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ABSTRACT

Characterizing species diversity and composition of
bacteria hosted by biota is revolutionizing our un-
derstanding of the role of symbiotic interactions
in ecosystems. Determining microbiomes diversity
implies the assignment of individual reads to taxa
by comparison to reference databases. Although
computational methods aimed at identifying the mi-
crobe(s) taxa are available, it is well known that in-
ferences using different methods can vary widely
depending on various biases. In this study, we first
apply and compare different bioinformatics methods
based on 16S ribosomal RNA gene and shotgun se-
quencing to three mock communities of bacteria, of
which the compositions are known. We show that
none of these methods can infer both the true num-
ber of taxa and their abundances. We thus propose
a novel approach, named Core-Kaiju, which com-
bines the power of shotgun metagenomics data with
a more focused marker gene classification method
similar to 16S, but based on emergent statistics of
core protein domain families. We thus test the pro-
posed method on various mock communities and we
show that Core-Kaiju reliably predicts both number
of taxa and abundances. Finally, we apply our method
on human gut samples, showing how Core-Kaiju may
give more accurate ecological characterization and a
fresh view on real microbiomes.

INTRODUCTION

Modern high-throughput genome sequencing techniques
revolutionized ecological studies of microbial communities

at an unprecedented range of taxa and scales (1–5). It is
now possible to massively sequence genomic DNA directly
from incredibly diverse environmental samples (3,6) and
gain novel insights about structure and metabolic functions
of microbial communities.

One major biological question is the inference of the com-
position of a microbial community, that is, the relative abun-
dances of the sampled organisms. In particular, the impact
of microbial diversity and composition for the maintenance
of human health is increasingly recognized (7–10). Indeed,
several studies suggest that the disruption of the normal
microbial community structure, known as dysbiosis, is as-
sociated with diseases ranging from localized gastroentero-
logic disorders (11) to neurologic illnesses (12). However,
it is impossible to define dysbiosis without first establishing
what ‘normal microbial community structure’ means within
the healthy human microbiome. To this purpose, the Hu-
man Microbiome Project has analysed the largest cohort
and set of distinct, clinically relevant body habitats (13),
characterizing the ecology of healthy human-associated mi-
crobial communities. However, there are several critical as-
pects. The study of the structure, function and diversity of
the human microbiome has revealed that even healthy indi-
viduals differ remarkably in the contained species and their
abundances. Much of this diversity remains unexplained, al-
though diet, environment, host genetics and early microbial
exposure have all been implicated. Characterizing a micro-
bial community implies the classification of species/genera
composition within the sampled community, which in turn
requires the assignment of sequencing reads to taxa, usually
by comparison to a reference database. Although compu-
tational methods aimed at identifying the microbe(s) taxa
have an increasingly long history within bioinformatics (14–
16), it is well known that inference based on 16S riboso-
mal RNA (rRNA) or shotgun sequencing vary widely (17).
Moreover, even if data are obtained via the same experimen-
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tal protocol, the usage of different computational methods
or algorithm variants may lead to different results in the
taxonomic classification. The two main experimental ap-
proaches for analyzing the microbiomes are based on 16S
rRNA gene amplicon sequencing and whole genome shot-
gun sequencing (metagenomics).

Sequencing of amplicons from a region of the 16S rRNA
gene is a common approach used to characterize micro-
biomes (18,19) and many analysis tools are available (see
Materials and Methods section). Besides the biases in the
experimental protocol, a major issue with 16S amplicon-
sequencing is the variance of copy numbers of the 16S genes
between different taxa. Therefore, abundances inferred by
read counts of the amplicons should be properly corrected
by taking into account the copy number of the different gen-
era detected in the sample (3,20,21). However, the average
number of 16S rRNA copies is only known for a restricted
selection of bacterial taxa. As a consequence, different algo-
rithms have been proposed to infer from data the copy num-
ber of those taxa for which this information is not available
(18,22).

In contrast, whole genome shotgun sequencing of all the
DNA present in a sample can inform about both diversity
and abundance as well as metabolic functions of the species
in the community (23). The accuracy of shotgun metage-
nomics species classification methods varies widely (24). In
particular, these methods can typically result in a large num-
ber of false positive predictions, depending on the used se-
quence comparison algorithm and its parameters. For ex-
ample in k-mer based methods as Kraken (25) and Kraken2
(26) the choice of k determines sensitivity and precision of
the classification, such that sensitivity increases and preci-
sion decreases with increasing values for k, and vice versa.
As we will show, false positive predictions often need to be
corrected heuristically by removing all taxa with abundance
below a given arbitrary threshold (see Materials and Meth-
ods section for an overview on different algorithms of tax-
onomy classification).

We highlight that the protocols for 16S-amplicons and
shotgun methods are different and each has their own batch
effects. Importantly, while shotgun taxonomic analysis gives
classification results at species-level, 16S taxonomic profil-
ers most often need to stop at the genus level. However, in
the end, both aim at answering to the same question: ‘what
are the relative abundances of taxa in the sample?’ There-
fore, it makes sense methodologically to compare their an-
swers against the same community. To do that, it is possible
to aggregate lower level (e.g. species) counts towards higher
levels (e.g. genus), as it has been done in many benchmarks
studies before (see, e.g. (17,25,27,28)). In fact, several stud-
ies have performed comparisons of taxa inferred from 16S
amplicon and shotgun sequencing data, with samples rang-
ing from humans to studies of water and soil. Logares and
collaborators (29) studied communities of bacteria marine
plankton and found that shotgun approaches had an advan-
tage over amplicons, as they rendered more truthful com-
munity richness and evenness estimates by avoiding PCR bi-
ases, and provided additional functional information. Chan
et al. (30) analyzed thermophilic bacteria in hot spring wa-
ter and found that amplicon and shotgun sequencing al-

lowed for comparable phylum detection, but shotgun se-
quencing failed to detect three phyla. In another study (31)
16S rRNA and shotgun methods were compared in clas-
sifying community bacteria sampled from freshwater. Tax-
onomic composition of each 16S rRNA gene library was
generally similar to its corresponding metagenome at the
phylum l evel. At the genus level, however, there was a large
amount of variation between the 16S rRNA sequences and
the metagenomic contigs, which had a ten-fold resolution
and sensitivity for genus diversity. More recently Jovel et al.
(27) compared bacteria communities from different micro-
biomes (human, mice) and also from mock communities.
They found that shotgun metagenomics offered a greater
potential for identification of strains, which however still re-
mained unsatisfactory. It also allowed increased taxonomic
and functional resolution, as well as the discovery of new
genomes and genes.

While shotgun metagenomics has certain advantages
over amplicon-sequencing, its higher price point is still
prohibitive for many applications. Therefore, amplicon se-
quencing remains the go-to established cost-effective tool
to the taxonomic composition of microbial communities. In
fact, the usage of the 16S rRNA-gene as a universal marker
throughout the entire bacterial kingdom made it easy to col-
lect sequence information from a wide distribution of taxa,
which is yet unmatched by whole genome databases. Several
curated databases exist to date, with SILVA (32,33), Green-
Genes (34,35) and Ribosomal Database Project (RDP)
(36) being the most prominent. Additionally, NCBI also
provides a curated collection of 16S reference sequences
in its Targeted Loci project (https://www.ncbi.nlm.nih.gov/
refseq/targetedloci/).

When benchmarking protocols for taxonomic classifi-
cation from real samples of complex microbiomes, the
‘ground truth’ of the contained taxa and their relative abun-
dances is not known (see (27)). Therefore, the use of mock
communities or simulated datasets remains as basis for
a robust comparative evaluation of a method prediction
accuracy. In the first part of this work, we apply three
widely used taxonomic classifiers for metagenomics, Kaiju
(28), Kraken2 (26) and MetaPhlAn2 (37), and two com-
mon methods for analyzing 16S-amplicon sequencing data,
DADA2 (38) and QIIME2 (39) to three small mock com-
munities of bacteria, of which we know the exact composi-
tion (27). We show that 16S rRNA data efficiently allow to
detect the number of taxa, but not their abundances, while
shotgun metagenomics as Kaiju and Kraken2 give a reli-
able estimate of the most abundant genera, but the nature
of the algorithms makes them predict a very large number
of false-positive taxa.

The central contribution of this work is thus to develop a
method to overcome the above limitations. In particular, we
propose an updated version of Kaiju, which combines the
power of shotgun metagenomics data with a more focused
marker gene classification method, similar to 16S rRNA,
but based on core protein domain families (40–43) from the
PFAM database (44).

Our criterion for choosing the set of marker domain fam-
ilies is that we uncover the existence of a set of core families
that are typically at most present in one or very few copies

https://www.ncbi.nlm.nih.gov/refseq/targetedloci/
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per genome, but together cover uniquely all 8116 bacteria
species in the PFAM database with an overall quite short
sequence. Using presence of these core PFAMs (mostly re-
lated to ribosomal proteins) as a filter criterion allows for
detecting the correct number of taxa in the sample. We
tested our approach in a protocol called ‘Core-Kaiju’ and
show that it has a higher accuracy than other classifica-
tion methods not only on the three small mock communi-
ties, but also on intermediate and highly biodiverse mock
communities designed for the 1st Critical Assessment of
Metagenome Interpretation (CAMI) challenge (45). In fact,
we will show how in all these cases Core-Kaiju overcomes,
for the most part, the problem of false-positive genera and
accurately predicts the abundances of the different detected
taxa. We finally apply our novel pipeline to classify mi-
crobial genera in the human gut from the Human Micro-
biome Project (HMP) (see https://www.hmpdacc.org/hmp/
HM16STR/) dataset, showing how Core-Kajiu may allow
for a more accurate biodiversity characterization of real mi-
crobial communities, thus putting the basis for more solid
analysis in microbiomes.

MATERIALS AND METHODS

Taxonomic classification: amplicon versus whole genome se-
quencing

Many computational tools are available for the analysis of
both amplicon and shotgun sequencing data (25,26,28,37–
39,46).

One of the differences among the several software for 16S
rRNA analysis, is on how the next-generation sequencing
error rate per nucleotide is taken into account, when asso-
ciating each sampled 16S sequence read to taxa. Indeed, er-
rors along the nucleotide sequence could lead to an inaccu-
rate taxon identification and, consequently, to misleading
diversity statistics.

The traditional approach to overcome this problem is to
cluster amplicon sequences into the so-called operational
taxonomic units (OTUs), which are based on an arbitrary
shared similarity threshold usually set up equal to 97% for
classification at the genus level. Of course, in this way, these
approaches lead to a reduction of the phylogenetic resolu-
tion, since gene sequences below the fixed threshold cannot
be distinguished one from the other.

That is why, sometimes, it may be preferable to work with
exact amplicon sequence variants (ASVs), i.e. sequences re-
covered from a high-throughput marker gene analysis after
the removal of spurious sequences generated during PCR
amplification and/or sequencing techniques. The next step
in these approaches is to compare the filtered sequences
with reference libraries as those cited above. In this work, we
chose to conduct the analyses with the following two open-
source platforms: DADA2 (38) and QIIME2 (39). DADA2
is an R-package optimized to process large datasets (from
10s of millions to billions of reads) of amplicon sequencing
data with the aim of inferring the ASVs from one or more
samples. Once the spurious 16S rRNA gene sequences have
been recovered, DADA2 allowed for the comparison with
both SILVA, GreenGenes and RDP libraries. We performed
the analyses for all the three possible choices. QIIME2 is

another widely used bioinformatic platform for the explo-
ration and analysis of microbial data which allows, for the
sequence quality control step, to choose between different
methods. For our comparisons, we performed this step by
using Deblur (47), a novel sub-operational-taxonomic-unit
approach which exploits information on error profiles to re-
cover error-free 16S rRNA sequences from samples.

As shown in (27), where different amplicon sequencing
methods are tested on both simulated and real data and the
results are compared to those obtained with metagenomic
pipelines, the whole genome approach resulted to outper-
form the previous ones in terms of both number of identified
strains, taxonomic and functional resolution and reliability
on estimates of microbial relative abundance distribution in
samples.

Similar comparisons have also been performed with anal-
ogous results in (29,30,46,48) (see (17) for a comprehen-
sive summary of studies comparing different sequencing ap-
proaches and bioinformatic platforms).

Standard widespread taxonomic classification algo-
rithms for metagenomics (e.g. Kraken (25) and Kraken2
(26)) extract all contained k-mers (all the possible strings of
length k that are contained in the whole metagenome) from
the sequencing reads and compare them with index of a
genome database. However, the choice of the length k highly
influences the classification, since, when k is too large, it is
easy not to found a correspondence in reference database,
whereas if k is too small, reads may be wrongly classified.
Recently, a novel approach has been proposed for the clas-
sification of shotgun data based on sequence comparison to
a reference database comprising protein sequences, which
are much more conserved with respect to nucleotide se-
quences (28). Kaiju indexes the reference database using
the Borrows-Wheeler-Transform (BWT), and translated se-
quencing reads are searched in the BWT using maximum
exact matches, optionally allowing for a certain number of
mismatches via a greedy heuristic approach. It has been
shown (28) that Kaiju is able to classify more reads in
real metagenomes than nucleotide-based k −mers methods.
Therefore, previous studies on the community composition
and structure of microbial communities in the human can
be actually very biased by previous metagenomic analysis
that were missing up to 90% of the reconstructed species
(i.e. most of the species they found were not present in the
gene catalog). We therefore chose to work with Kaiju (with
MEM option (28)) for our taxonomic analysis. Although it
resulted to give better estimates of sample biodiversity com-
position with respect to amplicon sequencing techniques,
we found that it generally overestimates the number of gen-
era actually present in our community (see Results section)
of two magnitude orders, i.e. there is a long tail of low abun-
dant false-positive taxa. To overcome this, we implemented
a new release of the program, Core-Kaiju, which contains
an additional preliminary step where reads sequences are
firstly mapped against a newly protein reference library we
created containing the amino-acid sequence of proteomes’
core PFAMs (see following section). We also compared
standard Kaiju and Core-Kaiju results with those obtained
via Kraken2 and via another widely used program for shot-
gun data analysis, MetaPhlAn2 (37,46).

https://www.hmpdacc.org/hmp/HM16STR/
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Characterization of the core PFAM families

After downloading the PFAM database (version 32.0), we
selected only bacterial proteomes and we tabulated the data
into a F × P matrix, where each column represented a dif-
ferent proteome and each row a different protein domain.
In particular, our database consisted of P = 8116 bacterial
proteomes and F = 11 286 protein families. In each matrix
entry (f, p), we inserted the number of times the f family re-
curred in proteins of the p proteome, nf, p. By summing up
over the p column, one can get the proteome length, i.e. the
total number of families of which it is constituted, which we
will denote with lp. Similarly, if we sum up over the f row,
we get the family abundance, i.e. the number of times the f
family appears in the PFAM database, which we call af. Fig-
ure 1 shows the frequency histogram of the proteome sizes
(left panel) and of the family abundances (right panel). Our
primary goal was to find the so-called core families (49), i.e.
the protein domains which are present in the overwhelm-
ing majority of the bacterium proteomes but occurring just
few times in each of them (41,50). In order to analyze the
occurrences of PFAM in proteomes, we converted the orig-
inal F × P matrix into a binary one, giving information on
whether each PFAM was present or not in each proteome.
In the left panel of Figure 2, we inserted the histogram of
the family occurrences, which displays the typical u-shape,
already observed in literature (43,51–53): a huge number of
families are present in only few proteomes (first pick in the
histogram), whilst another smaller peak occurs at large val-
ues, meaning that there are also a percentage of domains
occurring in almost all the proteomes. In the right panel, we
show the plot of the number of rare PFAM (having abun-
dance less or equal to four in each proteome) versus the per-
centage of proteomes in which they have been found. We
thus selected the PFAMs found in more than 90% of the
proteomes and such that max pnf, p = 4 (see Zoom 2 panel
of Figure 2).

Since we wish to have at least one representative core
PFAM for each proteome in the database, we checked
whether with these selected core families we could ‘cover’
all bacteria. Unfortunately, none of them resulted to be
present in proteomes 479430 and 1609106, corresponding
to Actinospica robiniae DSM 44927 and Streptomyces sp.
NRRL B-1568, respectively. We therefore looked for the
most prevalent PFAM(s) present in such proteomes. We
found that PFAM PF08338, occurring in 43% of the pro-
teomes, was present in both Actinospica robiniae and Strep-
tomyces and we therefore add it to our core-PFAM list.
Eventually, in order to minimize the number of PFAMs to
work with (and related computational cost), we considered
in our final core-PFAM list only the minimum number of
domains through which we were able to cover the whole list
of proteomes of the databases. In particular, the selected
core protein domains for bacteria proteomes are the ten
PFAMs PF00453, PF00572, PF01029, PF01649, PF01795,
PF03947, PF08338, PF09285 and PF17136 (see Table 1).

Principal coordinate analysis. In order to explore whether
the expression of the core PFAM protein domains are corre-
lated with taxonomy, we did the following. First, we down-
loaded from the UniProt database (54) the amino acid se-

quence of each PFAM along the different proteomes (see
Supplementary Figures S1 and S2, for details). Their av-
eraged (over proteomes) sequence lengths L resulted to be
highly picked around specific values ranging from L = 46 to
L = 297 (see Supplementary Figure S3, for the correspond-
ing frequency histograms).

Second, for each family we computed the
Damerau−Levenshtein (DL) distance between all its
corresponding DNA sequences. DL measures the edit
distance between two strings in terms of the minimum
number of allowed operations needed to modify one string
to match the other. Such operations include insertions,
deletions/substitutions of single characters and trans-
position of two adjacent characters, which are common
errors occurring during DNA polymerase. This analogy
makes the DL distance a suitable metric for the variation
between protein sequences. By simplicity and to have a
more immediate insight, we conducted the analysis only for
sequence points corresponding to the five most abundant
phyla, i.e. Proteobacteria, Firmicutes, Actinobacteria,
Bacteroidetes and Cyanobacteria.

After computing the DL distance matrices between all
the amino-acid sequences of each PFAMs along proteomes,
we performed the Multi Dimensional Scaling (MDS) or
Principal Coordinate Analysis (PCoA) on the DL distance
matrix. This step allow us to reduce the dimensionality of
the space describing the distances between all pairs of core
PFAMs of the different taxa and visualize it in a two di-
mensional space. In the last two columns of Table 2 we
inserted the percentage of the variance explained by the
first two principal coordinates for the ten different core
families, where the first one ranges from 3.3 to 12.1% and
the second one from 2.4 to 7.7%. We then plotted the se-
quence points into the new principal coordinate space, col-
oring them by phyla. In general, we observed a two-case
scenario. For some families as PF03883 (see Figure 3, left
panel), Actinobacteria and Proteobacteria sequences are
grouped in one or two highly visible clusters each, whereas
the other three phyla do not form well distinguished struc-
tures, being their sequence points close one another, espe-
cially for Cyanobacteria and Firmicutes. For other families
as PF01196 (see Figure 3, left panel), all five phyla result to
be clustered, suggesting a higher correlation between taxon-
omy and amino-acid sequences (see Supplementary Figure
S4, for the other core families graphics). These results sug-
gest that some core families (e.g. ribosomal ones) are phyla
dependent, while other are not directly correlated with taxa.

Mock bacteria communities

We started by testing shotgun versus 16S taxonomic
pipelines on three small artificial bacterial communities
generated by Jovel et al. (27), whose raw data are pub-
licly available (Sequence Read Archive (SRA) portal of
NCBI, accession number SRP059928). These mock pop-
ulations contain DNA from eleven species belonging to
seven genera: Salmonella enterica, Streptococcus pyogenes,
Escherichia coli, Lactobacillus helveticus, Lactobacillus del-
brueckii, Lactobacillus plantarum, Clostridium sordelli, Bac-
teroides thetaiotaomicron, Bacteroides vulgatus, Bifidobac-
terium breve and Bifidobacterium animalis. For the taxo-
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Figure 1. Proteome sizes and families abundances in PFAM database. On the left panel: frequency histogram of proteome lengths lp (total number of
families of which a proteome p is composed). On the right panel: frequency histogram of family abundances, af (number of times a PFAM f appears along
a proteome).

Figure 2. PFAM occurrences along proteomes. On the left panel: frequency histogram of family occurrences (number of proteomes in which a PFAM is
contained). On the right panel: number of families with occurrence at most four versus the percentage of proteomes in which they are contained.

Table 1. Core PFAMs identity number and corresponding function in proteomes

PFAM ID Function

PF00453 Ribosomal protein L20
PF00572 Ribosomal protein L13
PF01029 NusB family (involved in the regulation of rRNA biosynthesis by transcriptional antitermination)
PF01196 Ribosomal protein L17
PF01649 Ribosomal protein S20 (Bacterial ribosomal protein S20 interacts with 16S rRNA)
PF01795 MraW methylase family (SAM dependent methyltransferases)
PF03947 Ribosomal Proteins L2, C-terminal domain
PF08338 Domain of unknown function (DUF1731)
PF09285 EF-P (elongation factor P) translation factor required for efficient peptide bond synthesis on 70S ribosomes
PF17136 Ribosomal proteins 50S L24/mitochondrial 39S L24

nomic analysis at the genus level through 16S amplicon se-
quencing, we evaluated the performance of DADA2 (38)
and QIIME2 pipelines (39). In particular, as shown in (27),
QIIME2 produced more reliable results in terms of rela-
tive abundance of bacteria for all three mock communities
when compared to Mothur (55), another widely used 16S

pipeline, and to the MiSeq Reporter v2.5, a software devel-
oped by Illumina to analyze MiSeq instrument output data.

As for shotgun libraries, we tested the standard Kaiju
(28), Kraken2 (26), the improved version of Kraken (25),
and MetaPhlAn2 (37), the improved version of MetaPhlAn
(46). This latter relies on unique clade-specific marker genes
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Table 2. Prevalence, maximal/total occurrences and principal coordinates of PFAM core families. We inserted, for each core family (PFAM ID, first
column), the percentage of proteomes in which it appears (prevalence, second column), the maximum number of times it occurs in one proteome (maximal
occurrence, third column), the total number of times it is found among proteomes in the PFAM database (total occurrence, fourth column) and the
percentage of variance explained by the firs two coordinates (PCo1 and PCo2, last two columns) when MDS is performed on sequences belonging to the
five most abundant phyla (see Figure 3)

PFAM ID Prevalence Maximal occurrence Total occurrence PCo1 PCo2

PF00453 95% 3 7786 10.6% 6.6%
PF00572 97% 3 7897 5.4% 5.1%
PF01029 96% 4 12991 3.9% 2.4%
PF01196 97% 3 7888 12.1% 5.7%
PF01649 94% 3 7715 6.1% 4.6%
PF01795 96% 4 8113 5.2% 4.9%
PF03947 97% 4 7886 8.2% 7.7%
PF08338 43% 4 4267 3.3% 2.9%
PF09285 96% 4 8585 9.1% 4.9%
PF17136 97% 4 7896 5.4% 4.1%

Figure 3. Phylum-based clustering for PF03883 and PF01196. For MDS analysis, only the sequences associated to the five most-abundant phyla (Pro-
teobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Cyanobacteria) have been considered.

and it had been shown to have higher precision and speed
over other programs (27).

We also used the medium and large complexity mock
bacterial communities from the Critical Assessment of
Metagenome Interpretation (CAMI) project (45) to com-
pare the different shotgun classification methods. CAMI
is a recent community-driven initiative designed to eval-
uate the performance of metagenomic programs by orga-
nizing benchmarking challenges on complex and realistic
microbial data. In particular, in this work we compared
the taxa classification performance of Core-Kaiju, standard
Kaiju and Kraken2 on the high complexity datasets of the
first CAMI challenge (see https://data.cami-challenge.org/
participate), consisting of five Illumina HiSeq microbial
samples of 15 Gbp each with small insert sizes (45).

The Core-Kaiju protocol

After defining the core PFAMs, we created two protein
databases for Kaiju: the first database only contains the pro-
tein sequences from the core families, whereas the second
database is the standard Kaiju database based on the bac-
terial subset of the NCBI NR database. The protocol then
follows these steps:

1. Classify the reads with Kaiju using the database with the
core protein domains.

2. Classify the reads with Kaiju using the NR database to
get the preliminary relative abundances for each genus.

3. Discard from the list of genera detected in (2) those hav-
ing absolute abundance of less than or equal to 20 reads
in the list obtained in point (1). This threshold represents
our confidence level on the sequencing pipeline (see be-
low).

4. Re-normalize the abundances of the genera obtained in
point (3).

RESULTS

Comparison between methods, small mock community
dataset

We evaluated the performance of both shotgun and 16S
pipelines for the taxonomic classification of the three mock
communities. In the top panels of Figure 4, we show the true
relative genus abundance composition of the three small
mock communities versus the ones predicted via the differ-
ent tested taxonomic pipelines.

We then applied the Core-Kaiju pipeline to detect the bio-
diversity composition of the same three mock communities.

https://data.cami-challenge.org/participate
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Figure 4. Comparison between theoretical and predicted relative abundances in small mock communities. Top panels: predicted relative abundance compo-
sition of the three small mock communities via different taxonomic classification methods. Bottom panels: red points represent data of relative abundance
predicted for the genus level by Core-Kaiju on the three mock communities versus the true ones, known a priori. The green line is the linear fit performed
on obtained points which, in the best scenario, should coincide with the quadrant bisector (dotted black line). In all three cases the predicted community
composition was satisfactorily captured by our method, with an R-squared value of 0.97, 0.96 and 0.71, respectively.

In Figure 4, bottom panels, we plot the linear fit performed
on predicted relative abundances via Core-Kaiju versus the-
oretical ones, known a priori. As we can see, in all three
cases the predicted community composition was satisfacto-
rily captured by our method, with an R2 value higher than
0.7.

Our goal was to to quantitatively compare the perfor-
mance of different methods in terms of both biodiversity
and relative abundances. As for the first, we chose to mea-
sure it via the F1 score applied at the genera level. More
precisely, we define the recall of a given taxonomic classifi-
cation method as the number of truly-positive detected gen-
era (present in a community and thus correctly detected by
the method), Tp, over the sum between Tp and Fn, the num-
ber of false-negative genera (present in a community, but
missed to be classified). In contrast, we define the precision
to be the ratio between Tp and the sum of Tp and Fp, the
number of false-positive genera (not present in a commu-
nity and thus incorrectly detected as present). Finally, the
F1 biodiversity score is twice the ratio between the product
of recall and precision and their sum, i.e. F1 = 2Tp/(2Tp +
Fn + Fp). F1 score values obtained via the different meth-
ods for the three analysed mock communities are presented
in Table 3. While F1 describes the overall accuracy in de-
tecting the correct number of genera in the sample, R2 gives

the correlation between the taxa abundance measured by
the pipeline and the real composition of the microbial sam-
ple. Finally, we also indicated the number of genera each
method predicts, Ĝ.

Table 3 summarizes the results of the analysis, together
with the R-squared values, R2, obtained for the linear fit
performed between true and predicted relative abundances.
As we can see, both Core-Kaiju and MetaPhlAn2 gave a
good estimate of the number of genera in the communi-
ties (which is equal to seven), whereas all 16S methods
slightly overestimated it. Moreover, both standard Kaiju
and Kraken2 predicted a number of genera much higher
than the true one. Finally, fit with standard Kaiju and Core-
Kaiju of the predicted abundances displayed a higher de-
termination coefficient with respect to all other pipelines,
with the exception of Kraken2, which gave comparable val-
ues. However, if we focus on the F1 score, we can notice that
Core-Kaiju outperformed all the other methods in terms of
precision and recall. In particular, since the pipeline led to
zero false-positive and only one false negative genus (E. coli
in all three communities), the resulting precision and recall
were 1 and 0.86 for all the sampled mocks. With Core-Kaiju,
we were therefore able to produce a reliable estimate of both
the number of genera within the communities and their rel-
ative abundances.
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Table 3. F1 score, R-squared values and number of predicted genera. For all three analysed mock communities, we inserted the F1 score (twice the ratio
between the product of recall and precision and their sum), the R2 value of the linear fit performed between estimated and true abundances together with
the number of predicted genera, Ĝ, with various taxonomic methods. The true number of genera is G = 7 for each community

Mock 1 (G = 7) Mock 2 (G = 7) Mock 3 (G = 7)

F1 score R2 Ĝ F1 score R2 Ĝ F1 score R2 Ĝ

Shotgun Core-Kaiju 0.92 0.97 6 0.92 0.96 6 0.92 0.71 6
Standard Kaiju 0.02 0.97 674 0.03 0.98 501 0.02 0.94 738
MetaPhlAn2 0.86 0.46 7 0.86 0.60 7 0.86 0.08 7

Kraken2 0.04 0.98 333 0.05 0.99 266 0.04 0.96 378
16S DADA2 + SILVA 0.48 0.59 18 0.41 0.73 22 0.6 0.41 13

DADA2 + GG 0.5 0.45 17 0.43 0.60 21 0.63 0.35 12
DADA2 + RDP 0.48 0.59 18 0.4 0.73 23 0.6 0.41 13

QIIME2 + SILVA 0.21 0.50 41 0.21 0.59 41 0.21 0.43 41
QIIME2 + GG 0.26 0.46 32 0.26 0.50 32 0.25 0.36 33

Relative abundance vs absolute abundance thresholds

As stated in the introduction and observed above, metage-
nomic classification methods, such as Kaiju, often give a
high number of false-positive predictions. In principle, one
could set an arbitrary threshold on the detected relative
abundances, for example 0.1% or 1%, to filter out low-
abundance taxa that are likely false-positives. However, dif-
ferent choices of the threshold typically lead to very differ-
ent results. The top panels of Figure 5 shows the empirical
taxa abundance distribution of the 674 genera detected by
Kaiju in the first small mock community. Such biodiversity
number would decrease to 34, 9 or 7 if one considers only
genera accounting for more than 0.01%, 0.1% and 1% of the
total number of sample reads, respectively. Moreover, look-
ing at the empirical pattern, one can notice the main gap be-
tween genera covering a fraction of <5 × 10−3 with respect
to the total number of reads (black points) and those cov-
ering a fraction higher than 2 × 10−2 (green points), which
corresponds to the genera actually present in the artificial
community. One could therefore hope that, whenever such a
gap is detected in the taxa abundance distribution, this cor-
responds to the one between false-positive and truly present
taxa. However, as will be clear in the following section, this
is not the case and it is not possible to set a relative thresh-
old for the shotgun methods that works for all the mock
communities.

Application to CAMI challenge dataset

We tested and compared standard Kaiju, Kraken 2 and
Core-Kaiju also on medium and high complexity mock bac-
terial communities obtained from the 1st CAMI challenge
(45), in terms of biodiversity (recall, precision, F1 score, Ĝ)
and abundance composition (linear fit R-squared). In Ta-
ble 4, we show the results for samples 1 and 5 of the high-
complexity dataset (see Supplementary Table S1, for the re-
sults of the other samples). As we can see, Core-Kaiju out-
performed the other methods in terms of precision. Indeed,
it only slightly overestimated the true number of genera of
around 10 taxa in sample 1, and 20 taxa in sample 5 (see
Table 4), which is two order of magnitude lower with re-
spect to the other methods (that predicted >1600 of taxa).
On the other hand, as also shown from the bottom panels
of Figure 5, when using in standard Kaiju (or Kracken 2)
a relative threshold of 1% so to reduce the number of false-

positive taxa, as suggested by the previous analysis on the
small mock community, the number of predicted taxa is in
this case ∼30, therefore strongly underestimating the real
biodiversity of the samples.

As for the recall, the performance of Core-Kaiju (val-
ues around 77%) stands between standard Kaiju (values
around 96%) and Kraken2 (values around 65%). The com-
bination of recall and precision led to an F1 score around
74%, much higher than the other two pipelines (13%). Fi-
nally, as shown in Figure 6, Core-Kaiju gave also a very
good estimation of the microbial composition, with an R-
squared for the fit between theoretical and predicted rela-
tive abundances above 0.88, value comparable to standard
Kaiju and much higher than the one obtained with Kraken2
(0.45). In Supplementary Tables S1 to S4 of the Supporting
Information, we present all the results for the other high-
complexity samples as well as the analyses performed on the
medium-complexity challenge dataset and the sensitivity of
the classification on the absolute thresholds.

Application to human gut microbiome

Last, we applied Core-Kaiju to an empirical dataset. We
analysed a cohort of 26 healthy human fecal samples from
the study (56) (metagenomic sequencing data are pub-
licly available at the NCBI SRA under accession number
SRP057027). We applied standard Kaiju and found on av-
erage (over the 26 samples) 2108 bacterial genera. Similar
overestimation of the number of taxa of Kajiu 1.0 would be
obtained also with Kracken 2, highlighting the above men-
tioned problem of setting the correct threshold in order to
have a realistic estimation of the sample biodiversity.

The right panel of Figure 7 shows the empirical taxa
abundance distribution of one individual (sample ID:
SRR2145359). As we can see, in this case the only apparent
gap occurs between relative abundance of <10−1 and those
>0.5, with only one genus. It therefore results quite unre-
alistic that all the taxa but one should be considered false-
positive. The same plot shows the vertical lines correspond-
ing to threshold on relative population of 0.01%, 0.1% and
1% above which we have 97, 32 and 10 taxa, respectively.

In contrast, with Core-Kaiju we did not need to tune
a relative threshold. Instead, by removing false-positive
through the (fixed) absolute abundance of 20 reads we
ended up with 21 genera (orange diamonds in Figure 7),
which is compatible with previous estimates. In fact, the
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Figure 5. Relative vs absolute abundance thresholds for false-positive detection. Top panels: taxa abundance distribution plots for the first mock community
(see Materials and Methods section). Green diamonds are the genera actually present in the artificial community and correctly detected by Core-Kaiju
algorithm. The red triangle corresponds to the unique false-negative genus (E.coli) undetected with the newly proposed method. Dashed lines represent
relative abundance thresholds on standard Kaiju output of 0.01%, 0.1% and 1%, respectively, which would have led to a biodiversity estimate of 34, 9 and 7
genera, respectively. Imposing an absolute abundance threshold of twenty reads on standard Kaiju output directly, would instead lead to an overestimation
of 99 genera. Bottom panels: the same analyses have been performed on the CAMI high-complex sample 1. Again, green diamonds represent the 146 out
of 193 genera present in the community and correctly detected by our pipeline. In this case, in addition to the remaining 47 false-negative genera (red
triangles) we have also the presence of 58 false-negative genera, here represented by gray triangles. Setting a threshold on the relative abundance of reads
produced by standard Kaiju gives a number of genera of 237 for the 0.01%, 120 for the 0.1% and 30 for the 1% threshold, respectively. Left and right panels
represent, respectively, log–log absolute frequency and cumulative patterns of the taxa abundances in the mock communities.

available amplicon-sequencing datasets from stool samples
of healthy participants of the human microbiome project
(1) suggest that there are on average 25 different bacte-
rial genera per sample (based on 174 samples with at least
>5k reads per sample using 97% OTU clustering). However,
in terms of taxa composition, Core-Kaiju predicted abun-
dances are different from those obtained using 16s classifi-
cation methods (1).

DISCUSSION

An important source of errors in the performance of any
algorithm working on shotgun data is the high level of
plasticity of bacterial genomes, due to widespread horizon-
tal transfer (41,57–61). Indeed, most highly abundant gene
families are shared and exchanged across genera, making
them both a confounding factor and a computational bur-

den for algorithms attempting to extract species presence
and abundance information. Thus, while having access to
the sequences from the whole metagenome is very useful
for functional characterization, restriction to a smaller set
of families may be a very good idea when the goal is to iden-
tify the species taxa and their abundance.

To summarize, we have presented a novel method for the
taxonomic classification of microbial communities which
exploits the peculiar advantages of both whole-genome and
16S rRNA pipelines. Indeed, while the first approaches are
recognized to better estimate the relative taxa composition
of samples, the second are much more reliable in predicting
the true biodiversity of a community, since the comparison
between taxa-specific hyper-variable regions of bacterial
16S ribosomal gene and comprehensive reference databases
allows in general to avoid the phenomenon of false-positive
taxa detection. Indeed, the identification of a threshold in
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Table 4. Performance comparison on CAMI high-complexity samples 1 and 5. In the first four columns, we inserted the values for the precision, the recall,
the F1 score, the R2 value of the linear fit performed between estimated and true abundances, and the number of predicted genera Ĝ with Core-Kaiju,
standard Kaiju and Kraken2. The true number of genera is G = 193 for each sample. In the last column we also inserted the number of genera one would
predict with standard Kaiju and Kraken2 by setting a relative threshold of 1%, i.e. by considering false-positive all those genera having a relative abundance
of <0.01 in the sample. We denoted this quantity by Ĝ1%

Sample 1 (G = 193) Sample 5 (G = 193)

Precision Recall F1 score R2 Ĝ Ĝ1% Precision Recall F1 score R2 Ĝ Ĝ1%

Core-Kaiju 0.72 0.76 0.74 0.90 204 −− 0.72 0.79 0.75 0.88 213 –
standard Kaiju 0.07 0.96 0.13 0.92 2652 30 0.07 0.96 0.13 0.89 2660 26
Kraken2 0.07 0.65 0.13 0.45 1715 27 0.07 0.65 0.13 0.45 1697 26

Figure 6. Linear fit between theoretical and predicted relative abundances with Core-Kaiju. Red points represent data of relative abundance predicted
for the genus level by Core-Kaiju on sample 1 and 5 from the CAMI highly-complex dataset versus the ground-truth abundances, known a priori. The
green line is the linear fit performed on such values which, in the case of perfect matching between data and Core-Kaiju output, should coincide with the
quadrant bisector (dotted black line). In both cases, the predicted community composition was satisfactorily captured by our method, with a correlation
with the real taxa abundances of R2 = 0.9 and R2 = 0.88 for sample 1 and 5, respectively.

shotgun methods to remove most of the false-positive is
of course a critical problem, because in general the true
taxa composition is not known, and thus setting the wrong
threshold may lead to a huge over- (or under-) estimation
of the sample biodiversity, as shown in this work.

Inspired by the role of 16S gene as a taxonomic finger-
print and by the knowledge that proteins are more con-
served than DNA sequences, we proposed an updated ver-
sion of Kaiju, an open-source program for the taxonomic
classification of whole-genome high-throughput sequenc-
ing reads where sample metagenomic DNA sequences are
firstly converted into amino-acid sequences and then com-
pared to microbial protein reference databases. We identi-
fied a class of ten domains, here denoted by core PFAMs,
which, analogously to 16S rRNA gene, on one hand are
present in the overwhelming majority of proteomes, there-
fore covering the whole domain of known bacteria, and
which on the other hand occur just few times in each of
them, thus allowing for the creation of a novel reference
database where a fast research can be performed between
sample reads and PFAMs amino-acid sequences. Tested
against mock microbial communities, of different level of
complexity, generated in other studies (27,45) and available
online, the proposed updated version of Kaiju, Core-Kaiju,
outperformed popular 16S rRNA and shotgun methods for

taxonomic classification in the estimation of both the to-
tal biodiversity and taxa relative abundance distribution. In
fact, by fixing an absolute threshold with Core-Kaiju (by
only considering abundances greater to twenty reads), we
are able to correctly classify the biodiversity in all samples
of different size and complexity, while keeping a very good
performance in the prediction of taxa abundances.

We highlight that other microbiome sequencing ap-
proaches exist beyond metagenomics or 16S amplicons on
a MiSeq (integrated instrument performing clonal amplifi-
cation and sequencing), for example PacBio long-read se-
quencing (62). Earl and collaborators (63) used a CAMI
dataset to test the accuracy of this method and it is there-
fore possible to indirectly compare Core-Kaiju with PacBio
through their results. Also in this case we found that our
method gives a slightly higher R2 score for the genera
abundances composition, confirming the competitiveness
of Core-Kaiju even with the long-read sequencing technolo-
gies, such as PacBio. However, a deeper comparison with
these methods goes beyond the scope this work.

Our promising results pave the way for the application of
the newly proposed pipeline in the field of microbiota-host
interactions, a rich and open research field which has re-
cently attracted the attention of the scientific world due to
the hypothesized connection between human microbiome
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Figure 7. Relative vs absolute abundance thresholds in the human gut sample. Taxa abundance distribution plots for a human gut sample of a healthy
individual, where standard Kaiju detects (without any threshold) 2165 genera. In this case the number (and label) of the actual present genera is unknown.
Nevertheless estimates from a reference cohort of stool microbiomes (see https://www.hmpdacc.org/hmp/HM16STR/) from 174 healthy HMP participants
(16S V3–V5 region, >5k reads per sample, 97% OTU clustering), report an average number of genera per sample of 25 (max = 46, min = 9) (1). Setting a
threshold on the relative abundance of reads produced by standard Kaiju gives a number of genera of 97 for the 0.01%, 32 for the 0.1% and 10 for the 1%
threshold, respectively. In contrast, considering false-positive all genera with less or equal to twenty reads in standard Kaiju output, we end up with 625
genera. Orange diamonds in plot correspond to the 21 genera detected with Core-Kaiju, a number compatible with the reported estimates. Left and right
panels represent log–log absolute frequency and cumulative patterns, respectively.

and healthy/disease (64,65). Having a trustable tool for
the detection of microbial biodiversity, as measured by the
number of genera and their abundances, could have a fun-
damental impact in our knowledge of human microbial
communities and could therefore lay the foundations for
the identification of the main ecological properties modu-
lating the healthy or ill status of an individual, which, in
turn, could be of great help in preventing and treating dis-
eases on the basis of the observed patterns.

DATA AVAILABILITY

All data and codes used for this study are available online
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cession number SRP059928. Metagenomic sequencing data
of the healthy human fecal samples from the study (56)
are publicly available at the NCBI SRA under accession
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