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A new approach to separate 
hydrogen from carbon dioxide 
using graphdiyne‑like membrane
Parham Rezaee* & Hamid Reza Naeij

In order to separate a mixture of hydrogen ( H
2
 ) and carbon dioxide ( CO

2
 ) gases, we have proposed 

a new approach employing the graphdiyne-like membrane (GDY-H) using density functional theory 
(DFT) calculations and molecular dynamics (MD) simulations. GDY-H is constructed by removing one-
third diacetylenic ( −C≡C−C≡C− ) bonds linkages and replacing with hydrogen atoms in graphdiyne 
structure. Our DFT calculations exhibit poor selectivity and good permeances for H

2
/CO

2
 gases 

passing through this membrane. To improve the performance of the GDY-H membrane for H
2
/CO

2
 

separation, we have placed two layers of GDY-H adjacent to each other which the distance between 
them is 2 nm. Then, we have inserted 1,3,5-triaminobenzene between two layers. In this approach, 
the selectivity of H

2
/CO

2
 is increased from 5.65 to completely purified H

2
 gas at 300 K. Furthermore, 

GDY-H membrane represents excellent permeance, about 108 gas permeation unit (GPU), for H
2
 

molecule at temperatures above 20 K. The H
2
 permeance is much higher than the value of the usual 

industrial limits. Moreover, our proposed approach shows a good balance between the selectivity and 
permeance parameters for the gas separation which is an essential factor for H

2
 purification and CO

2
 

capture processes in the industry.

Nowadays, H2 energy is considered as one of the best alternatives to fossil fuels because of its natural abundance, 
high energy capacity and zero pollutant transpiration1–4. At the H2 production processes, especially steam-
methane reforming reaction, there are many byproducts such as CO , CO2 , N2 and CH4 which cause undesirable 
influences on the energy content and usage of H2

5. Consequently, developing high-quality and low-cost technolo-
gies to separate H2 from other impurities gases is crucial in the industry6.

Moreover, CO2 is regarded as the main greenhouse gas. It is noteworthy that approximately 80% CO2 emis-
sions come from the burning of fossil fuels7. It is predicted that the concentration of CO2 in the atmosphere 
would increase up to 570 ppm in 2,100 which increases the global temperature of about 1.9 ◦C8. Therefore, CO2 
capture technology will play an important role in climate change and global warming phenomena9–11. On the 
other hand, CO2 capture is a very expensive technology. So, researchers focus on the development of economi-
cal technologies12.

Currently, H2 separation from CO2 and CO2 capture processes have attracted wide attention especially in 
industrial applications. The common traditional gas separation methods are cryogenic distillation and pressure 
swing adsorption13. However, these methods have disadvantages such as complex performance and high energy 
consumption.

So far, many CO2 capture technologies are used based on physisorption–chemisorption14,15, amine dry 
scrubbing16, metal-organic frameworks (MOFs)17,18, porous organic polymers19 and ionic liquids20,21. Recently, 
membrane-based separation methods are widely used for H2 purification and CO2 capture because of low energy 
consumption, low cost of use and simplicity in performance22–25. According to this, various membrane materials 
such as polymeric membranes26, MOFs27, nano-porous materials28 and zeolite membranes29 have been applied 
to gas separation technology.

The selectivity and permeance are two necessary parameters to investigate the performance of the gas separa-
tion membranes. An ideal two-dimensional (2D) membrane would represent a good balance between the selec-
tivity and permeance factors. However, traditional membranes usually have the selectivity-permeance trade-off 
challenge30–32. The permeance is inversely related to the membrane thickness. Hence, one-atom-thick membrane 
could be an excellent candidate for gas separation33.
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In the past decade, the design and construction of appropriate 2D membranes for gas separation have dedi-
cated a lot of attention34–36. Recently, carbon allotropes have been used as the gas separation membranes37–39. 
These structures show many properties such as high mechanical and chemical stability and periodically dis-
tributed uniform pores which make them suitable candidates for the gas separation22,40. Among various carbon 
allotropes, graphdiyne (GDY) is a new 2D carbon allotrope composed of sp and sp2 hybridized carbon atoms 
which can be constructed by replacing some carbon–carbon bonds in graphene with uniformly distributed 
diacetylenic linkages41. This structure was firstly synthesized on the surface of copper using a cross-coupling 
reaction42. Theoretical and experimental studies show that the existence of sp and sp2 hybridized carbon in GDY 
leads to high π-conjunction, wide interplanar spacing, excellent chemical stability, extreme hardness and high 
thermal resistance of this structure43–49. Furthermore, the heat of formation of GDY is reported about 18.3 kcal 
per g-atom C, which makes it to be the most stable carbon allotrope containing diacetylenic linkages50.

Many researches have been done to study the gas separation process through the GDY monolayer membrane 
because of its abundant uniform pores, the size of pores and one-atom thickness. For example, Cranford and 
Buehler studied the influences of temperature and pressure on H2 purification from CO and CH4 in the GDY 
membrane using MD simulations51. Zhang et al. represented that GDY with larger pores shows a high selectivity 
for H2/CH4 , but a relatively low selectivity over small molecules such as CO and N2

52. Jiao et al. based on DFT 
calculations showed that the selectivity of H2 toward CH4 and CO in the GDY monolayer membrane is much 
higher than those of silica and carbon membranes53.

It has been proved that changing the pore size of sp–sp2 hybridized carbon in the GDY by substituting some 
diacetylenic linkages with heteroatoms could be a promising method to improve the performance of the GDY 
monolayer membrane in the gas separation process54. In this regard, Desroches et al. synthesized the GDY-like 
nanoribbons (GDNR) in which one-third diacetylenic linkages of GDNR were substituted with H atoms which 
leads to construct the rhomboidal pores instead of triangular pores55. A nitrogen modified GDY is also investi-
gated concerning its performance for H2 purification from CH4 and CO . This structure shows high performance 
for H2 purification by decreasing H2 diffusion energy barrier22. Moreover, Zhao et al. designed three GDY-like 
monolayer membranes by replacing one-third diacetylenic linkages with three heteroatoms H , F and O (GDY-H, 
GDY-F and GDY-O membranes, respectively) to control the pore size of GDY for separating a mixture of CO2
/N2/CH4 gases. Then, they investigated the separation performance of these membranes using DFT calcula-
tions and MD simulations. Their study showed that the GDY-H membrane exhibits poor selectivity for CO2/N2
/CH4 gases, while the GDY-F and GDY-O membranes can excellently separate CO2 and N2 from CH4 in a wide 
temperature range56.

In the present study, we have proposed a new approach to separate H2 from CO2 using GDY-H monolayer 
membrane which designed by Zhao et al.56. We have calculated the energy barriers of H2 and CO2 gases pass-
ing through GDY-H monolayer membrane using DFT calculations. Then, we have obtained the selectivity and 
permeance of the membrane for H2 and CO2 gases. Furthermore, we have placed two layers of GDY-H adjacent 
to each other which the distance between them is 2 nm. Then, we have inserted 1,3,5-triaminobenzene (1,3,5-
TAB) between two layers. The electron pair of N atoms in this structure can improve CO2 capture process. We 
have performed MD simulations to calculate the selectivity and permeance of the GDY-H membrane for H2 
and CO2 in three cases: monolayer of membrane, two layers of membrane and two layers of membrane in the 
presence of 1,3,5-TAB. Our proposed approach shows high selectivity and excellent permeance for separating 
a mixture of H2/CO2 gases using the GDY-H membrane in the presence of 1,3,5-TAB at different temperatures.

Computational methods
A large 2D sheet 28.34× 28.34 Å2 in xy plane including 240 atoms of C and H is formed to exhibit 2D GDY-H 
monolayer and calculate the energy barrier of the gases diffusing through the membrane and explain the elec-
tron density isosurfaces for the molecules interacting with GDY-H monolayer. Isoelectron density surfaces were 
calculated by the Gaussian 09 program57 at the B3LYP/6–31G(d) level with D3 correction58. These surfaces were 
plotted at isovalues 0.0065 eÅ−3 to describe the interaction between the electron density of the gas and the pore. 
According to this method, we obtain the potential energy curves of a single H2 and CO2 particle when passing 
through the membrane vertically and horizontally. Based on the barrier energy which was obtained by potential 
energy curves, we calculate the selectivity and permeance using kinetic theory of gases in the range of 10–600 
K in our DFT calculations. The equations for calculating permeance and selectivity parameters are explained in 
detail in “Results and discussion” section. In addition, the information of CO2 capture by 1,3,5-TAB was obtained 
at the B3LYP/6–311++G(d,p) level with D3 correction.

We have performed MD simulations to analyze H2 purification using Forcite code in the Material Studio 6.0 
software under canonical (NVT) ensemble condition. The range of temperature, 200–600 K, was controlled by 
the Anderson thermostat. The information of H2 purification and CO2 capture by periodic boundary condi-
tions used in all dimensions. The interatomic interactions between the gases and the carbon-based membranes 
were described by a condensed-phase optimized molecular potential for atomistic simulation studies (COM-
PASS) force field59–62. The cut-off distance of van der Waals interactions was considered as 12.5 Å . We have 
used the Ewald method to investigate the electrostatic interactions. The cubic boxes with the dimensions of 
37.55× 37.55× 37.55 Å3 with 200 1,3,5-TAB molecules and 20 CO2 molecules were considered to study the 
radial distribution function (RDF) for carbon atoms in CO2 and nitrogen atoms in 1,3,5-TAB.

A cubic boxes with the dimensions of 59.0× 49.6× 100.0 Å3 were separated equally along the z-direction 
with pieces of the GDY-H membrane in order to confirm the QM results. Moreover, cubic boxes with the dimen-
sions of 59.0× 49.6× 120.0 Å3 were trisected along the z-direction with two pieces of GDY-H membranes in the 
distance of 2 nm from each other which are placed at the middle of the box and constructed one gas reservoir 
in the first part (the gas mixtures involved 200 H2 and 200 CO2 molecules), the region contains 75 molecules of 
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1,3,5-TAB in the middle and the vacuum region on the top side. The carbon atoms on the edge of the GDY-H 
monolayer were always fixed and all other atoms were fully relaxed (convergence criterion are respectively met: 
1× 10−4 kcalmol−1 for total energy, 5× 10−3 kcalmol−1Å−1 for force and 5× 10−5Å for displacement). The 
total time of simulation was 1000 ps and Newton’s equations were integrated using 1 fs time steps. We have 
proposed this theoretical method to analyze whether the performance of GDY-H monolayer to purify H2 in the 
presence of CO2 molecules increases or not. According to the diffused gas molecules through monolayer at the 
end of the simulation time, we have calculated the selectivity, permeance and the probability density distribution 
in order to evaluate the performance of GDY-H membrane.

Results and discussion
The stability of the membranes for the gas separation process is an important parameter for their experimental 
applications. Zhao et al. confirmed the stability of GDY-H monolayer membrane by calculating cohesive energy 
and phonon dispersion spectra56. Their results showed that the cohesive energy of GDY is 7.24  eV/atom, which 
is consistent with theoretical value 7.65 eV/atom63. Moreover, the cohesive energy of GDY-H membrane is 6.73 
eV/atom56 which is slightly smaller than the value of it for GDY, but is near the α-graphyne membrane 6.93 
eV/atom64 and higher than silicene 3.71 eV/atom65. Therefore, the GDY-H monolayer membrane is strongly 
bonded structure and rather stable enough for its formation and applications. Moreover, this membrane does not 
show imaginary frequency in the calculated phonon dispersion spectra56. It means that the structure of GDY-H 
membrane is located at the minimum point on the potential energy surfaces. These results indicate that GDY-H 
membrane could be constructed in the experiments.

Figure 1 displays the most stable adsorption configurations of CO2 molecule in the presence of 1,3,5-TAB 
molecule. For CO2 molecule, the most stable adsorption sites occurred where C in CO2 placed at distances of 
4.146 and 4.167 Å toward two nearest N atoms (Fig. 1) with the binding energy of 0.52 eV and the C–O bond is 
parallel with C–H bond of the benzene ring in 1,3,5-TAB molecule. Considering entropic penalty, it is expected 
that the binding energy should be greater than 0.5 eV to effectively capture gas molecules on the solid surfaces. 
In the float environment of 1,3,5-TAB, we can show that this molecule demonstrates good behavior for the CO2 
capture66.

Moreover, we performed MD simulation to confirm the results of DFT calculations. We used liquid den-
sity to investigate the validity of a proposed force field. In the present study, our results are compared to the 
experimental data from the other studies. Our results show an appropriate agreement between the predicted 
density from our force field and the experimental data. The experimental value of the density of the 1,3,5-TAB 
is 1.279 cm3/ml at 298.15 K and 1 bar pressure, and the simulated density is 1.246 cm3/ml which is nearly ~ 3% 
lower than the experimental value. Due to the predictive nature of the calculations, it seems that this level of 
agreement is suitable.

The RDF presents information about microstructure considering the nature of interactions as well as the 
arrangement of the molecules and can be defined as69

Figure 1.   Geometry-optimized structure of CO2 gas in the presence of 1,3,5-TAB molecule.
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where −→ri  and −→rj  denote the position vectors of the i th and the j th particles and the bracket denotes the ensemble 
average on the distance between atoms i and j. Moreover, N and V represent the number of particles and volume, 
respectively. Each RDF represents the distance-dependent relative probability for observing a given site or atom 
in relation to some central atom or site. Figure 2 shows the RDF for the N atom of the 1,3,5-TAB with the C and 
O atoms of CO2 molecules. As shown in Fig. 2, a sharp and intense peak in the RDF is seen for C at about 4.05Å . 
Broader peaks at 7.43Å and roughly 11.11Å are also seen. Moreover, a sharp and intense peak in the RDF is 
seen at about 3.73Å , indicating the relatively strong interaction between the 1,3,5-TAB and the CO2 molecules.

In the gas separation membranes, the interaction energy between the gases and the membrane can be defined 
as39

where Egas+sheet , Egas and Esheet are the total energy of the gas molecule adsorbed on the membrane, the energy of 
the isolated gas molecule and the energy of the membrane, respectively. In Fig. 3, the minimum energy pathways 
for H2 and CO2 gases passing through GDY-H membrane are plotted in the distance ±3Å from the center of 
the pore. Since the pore size of the membrane is large, we consider the gases passing horizontally and vertically 
through the membrane. As shown in Fig. 3, the vertical and horizontal situations have minimum energy pathways 
for H2 and CO2 gases, respectively.

We also define the diffusion energy barrier for the gases to investigate the process in which the gases passing 
through the membrane as39

(1)gi,j(r) =
V

NiNj

Ni∑
i=1

Nj∑
j=i+1

�δ(r − |−→ri (t)−−→rj (t)|)�t

(2)Eint = Egas+sheet − (Egas + Esheet)

Figure 2.   Radial distribution functions between N atoms of 1,3,5-TAB and C and O atoms of CO2.

Figure 3.   Minimum energy pathways for H2 and CO2 gases passing horizontally (h) and vertically (v) through 
GDY-H membrane in the distance ±3Å from the center of the pore.
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where Ebarrier , ETS and ESS represent the diffusion energy barrier, the total energy of the gas molecules and the 
pore center of the membrane at the transition state and the steady state, respectively. The kinetic diameters ( D0 ) 
of H2 and CO2 gases are 2.60 and 3.30 Å, respectively and the energy barriers of the gases passing through GDY-H 
membrane are 0.032 and 0.078 eV, respectively.

Furthermore, we have drawn the isoelectron density surfaces at isovalue 0.0065 eÅ−3 in Fig. 4 to investigate 
the electron overlaps between H2 and CO2 molecules passing horizontally and vertically and GDY-H monolayer 
membrane. As shown in Fig. 4, the energy barrier for H2 is very low due to the low electron overlap between H2 
and the membrane. On the other hand, more electron overlap between CO2 molecule and GDY-H membrane 
makes the higher energy barrier for CO2 gas.

As we mentioned before, the performance of the gas separation membranes is evaluated by two factors: 
selectivity and permeance. Here, we investigate these parameters for H2 and CO2 gases passing through GDY-H 
membrane.

We estimate the selectivity of H2 toward CO2 passing through GDY-H membrane using the Arrhenius equa-
tion which is defined as54

where r is the diffusion rate and A is the diffusion prefactor, which is supposed to be the same for all gases 
( A = 1× 1011 S−1)54. Furthermore, E, R and T are the diffusion energy barrier, the molar gas constant and the 
temperature of the gases, respectively.

We have drawn the calculated selectivity of GDY-H membrane for H2 molecule toward CO2 gas at a wide 
range of temperatures (10–600 K) in Fig. 5. Our results show that the selectivity for H2 molecule decreases with 
increasing temperature. Also, the calculated selectivities of H2 toward CO2 for GDY-H membrane and other 
proposed membranes at room temperature (300 K) are compared in Table 1. As is clear, GDY-H membrane 
exhibits poor selectivity for H2 toward CO2 among the other proposed membranes.

The permeance parameter which indicates the separation efficiency is another important factor to characterize 
the performance of a gas separation membrane. So, we study the permeance of GDY-H monolayer membrane 
for separating H2 from CO2.

We use the kinetic theory of the gases and the Maxwell–Boltzmann velocity distribution function to analyze 
the permeances of H2 and CO2 gas molecules passing through GDY-H membrane. We define the number of 
gases colliding with GDY-H sheet as39

(3)Ebarrier = ETS − ESS

(4)Sx/gas =
rx

rgas
=

Axe
−Ex/RT

Agase
−Egas/RT

Figure 4.   Electron density isosurfaces for H2 and CO2 gas molecules passing horizontally (a,c) and vertically 
(b,d) through GDY-H membrane, respectively. The isovalue is 0.0065 eÅ−3.

Table 1.   H2/CO2 selectivities for GDY-H membrane and other proposed membranes at room temperature 
(300 K).

Membrane GDY-H (this work) γ-GYN54
γ-GYH54 Graphenylene67 g-C2O68

Selectivity 5.90 2× 10
1
3 9× 10

1
7 1× 10

1
4 3× 10

3
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where P, M, R and T are the pressure, here, 3× 105 Pa, the molar mass, the molar gas constant and the tempera-
ture of the gases, respectively. The probability of diffusing of a gas molecule through the pore of the membrane 
is defined as

where vB and f(v) denote the velocity and the Maxwell velocity distribution function of the gas particles, 
respectively. The flux of the particles can be expressed as F = N × f  . We suppose that the pressure drop �P is 
1× 105 Pa . Then, we can express the permeance of the gas molecules passing through the GDY-H membrane 
as p = F/�P39.

In Fig. 5, we have drawn the permeance of the H2 and CO2 gases passing through the GDY-H membrane as 
a function of temperature. The red dotted plot exhibits the industrial permeance limit (IPL) for the gas separa-
tion. As shown in Fig. 5, with increasing temperature, the permeance of each gas increases largely, while the 
divergence of permeances between two gases decreases. In other words, by raising the temperature, the kinetic 
energies ( E = 3kBT/2 ) of the gases increases. So, the influence of the energy barrier decreases and the gases 
diffuse through GDY-H membrane more easily. Moreover, it can be concluded that the GDY-H membrane 
shows the permeance of H2 and CO2 gas molecules are much higher than the industrial values at temperatures 
above 20 K and 80 K, respectively. However, GDY-H membrane does not show an appropriate balance between 
the selectivity and permeance factors. Therefore, the performance of GDY-H membrane in the separation of H2 
and CO2 gases is unsuitable.

We now present a new approach to improve the performance of GDY-H membrane for separating a mixture 
of H2 and CO2 gases.

We place two layers of GDY-H adjacent to each other which the distance between them is 2 nm. Then, we 
insert 1,3,5-TAB between two layers which has a lot of N atoms. The electron pair of N atoms in this structure 
can improve CO2 capture process. We use MD simulations to estimate selectivities and permeances of H2 and 
CO2 gases passing through a monolayer of the membrane, two layers of the membrane and two layers of the 
membrane in the presence of 1,3,5-TAB at the temperature range of 200–600 K.

The MD simulated configurations of the gas particles passing through the porous GDY-H membrane at differ-
ent temperatures are shown in Fig. 6. The gas molecules adsorb on the surface of the GDY-H monolayer by van 
der Waals interaction. In the following, they adhere on the surface for a few picoseconds before passing through 
the monolayer, because of the concentration of the gases is different between the gas reservoir (containing H2 
and CO2 ) and the vacuum space.

Based on the MD simulations, one can obtain the numbers of gas molecules passing through the GDY-H 
membranes after 1 ns by counting the number of molecules in the vacuum regions. In this regard, the selectivity 
of gas A toward gas B can be defined as71

(5)N =
P

√
2πMRT

(6)f =
∫ ∞

vB

f (v)dv

(7)SA/B =
xA/xB

yA/yB
=

NA/N0,A

NB/N0,B

Figure 5.   Selectivity of H2/CO2 and permeance of H2 and CO2 gases passing through GDY-H membrane as a 
function of temperature based on DFT calculations. The red dotted plot indicates the industrial permeance limit 
(IPL) for the gas separation process which is 6.7 ×10−9mol m2sPa54.
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where xA(xB) and yA(yB) are the mole fractions of component A (B) in the vacuum regions and the gas reservoir, 
respectively and NA(NB) and N0,A(N0,B) are the corresponding number of molecules A (B).

Furthermore, we can define the permeance of the gases passing through the membrane as72

(8)p =
ν

S × t ×�P

Figure 6.   MD simulated configurations of the H2 and CO2 gas particles passing through the GDY-H 
membrane: (a) monolayer, (b) two layers and (c) two layers of the membrane in the presence of 1,3,5-TAB. The 
height of simulation boxes are 10, 12 and 12 nm, respectively.
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where ν and S represent the mole of the gases which diffused through the membrane and the area of the mem-
brane, respectively. Furthermore, t is the time of simulation (1 ns) and the pressure drop ( �P ) is considered 1 
bar across the pore of GDY-H membrane.

The number of gas molecules passing through the monolayer, two layers and two layers of the GDY-H mem-
brane in the presence of 1,3,5-TAB in the range of 200–600 K where given in Table 2. In all three cases, as the 
temperature enhances, the number of particles passing through the membrane increases. However, for two lay-
ers and two layers of the GDY-H membrane in the presence of 1,3,5-TAB cases, the passing of CO2 gases is very 

Table 2.   Number of the gas molecules passing through the GDY-H membrane in the range of 200–600 K.

Temperature (K)

Monolayer Two layers

Two layers 
with 1,3,5-
TAB

H2 CO2 H2 CO2 H2 CO2

200 94 13 79 1 75 0

300 96 17 92 2 84 0

400 98 23 96 4 88 0

500 106 30 98 5 89 0

600 106 31 101 7 90 1

Table 3.   Selectivity of H2 over CO2 molecules which passing through the GDY-H membrane at the range of 
200–600 K.

Temperature (K) Monolayer Two layers Two layers with 1,3,5-TAB

200 7.23 79.00 ∞
300 5.65 46.00 ∞
400 4.26 24.00 ∞
500 3.53 19.60 ∞
600 3.42 14.43 90.00

Figure 7.   Permeance of H2 and CO2 gases passing through the GDY-H membrane in our proposed approach 
as a function of temperature based on MD simulations. The green and red plots represent the permeances of H2 
and CO2 gases, respectively. The fill plot, dashed plot and dotted plot represent the monolayer, two layers and 
two layers of the membrane in the presence of 1,3,5-TAB, respectively. 1 GPU=3.35 × 10−10 mol/m2sPa70.



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:13549  | https://doi.org/10.1038/s41598-020-69933-9

www.nature.com/scientificreports/

negligible. For the third case, it reaches almost zero. This result shows that the presence of 1,3,5-TAB between 
two layers of GDY-H membrane has been able to capture the CO2 gas.

The selectivity of H2 toward CO2 gases passing through monolayer, two layers and two layers of the GDY-H 
in the presence of 1,3,5-TAB were given in Table 3. As it is clear the selectivity of H2/CO2 is increased in the 
presence of 1,3,5-TAB. Moreover, the permeance of H2 and CO2 molecules in the three cases were drawn in 
Fig. 7. It can be seen that the permeance of H2 and CO2 gases passing through GDY-H membrane is very high 
(about 108 GPU). In addition, the permeance of H2 and CO2 molecules enhances with increasing temperature.

The calculated permeances of H2 for GDY-H membrane in our approach together with that of the previously 
proposed membrane at room temperature are summarized in Table 4. As is clear, our approach shows appropriate 
H2 permeance for the GDY-H membrane in comparison to the other proposed membrane. The size of the pores in 
the GDY-H membrane is large in comparison to the other carbon allotrope membranes which leads to a weaker 
electrostatic and Lennard–Jones interactions between the gas molecules and the membrane. So, the gas separation 
process will be harder. However, the presence of 1,3,5-TAB in our approach facilitated the CO2 capture process 
which leads to improve the selectivity and permeance of the GDY-H membrane. Consequently, our approach 
shows an appropriate balance between selectivity and permeance factors for the separation of H2 and CO2 gases.

Furthermore, the probability density distributions of CO2 gases as a function of distance to GDY-H membrane 
were drawn at different temperatures in Fig. 8. As shown in Fig. 8, in the monolayer case, we conclude that there 
is physical adsorption of CO2 gases on near the membrane. In two layers case, CO2 gases which passed through 
the first layer approach to the second layer and adsorb physically in the near of it. In the third case, the prob-
ability density of CO2 gases is increased which shows that CO2 gases are captured by 1,3,5-TAB. It means that 
there is no physical adsorption for CO2 gases (except a single peak at 600 K). These curves exhibit adsorption 
height for the CO2 gases in the range of 2–3 Å from the GDY-H monolayer at low temperatures which is in good 
agreement with the results obtained by DFT calculations. As the temperature increases, the kinetic energy of 
the gas particles enhances. Consequently, they overcome the adsorption energy and desorbed from the GDY-H 
membrane easily. So, the probability distribution for each CO2 gas decreases at high temperatures.

Conclusion
Recent advances in gas separation technology provide new perspectives for the use of carbon allotropes for the 
development of gas separation membranes. However, one of the main challenges of the most designed carbon 
membranes is the selectivity-permeance trade-off challenge. Therefore, developing new approaches for the gas 
separation process based on carbon allotrope membranes seems essential.

In this work, we proposed a new approach to improve the performance of a GDY-like membrane (GDY-H) 
to separate a mixture of H2 and CO2 gases. This membrane is designed by substituting one-third diacetylenic 
linkages in GDY structure with hydrogen atoms and the stability of it confirmed by Zhao et al.56.

First, regarding the calculated energy barriers for the gases, we investigated the performance of GDY-H 
monolayer membrane for H2 and CO2 separation based on DFT calculations. Our results show poor selectiv-
ity and good permeance for H2 and CO2 gases passing through the membrane. The permeance for H2 and CO2 
gases are much higher than the value of them in the current industrial applications especially at temperatures 
above 20 K and 80 K, respectively. However, this monolayer membrane does not show a good balance between 
the selectivity and permeance factors.

To improve the performance of GDY-H membrane, we placed two layers of GDY-H adjacent to each other 
which the distance between them is 2 nm. Then, we inserted 1,3,5-TAB between two layers which the electron 
pair of N atoms in this structure can improve CO2 capture process. We performed MD simulations to analyze 
the selectivity and permeance of GDY-H membrane in three cases: a monolayer of the membrane, two lay-
ers of the membrane and two layers of the membrane in the presence of 1,3,5-TAB. Our results show that the 
selectivity of H2/CO2 is increased from 5.65 to purified H2 gas in the presence of 1,3,5-TAB at 300 K. Moreover, 
GDY-H membrane exhibits excellent permeances, more than 108 GPU, for H2 and CO2 gases. Consequently, 
this proposed approach represented an appropriate balance between the selectivity and permeance factors for 
H2 and CO2 separation.

We hope our proposed approach will be tested by experimental research groups to study H2 purification and 
CO2 capture processes, which are very crucial technologies in the industry.

Table 4.   H2 permeance of the GDY-H membrane in our approach and other proposed membranes at room 
temperature (300 K).

Membrane
Monolayer (this 
work)

Two layers (this 
work)

Two layers with 
1,3,5-TAB (this 
work) Graphenylene-139

γ-GYN54
γ-GYH54 g-C2O

68

Permeance (GPU) 1.06× 10
8

1.02× 10
8 9.32× 10

7
2.6× 10

7
3.4× 10

7
1.5× 10

7
9.4× 10

6
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Figure 8.   Probability density distribution of the CO2 molecules passing through the GDY-H membrane 
at different temperatures as a function of distance in (a) monolayer, (b) two layers and (c) two layers of the 
membrane in the presence of 1,3,5-TAB.
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