCD2, AKR1C1,
and CBLN1) were obtained with MeanDecreaseGini >0.72 as the
threshold. Finally, based on the expression of these key genes, the
PCA was performed on the samples, and the risk score of each
sample was calculated (Figure 3D).

3.11 Prognostic Survival Assessment
After the sample risk score was obtained, the samples were divided
into high- and low-risk score groups by the median node, and then
survival analysis was performed on the two groups, and then the
Kaplan–Meier curve was drawn. The significant difference of the
survival could be found between the two groups. At the same time,
they were verified by the CGGA (CGGA325/CGGA693), GSE83300,
and TCGA internal sub-data sets. Significant differences were also
found in the sub-data sets [except the TCGA data set (p = 0.056)] of
the two subtype samples (Figures 4A–F).

After that, the time-based ROC curve was drawn, and the AUC
values of 1, 3, and 5 years were all greater than 0.6, indicating that

FIGURE 4 | (A–F): Kaplan–Meier survival analysis results of risk score subgroups in different data cohorts. The abscissa axis represents survival time, and the
ordinate axis represents survival probability. (A) Kaplan–Meier survival analysis results of risk score subgroups in the comprehensive data cohort. (B) Kaplan–Meier
survival analysis results of risk score subgroups in the CGGA data cohort. (C) Kaplan–Meier survival analysis results of risk score subgroups in the CGGA325 data
cohort. (D) Kaplan–Meier survival analysis results of risk score subgroups in the CGGA693 data cohort. (E) Kaplan–Meier survival analysis results of risk score
subgroups in the GSE83300 data cohort. (F) Kaplan–Meier survival analysis results of risk score subgroups in the TCGA data cohort. (G) Time-based ROC curve: the
abscissa axis represents FPR (false-positive rate), and the ordinate axis represents TPR (true-positive rate). (H) Sankey diagram based on the distribution of
characteristics. (I) Correlation analyses between the risk score and differential enrichment pathway score.
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the predictive model had a good predictive efficiency (Figure 4G).
Finally, the Sankey diagram was drawn to indicate the relationship
among data characteristics. Among them, cluster 1 of “ferroptosis
clusters” had a higher proportion of deaths, and most of the
survival samples had a lower risk, while the high- and low-risk
samples were uniform from each sub-data set (Figure 4H).

3.12 Correlation Analysis of Risk Score,
Ferroptosis-Related Genes, and Pathway
Functions
The Pearson correlation coefficient between the risk score and the
differential enrichment pathway scores was calculated. The
results showed that most pathways were negatively correlated
with the risk score, while they were positively correlated with each
other. Risk score was negatively correlated with
KEGG_PROXIMAL_TUBULE_BICARBONATE_RECLAMATION
and KEGG_TERPENOID_BACKBONE_BIOSYNTHESIS pathways.

In addition, the related pathway scores in cluster 1 were significantly
lower than those of cluster 2, and the survival probability of samples in
cluster 1 was lower, which was consistent with the risk score
(Figure 4I).

The Pearson correlation coefficient between the ferroptosis-
related genes and the differential enrichment pathway scores was
further calculated and visualized by the R package “corrplot”
(Figure 5A).

3.13 Differential Analysis of the Risk Score
in Different Groups
3.13.1 Differential Enrichment Analysis Scores
Between High- and Low-Risk Score Groups
By analyzing the differential enrichment analysis scores between the
high- and low-risk score groups, it was found that eight pathways
were significantly different between the high- and low-risk groups.
The first six pathways in the low-risk group had significantly higher

FIGURE 5 | (A) Correlation analyses between ferroptosis-related genes and differential enrichment pathway scores. The abscissa axis represents the names of
ferroptosis-related genes; the ordinate axis represents differential enrichment pathways. The legend on the right represents different Pearson correlation coefficients. (B)
Difference in the enrichment scores of the subgroups with high- and low-risk scores. The abscissa axis represents pathways with different enrichment scores; the
ordinate axis represents enrichment scores. Red represents the high-score group; green represents the low-score group. pppppmeans p < 0.0001; ppp means p <
0.001; pp means p < 0.01; and p means p < 0.05. (C) Risk score difference analysis between the two “Ferroptosis.gene.cluster”. The abscissa axis represents different
clusters; the ordinate axis represents risk score. ppppmeans p < 0.0001; pppmeans p < 0.001; ppmeans p < 0.01; and pmeans p < 0.05. (D)Risk score difference analysis
between ferroptosis clusters. The abscissa axis represents different ferroptosis clusters; the ordinate axis represents different risk scores. pppp means p < 0.0001; ppp

means p < 0.001; pp means p < 0.01; and p means p < 0.05. (E) Risk score difference analysis for different clinical characteristics and different molecular types. The
abscissa axis represents different clinical features and molecular types; the ordinate axis represents different risk scores. ppppmeans p < 0.0001; ppp means p < 0.001;
ppmeans p < 0.01; and pmeans p < 0.05. (F) Difference of CNV sites in the high-risk score group. The abscissa axis represents the location of CNV on the chromosome;
the ordinate axis represents G-score. (G) Difference of CNV sites in the low-risk score group. The abscissa axis represents the location of CNV on the chromosome; the
ordinate axis represents G-score. (H)Mutations in the high-risk score group. The left column represents the name of the mutant genes; the right column represents the
percentage of genes with mutations; different colors represent different mutation types. (I)Mutations in the low-risk score group. The left column represents the name of
the mutant genes; the right column represents the percentage of genes with mutations; different colors represent different mutation types.
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scores than those of the high-risk group. However, the scores of
KEGG_PROXIMAL_TUBULE_BICARBONATE_RECLAMATION
and KEGG_TERPENOID_BACKBONE_BIOSYNTHESIS in the
high-risk group were significantly higher than those of the low-risk
group, which was consistent with the results of the previous analysis
(Figure 5B).

3.13.2 Differential Analysis of the Risk Score in
Different “Ferroptosis.gene.clusters”
By analyzing the risk score differences in different
“Ferroptosis.gene.clusters,” it was found that the risk score in
gene.cluster 1 was significantly higher than that of gene.cluster 2
(Figure 5C), and the relevant conclusions were consistent with the
previous analysis.

3.13.3 Differential Analysis of the Risk Score in
Different “Ferroptosis Clusters”
Through differential analysis of the risk score in different “Ferroptosis
clusters,” it was indicated that the risk score in cluster 1 was
significantly higher than that of cluster 2 (Figure 5D), and the
relevant conclusions were consistent with the previous analysis.

3.14 Differential Analysis of the Risk Score
in Clinical Features and Different Molecular
Types
The distribution of different risk scores in age, gender,
chemo_therapy, IDH1 mutation grouping, “ferroptosis
cluster,” and “Ferroptosis.gene.cluster” was further checked

TABLE 1 | Basic characteristics of all the data.

TCGA-GBM CGGA325 CGGA693 GSE83300

Total 166 137 237 50
Age
>60 81 14 52 4
≤60 85 123 185 46
Gender
Male 107 87 139 25
Female 59 50 98 25
Chemo_therapy
Yes 117 99 199 0
No 31 34 27 0
NA 18 4 11 50
IDH1_mut
Mutant 6 39 45 0
Wild type 113 98 182 0
NA 47 0 10 50
Cluster
cluster1 84 145 101 32
cluster2 53 92 65 18
Cluster.gene
Cluster1 80 151 96 29
Cluster2 57 86 70 21
Event
Dead 133 124 197 39
Alive 33 13 40 11

TABLE 2 | Basic characteristics of all enrolled clinical samples.

Characteristic P53 Wild-type P53 mutation p-value

N 27 15 -
Age, mean ± SD 57.89 ± 11.14 59.93 ± 9.92 0.557
Gender, n (%) - - 0.708
Female 12 (28.6%) 5 (11.9%) -
Male 15 (35.7%) 10 (23.8%) -
IDH1 mutation, n (%) - - 0.649
Wild-type 24 (57.1%) 12 (28.6%) -
Mutation 3 (7.1%) 3 (7.1%) -
Ki-67 expression, n (%) - - 0.085
≤30% 21 (50%) 7 (16.7%) -
- 6 (14.3%) 8 (19%) -
MGMT expression, n (%) - - 0.740
Low or negative 14 (35.9%) 10 (25.6%) -
Positive 10 (25.6%) 5 (12.8%) -
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FIGURE 6 | Representative IHC analyses of p53/Ki-67/MGMT/IDH1R132H protein expression in cancer cells of glioblastoma patients. (A) Representative
glioblastoma with HE staining. (B) Normal/wild-type p53 protein expression pattern with partly and weakly positive expression in tumor nuclei. Two patterns were
identified as abnormal/mutant-staining pattern. (C) Abnormal overexpression of p53 protein with strong staining in nearly all tumor nuclei compared to internal control
central fibroblasts. (D). Abnormal complete absence of p53 staining with sufficient staining of internal controls (fibroblasts, endothelial cells, or lymphocytes). (E)
Low proportion of Ki-67 protein expression in tumor nuclei suggested that the tumor has low proliferative activity. (F)High proportion of Ki-67 protein expression in tumor

(Continued )
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and plotted as box plots. The results showed that the distributions
of different risk scores in age, IDH1 mutation group, “ferroptosis
cluster,” and “Ferroptosis.gene.cluster” were significantly
different (Figure 5E).

3.15 Correlation Analyses Between Risk
Score and Tumor Mutation Burden,
homologous recombination deficiency,
Neoantigen Load, Chromosomal Instability,
and mRNAsi
The correlations between risk score and TMB, HRD, neoantigen
load, chromosomal instability, and mRNAsi were calculated, and
then a linear correlation graph was drawn. The results indicated
that risk score had a strong correlation with mRNAsi (R =
−0.498), which was consistent with the previous report (Malta
et al., 2018). In addition, similar significant correlation could also
be found between the risk score and HRD, HRD_TAI, and
HRD_LST (Supplementary Figure S5).

3.16 The Landscape of High- and Low-Risk
Score Groups
The differences of CNV sites between the high- and low-risk
score groups were checked, and it was found that the CNV sites of
the two groups were similar. However, the G-score of 7p11.2 in
the high-risk group was slightly higher than that of the low-risk
group, indicating that the proportion of the relevant sites was
higher in the high-risk group. In addition, 9p21.2 and 9p21.3 in
the high-risk group also had higher G-scores, while 12q13.3 in the
low-risk group had a higher G-score (Figures 5F,G).

Then, combined with risk score grouping, the genetic
mutations of the two group samples would be displayed. The
waterfall chart showed that both of the two risk groups had higher
mutation rates. Among them, PTEN had the highest mutation
rate in the high-risk group, while TP53 enjoyed a higher mutation
rate in the low-risk group (Figures 5H,I).

3.17 Immunotherapy Analysis Results in the
High- and Low-Risk Score Groups (TIDE
Prediction + GDSC)
3.17.1 Analysis Results of GDSC in the High- and
Low-Risk Groups, Estimated by the IC50 Value
The drug treatment response of the high- and low-risk group
samples was further analyzed. The results indicated that the two
risk groups enjoyed significant differences in the efficacy of
cisplatin, vinblastine, gemcitabine, and paclitaxel. Moreover,
the samples in the low-risk group were much more sensitive
to cisplatin, vinblastine, gemcitabine, and paclitaxel.

After that, the TIDE score was used to predict the
immunotherapy efficacy. The results indicated that the TIDE
score of the high-risk group was significantly higher than that of
the low-risk group, implying that the high-risk group might have
a poorer immunotherapy efficacy (Supplementary Figure
S6A-E).

3.17.2 Expression Differences of Immune Check Sites
in the High- and Low-Risk Groups
The expression of immune checkpoints in the high- and low-risk
groups was checked. The results indicated that the expression of
CD274, CTLA4, PDCD1, and LAG3 in the samples of the high-
risk group was significantly higher than that of the low-risk
group, suggesting that the high expression of relevant genes
might be one of the reasons that affected GBM treatment
efficacy (Supplementary Figure S6F–I).

3.18 Immunohistochemical Validation
Results of Clinical Samples
From forty-two glioblastoma patients, including 17 females and
25 males, histopathological sections were collected. The basic
characteristics of all enrolled clinical samples are summarized in
Table 2. There were 15 patients with P53 gene mutation, and 27
patients were P53 wild-type. There was no significant difference
in the P53 status between the two parts. IDH1 gene mutation was
detected in six patients, while Ki-67 > 30% was found in 14
patients. Typical immunohistochemical staining results,
including P53, Ki-67, MGMT, and IDH1, are provided in
Figure 6.

4.DISCUSSION

The flow diagram of the study is provided in Supplementary
Figure S1. Among the 257 ferroptosis-related genes with
expression information, there were 239 ferroptosis-related
genes whose expression was significantly different between
cancer and normal samples (p < 0.05), indicating that the
expression of most ferroptosis-related genes was related to
glioblastoma (Supplementary Figure S2). The results of PCA
also further verified the aforementioned conclusions
(Supplementary Figure S3A,B). Some of those genes, such as
CDKN2A (Kraus et al., 2001; Hu et al., 2017), CA9 (Said et al.,
2007), and HSPB1 (Rajesh et al., 2020), were also found in
previous reports, which further confirmed the feasibility of our
study design. Further analysis found that CDKN2A, TP53, IDH1,
and EGFR were still the most abnormally altered genes in
glioblastoma (Figure 1) (Kraus et al., 2001; Hu et al., 2017;
Hu et al., 2022; Hu et al., 2018), while the most common

FIGURE 6 | nuclei suggested that the tumor has high proliferative activity. (G) Negative expression of MGMT protein in tumor nuclei might be related to MGMT
methylation. (H) Strong positive expression of MGMT protein in tumor nuclei. (I) IDH1 R132H wild-type protein expression pattern with cytoplasmic negative staining of
tumor cells. (J) IDH1 R132H mutation protein expression pattern with cytoplasmic positive staining of tumor cells. All mages were taken at 10 ×10 magnification on the
Leica DM2000 microscope.
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variation in SNP was C > T (Figure 1C) (McDonald et al., 2013;
Mistry et al., 2018). This was similar to the mutation frequency of
TP53 and IDH1 obtained in the immunohistochemistry of
clinical samples (Table 2; Figure 6). PCA also showed that
there were significant differences in ferroptosis-related genes
between cancer and normal tissues (Supplementary Figure
S3B). This further confirmed the important role of ferroptosis
in glioblastoma.

Clustering analysis is a commonly used method for analyzing
abnormal genome alterations in research (Töpfer et al., 2017;
Adolfsson et al., 2019; Raymaekers and Zamar, 2020). Based on
the expression information of ferroptosis-related genes in cancer
samples, unsupervised clustering analysis was carried out. It was
found that positive correlation was the main trend among
ferroptosis-related genes (Supplementary Figure S3C), which
was rarely mentioned in glioblastoma before. Through survival
analysis of the two clusters obtained by the unsupervised
clustering analysis of cancer samples, it was found that there
was a statistically significant difference in the survival curve
(Supplementary Figure S3D,E); similar differences could also
be seen when GSVA, ssGSEA, and correlation analysis of clinical
characteristics were completed (Figures 2A–H). Further analysis
indicated that 12 types of immune cells had significant effects on
survival (Figure 2C). Those would be helpful for us to use them to
evaluate the clinical survival prognosis (Thomas et al., 2015; Du
Four et al., 2016; Vinuesa et al., 2016; Pellegatta et al., 2018; Bayik
et al., 2020; Han et al., 2020; Lupo and Matosevic, 2020; Xiong
et al., 2020; Zhou et al., 2021; Campian et al., 2022).

After the differential expression analysis of ferroptosis-related
genes in different ferroptosis clusters were carried out, it was
found that the mutation frequency of IDH1 in cluster 2 was
significantly higher than that of cluster 1 (Figures 2G–I), which
further explained the reason for that cluster 2 had better survival
prognosis than cluster 1 (Supplementary Figure S3E). It also
further affirmed the potential prognostic significance of IDH1
mutation in glioblastoma (Nobusawa et al., 2009; Yan et al., 2009;
Molenaar et al., 2014), which was also consistent with our focus
on IDH1 in clinical works (Table 2; Figure 6).

Both Gene Ontology (GO) and KEGG enrichment analyses of
DEGs in ferroptosis clusters suggested that ferroptosis played an
important role at a certain time in the entire process of
glioblastoma (Supplementary Figure S4) (Ma et al., 2019;
Hynes and Naba, 2012; Bryukhovetskiy et al., 2019; Kiyokawa
et al., 2021). Some of them, such as ECM–receptor interaction,
nicotine addiction, and complex of collagen trimers, were rarely
reported in glioblastoma (Bryukhovetskiy et al., 2019), which
might provide some new ideas for further research.
“Ferroptosis.gene.cluster” obtained by clustering analysis based
on DEGs also showed similar prognostic effect as before
(Supplementary Figure S3D,E, and Figure 3). Furthermore,
the differences presented between Ferroptosis.gene.cluster 1
and Ferroptosis.gene.cluster 2 in the DEG heatmap
(Figure 3A) were much more pronounced than previous
clusters (Figure 2I). Statistically significant expression
differences could also be found in most of the
“Ferroptosis.gene.cluster” groups (Figure 3C). This means that
this kind of clustering method may be a much more better

approach to reveal abnormal information in glioblastoma. This
was the basis for the subsequent construction of the risk score
predictive model containing 23 genes. Therefore, we believed that
the 23-gene risk scoring model (CP, EMP1, AKR1C1, FMOD,
MYBPH, IFI30, SRPX2, PDLIM1, MMP19, SPOCD1, FCGBP,
NAMPT, SLC11A1, S100A10, TNC, CSMD3, ATP1A2, CUX2,
GALNT9, TNFAIP6, C15orf48, WSCD2, and CBLN1) constructed
based on this might have a better prognostic prediction efficacy
(Xiao et al., 2021; Yu et al., 2022), which had been verified in the
subsequent analysis results (Figures 4A–G). Also, this prognostic
prediction advantage was particularly evident when it was
depicted in the form of “risk score” in the Sankey diagram
(Figure 4H).

For those 23 genes, 3 (CP, EMP1, and AKR1C1) of them were
found to be reported in ferroptosis-related studies (Yang et al.,
2019; Huang et al., 2021; Huang et al., 2021), while 19 genes (CP,
EMP1, AKR1C1, FMOD, MYBPH, IFI30, SRPX2, PDLIM1,
MMP19, SPOCD1, FCGBP, NAMPT, SLC11A1, S100A10, TNC,
CSMD3, ATP1A2, CUX2, and GALNT9) were previously
reported in glioblastoma. The four tumor-related genes
(TNFAIP6, C15orf48, WSCD2, and CBLN1) were neither
reported in ferroptosis-related reports nor in glioblastoma-
related studies (Wei et al., 2012; Su et al., 2013; Shin et al.,
2020; Bushel et al., 2022), which were first found by us. While
there was not necessarily a causal relationship between related
things, these findings at least provided a range of options for
further investigation. Therefore, the specific roles of these genes
in glioblastoma still needed to be further verified by basic
experiments.

We enrolled 23 genes in this risk score prediction model, which
could minimize the bias in the prediction results due to the
inclusion of too few predictive genes. Subsequent analysis
showed that most of the pathways were negatively correlated
with risk score, while these pathways were positively correlated
with each other (Figure 4I). The risk score of related pathways in
cluster 1 was significantly lower than that in cluster 2, and the
survival probability of cluster 1 was lower, which was consistent
with the results of risk score-related analysis results
(Supplementary Figure S3D–3E Figure 2A, Figure 4, Figures
5A–D). This further verified the consistent trend of our overall
analysis results and the feasibility of the analysis method. In the
follow-up analysis results, it was found that the distribution of risk
score was significantly different among age, IDH1mutation group,
“ferroptosis cluster,” and “Ferroptosis.gene.cluster” (Figure 5E).
This will provide an important reference for comprehensively
judging the prognosis of patients in our clinical work.

Through the correlation analysis between risk score and TMB,
homologous recombination deficiency (HRD), neoantigen load
and chromosomal instability, and mRNAsi (Supplementary
Figure S5), we found that it had a significant correlation with
HRD, HRD_TAI, and HRD_LST, especially with mRNAsi (R =
−0.498), which would help us apply the mRNAsi to single-cell
data to reveal patterns of intratumoral molecular heterogeneity,
leading to a better understanding of glioblastoma (Malta et al.,
2018; Zheng et al., 2021). By analyzing the differences of CNV loci
in the high- and low-risk score groups, it was found that a G-score
of 12q13.3 (mainly including OS9 gene, CDK4 gene, and SAS
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gene) in the low-risk group was higher (Figures 5F,G), which was
considered to be the characteristic locus (Reifenberger et al., 1994;
Rollbrocker et al., 1996). Regardless of grouping, missense
mutations, including PTEN, TP53, EGFR, and TTN, consistent
with former reports and clinical verification (Table 2 and
Figure 6), were still the predominant genomic alteration type
in glioblastoma (Figures 5H,I) (Smith et al., 2001; Ohgaki et al.,
2004; Lee et al., 2006; Binder et al., 2018). Among them, PTEN
had the highest alteration rate in the high-risk score group, while
TP53 had a higher alteration rate in the low-risk score group
(Figures 5H,I).

TIDE and GDSC assays were often used to assess anti-tumor
therapy responses (Wang et al., 2021; Cascio et al., 2021; Cancer
Cell Line Encyclopedia Consortium, 2015). In this study, the
results of these two analyses showed significant differences in
different risk score subgroups (Supplementary Figure S6A–E),
further supporting the feasibility of the risk score model to be
used for the clinical prognostic assessment. Subsequent immune
checkpoint analyses revealed that the expressions of CD274,
CTLA4, PDCD1, and LAG3 in the high-risk group were
significantly higher than those of the low-risk group,
suggesting that the high expression of related genes might be
one of the reasons that affected GBM treatment and prognosis
(Supplementary Figure 6F–I), which was also consistent with
previous reports on the correlation between those four genes and
the glioblastoma prognosis (Andrews et al., 2020; Du et al., 2020;
Yang et al., 2021; Bi et al., 2022; Preddy et al., 2022).

There were three groups of consistent clustering analyses in
this study. The first was the gene clustering analysis for
Ferroptosis gene; the second was the clustering analysis based
on the expression of Ferroptosis gene, named
“Ferroptosis.cluster”; the last was the expression of DEGs
based on Ferroptosis.cluster named “Ferroptosis.gene.cluster.”
The whole process of cluster analysis was also an optimization
process of all the data. Therefore, the consistency of the obtained
results had a better feasibility and reliability. In addition, the data
size of this study was relatively sufficient, and the analysis results
of the verification data were consistent from each other and had a
statistical significance, which might provide a certain reference
for later basic or clinical research in this field.

5 CONCLUSION

In glioblastoma, there were a large number of abnormal
ferroptosis-related alterations, which were significant for the
prognosis of patients. The risk score-predicting model

including 23 ferroptosis-related genes might have a better
predictive significance.
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