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Background and Purpose:Meningiomas, the most common primary intracranial tumor,
are vascular neoplasms that express somatostatin receptor-2 (SSTR2). The purpose of
this investigation was to evaluate if a relationship exists between tumor vascularity and
SSTR2 expression, which may play a role in meningioma prognostication and clinical
management.

Materials and Methods: Gallium-68-DOTATATE PET/MRI with dynamic contrast-
enhanced (DCE) perfusion was prospectively performed. Clinical and demographic
patient characteristics were recorded. Tumor volumes were segmented and
superimposed onto parametric DCE maps including flux rate constant (Kep), transfer
constant (Ktrans), extravascular volume fraction (Ve), and plasma volume fraction (Vp).
Meningioma PET standardized uptake value (SUV) and SUV ratio to superior sagittal sinus
(SUVRSSS) were recorded. Pearson correlation analyses were performed. In a random
subset, analysis was repeated by a second investigator, and intraclass correlation
coefficients (ICCs) were determined.

Results: Thirty-six patients with 60 meningiomas (20 WHO-1, 27 WHO-2, and 13 WHO-
3) were included. Mean Kep demonstrated a strong significant positive correlation with
SUV (r = 0.84, p < 0.0001) and SUVRSSS (r = 0.81, p < 0.0001). When stratifying by WHO
grade, this correlation persisted in WHO-2 (r = 0.91, p < 0.0001) and WHO-3 (r = 0.92,
p = 0.0029) but not WHO-1 (r = 0.26, p = 0.4, SUVRSSS). ICC was excellent (0.97–0.99).
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Conclusion: DOTATATE PET/MRI demonstrated a strong significant correlation between
tumor vascularity and SSTR2 expression in WHO-2 and WHO-3, but not WHO-1
meningiomas, suggesting biological differences in the relationship between tumor
vascularity and SSTR2 expression in higher-grade meningiomas, the predictive value of
which will be tested in future work.
Keywords: meningioma, somatostatin receptor, DOTATATE, PET/MRI, DCE = dynamic contrast enhanced, DCE
Perfusion MRI
INTRODUCTION

Meningiomas, highly vascular neoplasms arising from the
arachnoid cap cells, are the most common primary intracranial
tumor, accounting for approximately 40% of all primary brain
tumors (1). Various histopathological classification systems have
been utilized for their characterization, with the current 2021
World Health Organization (WHO) classification of central
nervous system (CNS) tumors recognizing 15 distinct
histological subtypes, subdivided into three grades—Grade 1
(benign), Grade 2 (atypical), and Grade 3 (malignant)—relying
largely on mitotic rate, histological, and cytomorphological
criteria (2, 3). Higher grade meningiomas have been reported
to exhibit increased vascularity, likely related to higher levels of
vascular endothelial growth factor (VEGF) and microvessel
density, which are surrogate markers for angiogenesis (4).
However, meningioma vascularity remains a complex topic.
While approximately 80% of meningiomas are considered
benign and managed with observation or curative surgical
resection, a subset of meningiomas demonstrate aggressive
features and may recur or progress despite intervention (5).
Importantly, histopathological WHO criteria has been found to
be a poor predictor of clinical course, as a subset of patients with
grade 2 meningiomas demonstrate a benign course while up to
20% of patients with grade 1 meningiomas experience recurrence
(2, 6). Upon failing surgical and/or radiotherapeutic treatments,
prognosis is often poor with no available effective medical
treatment options, despite numerous clinical trials investigating
the use of medications such as temozolomide, hydroxyurea,
irinotecan, imatinib, erlotinib, gefitinib, bevacizumab, sunitinib,
everolimus, and trabectidin (2).

Surgical resection is the mainstay of treatment for most
meningiomas, with postresection Simpson grade serving as a
strong predictor of outcome (2). Patients with WHO Grade 1
meningiomas typically undergo imaging and clinical
observation, while patients with WHO Grade 3 meningiomas
often undergo postsurgical radiation (RT). However, the use of
RT post-initial resection in WHO Grade 2 meningiomas is
controversial and varies in clinical practice across institutions,
with an overall consensus that RT improves outcomes. Advanced
adjunct imaging modalities are emerging as potential tools for
the management of WHO Grade 2 meningiomas, most notably
the use of [68Ga]-DOTATATE, a positron emission tomography
(PET) radiotracer targeting somatostatin receptor 2 (SSTR2),
which has been immunohistochemically proven to be present on
the cell surface of 79%–100% of meningiomas (7, 8), and other
2

Gallium-68-labeled somatostatin analogs (9, 10). [68Ga]-
DOTATATE binds to SSTR2 on the cell surface of
meningiomas, with high specificity, serving as an imaging
biomarker for the detection of meningiomas. While vascularity
may aid in transporting the radiotracer to its destination,
vascularity in itself would not explain the sustained binding
identified in meningiomas. Additionally, while higher grade
meningiomas have been reported to exhibit increased
vascularity, such a correlation does not exist between WHO
grade and degree of [68Ga]-DOTATATE avidity. [68Ga]-
DOTATATE PET has demonstrated promise in the assessment
of resected/irradiated meningiomas and in the assessment of
treatment-naive meningiomas by allowing for improved
diagnosis and evaluation of extent of disease (11). In addition
to serving as a potential predictive imaging biomarker, SSTR2
may serve as a potential therapeutic target utilizing peptide
receptor radionuclide therapy (PPRT) via 177Lutetium[177Lu]-
DOTATATE. [177Lu]-DOTATATE is currently being
investigated in two prospective clinical studies (NCT03971461
and NCT04082520) for patients with progressive intracranial
meningiomas, serving as a potential novel therapeutic option in
the arena of precision medicine (2, 11).

Dynamic contrast-enhanced MRI (DCE-MRI) is an advanced
imaging modality allowing for in vivo evaluation of tissue
perfusion and blood–brain barrier (BBB) disruption (12, 13).
Perfusion imaging, which may be performed as DCE-MRI or as
dynamic susceptibility contrast (DSC-MRI), is increasingly
utilized in clinical practice for both primary and secondary
brain neoplasms. In the context of meningiomas, perfusion
MRI has been shown to successfully distinguish between lower
and higher grades, guide in the differentiation between
meningiomas and dural-based metastases, provide information
regarding RT response, and provide useful information
regarding peritumoral edema surrounding meningiomas,
indicative of BBB disruption (13–17).

While meningiomas have distinct and often pathognomonic
conventional imaging features (e.g., dural-based, extra-axial,
homogeneous enhancement , dura l ta i l , as soc ia ted
hyperostosis), conventional gadolinium-enhanced MRI has its
limitations, including the inability to reliably distinguish between
meningioma subtypes/grades and challenges discerning
posttreatment change from residual or recurrent disease. In
this study, we sought to investigate whether advanced imaging
modalities may play a role in predicting the biological nature of
meningiomas and/or serving as a predictive imaging biomarker
to guide and optimize clinical management. To that end, we
January 2022 | Volume 11 | Article 820287
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explored the relationship between DCE-perfusion parameters
and [68Ga]-DOTATATE PET/MRI standardized uptake value
(SUV) to determine whether a relationship may exist between
vascularity, as represented by DCE perfusion parameters, and
SSTR2 expression, as represented by [68Ga]-DOTATATE SUV.
MATERIALS AND METHODS

Study Design
In this institutional review board-approved prospective study,
patients with clinically suspected or histologically proven
meningioma were enrolled as part of our active clinical trial and
underwent [68Ga]-DOTATATE PET/MRI with DCE perfusion
between August 2018 and April 2021. Patient exclusion criteria
included contraindications to gadolinium-based contrast agents, a
history of an allergic reaction to [68Ga]-DOTATATE, and
pregnancy. Patients with histologically proven and/or with one
histologically proven and additional suspected meningioma(s) on
the basis of conventional MRI and measuring ≥1 cm in size in at
least one dimension were included. In patients with multiple
meningiomas, WHO grade of the histologically proven
meningioma was assumed for all meningiomas present (18).
[68Ga]-DOTATATE has been widely used in the diagnosis,
staging, and treatment management of neuroendocrine tumors
with a favorable safety profile (19), including lack of significant
toxicity, lower radiation exposure, and improved accuracy
compared to indium-111-pentetreotide (19).

Imaging
All patients underwent gadolinium-enhanced MR imaging of the
brain on a 3-Tesla clinical scanner (Biograph mMR, Siemens
Healthcare, Erlangen, Germany), which included 3‐dimensional
T1 SPACE (TR/TE, 600–700 ms/11–19 ms, 120°C flip, 1 mm
slice thickness), and 3‐dimensional T2 FLAIR (TR/TE, 6,300–
8,500 ms/394–446 ms, 120°C flip, 1 mm slice thickness). T1‐
Frontiers in Oncology | www.frontiersin.org 3
weighted DCE perfusion MRI was performed and available for
all patients (TR = 4 ms; TE = 1–2 ms; flip angle, 13°C; slice
thickness, 3 mm; 44 slices to cover the entire lesion volume; 24
phases with 4 phases before and 20 phases after intravenous
bolus administration of 0.1 ml/kg gadobutrol).

PET acquisition was performed in dynamic 3D list mode for a
total of 60 min starting simultaneously with [68Ga]-DOTATATE
injection and concurrent with the above-described MR
sequences. Absolute maximum SUV was extracted for each
lesion, and SUV of the superior sagittal sinus (SSS), serving as
background blood pool for normalization purposes based on
previously published methodology (11).

DCE Perfusion Analysis
DCE perfusion analysis was performed using Olea Sphere Medical
3.0-SP22 software (Olea Medical, La Ciotat, France). For each
imaging study, a single investigator (MR) created a volume of
interest (VOI) encompassing the meningioma utilizing the
postcontrast T1-weighted sequence with intermittent guidance of
the fusedMRI/PET scan (e.g., in caseswhere conventionalMRIwas
difficult to discern residual meningioma from adjacent dura), as
shown as in Figure 1. The following Extended Tofts model DCE
perfusion parameters were derived and analyzed from each VOI:
flux rate constant (Kep), transfer constant (Ktrans), volume fraction
of the extravascular extracellular space (Ve) in the tissue, and
volume fraction of plasma in the tissue (Vp) (Figure 2). Briefly,
theseparameters arebasedupona two-compartmentmodel and the
principle that intravenously injected contrast agent leaks from the
intravascular space (IVS; compartment 1) into the EVS
(compartment 2), and whether or not the tracer is freely
diffusible. The rate of contrast exchange between these two
compartments are described using transfer rate constants,
including Ktrans (forward volume transfer constant), Kep (flux
rate constant between EES and IVS),Ve (extracellular extravascular
volume fraction whereby Ve = Ktrans/Kep), and Vp (plasma per
unit volume of tissue).
FIGURE 1 | Example of VOI segmentation for DCE analysis in a 56-year-old man with WHO-2 right parietal meningioma post prior surgical resection and RT.
Gadolinium-enhanced axial T1-weighted MRI (A), static 68-Gallium-DOTATATE PET image (B), and fused axial PET/MR (C) demonstrate extra-axial homogeneously
enhancing soft tissue with corresponding 68-Gallium-DOTATATE avidity (arrows), compatible with residual/recurrent meningioma. Gadolinium-enhanced axial T1-
weighted MRI with volume of interest (D) is shown, corresponding to region of suspected residual/recurrent meningioma.
January 2022 | Volume 11 | Article 820287
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In a randomly selected sample of eight meningiomas,
volumetric segmentation and DCE perfusion analysis was
repeated by a second investigator (SG).

Statistical Analysis
Statistical analysis was performed using R version 4.0.5 (R
Foundation for Statistical Computing, Vienna, Austria).
Pearson correlation coefficient was calculated to identify
whether a statistically significant correlation existed between
DCE permeability parameters and [68Ga]-DOTATATE SUV.
Intraclass correlation coefficient (ICC) was determined to
assess interrater reliability between the two investigators.
RESULTS

Study cohort demographics are described in Table 1. This
prospective study included 36 patients, with mean age of 53.6
years (range, 21–83; standard deviation, 14.8 years), of whom 61%
(22 of 36) were female. A total of 60 meningiomas (20 WHO-1,
27 WHO-2, and 13 WHO-3) with average tumor volume of 2.3 cc
(range, 0.04–26.11 cc; standard deviation, 4.25 cc) were included
in this analysis. Of the 60 meningiomas included in our study,
30% (18/60) were located in the skull base. Of the 60 lesions in the
cohort, 43 lesions were considered pathology-proven (72%).

Kep demonstrated a strong significant positive correlation
with [68Ga]-DOTATATE SUV (r = 0.84, p < 0.0001), which
remained robust when normalized to background blood pool SSS
SUV (SUVRSSS) (r = 0.81, p < 0.0001). When stratifying by
Frontiers in Oncology | www.frontiersin.org 4
WHO Grade, this strong significant positive correlation only
existed in WHO-2 (r = 0.91, p < 0.0001; SUVRSSS, r = 0.91, p <
0.0001) and WHO-3 (r = 0.92, p = 0.0029; SUVRSSS, r = 0.82, p =
0.023) but did not exist with WHO-1 (r = 0.26, p = 0.4; SUVRSSS,
r = 0.22, p = 0.46).

Ktrans demonstrated a moderate significant positive
correlation with [68Ga]-DOTATATE SUV (r = 0.39, p =
0.019), which did not remain statistically significant with
SUVRSSS (r = 0.28, p = 0.11), and did not remain statistically
significant when stratifying by WHO Grade.

When analyzing separately only lesions located in the skull
base [30% (18/60)], there remained a strong positive significant
correlation between Kep and SUV (r = 0.91, p < 0.0001) and a
moderate positive significant correlation between Ktrans and
SUV (r = 0.50, p = 0.04).

When analyzing separately only the pathology proven lesions
[72% (43/60)], there remained a strong positive significant
correlation between Kep and SUV (r = 0.72, p < 0.0001) and a
moderate positive significant correlation between Ktrans and
SUV (r = 0.49, p = 0.0009).

No other statistically significant correlation existed between
[68Ga]-DOTATATE SUV and Vp, Ve, and Ktrans. All
correlations are reported in Tables 2, 3 and Figure 3.

The intraclass correlation coefficients (ICCs) for perfusion
parameters Kep, Vp, and Ve were excellent: 0.998, 0.990 and
0.992, respectively. The ICC for Ktrans was unable to be
calculated, and, upon directed review, an error was detected in
the sampling of one meningioma resulting in an outlier data
point for that measurement by one of the two readers. Upon
FIGURE 2 | 68-Gallium-DOTATATE PET and DCE Perfusion MRI images in a 68-year-old woman with WHO-1 left anterior temporal convexity meningioma post
prior surgical resection and RT. Axial T1-weighted (A), gadolinium-enhanced axial T1-weighted (B), static 68-Gallium-DOTATATE PET image (C), axial PET/MR
fusion image (D), Kep parametric map (E), Ve parametric map (F), Ktrans parametric map (G), and Vp parametric map demonstrates extra-axial homogeneously
enhancing soft tissue with corresponding 68-Gallium-DOTATATE avidity [(D), with SUV measured along the left anterior temporal convexity] and abnormal perfusion
parametric maps (E–H), corresponding to region of suspected residual/recurrent meningioma.
January 2022 | Volume 11 | Article 820287
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exclusion of that data point, the ICC for Ktrans was also found to
be excellent: 0.967. There was only a moderate reliability of
assessed tumor volume, 0.742.
DISCUSSION

Dynamic contrast-enhanced MRI utilizes the acquisition of
multiple serial images before, during, and after a bolus
of low-molecular weight gadolinium contrast media,
which allows for the determination of measurements of
enhancement as a function of time (12, 20). Intravenously
injected contrast material passes from the arteries to the
tissue microvasculature and extravasates within seconds to the
extravascular extracellular space (EES), or leakage space,
resulting in shortening of the local relaxation time. DCE-MRI
subsequently uses this T1 shortening (i.e., high signal or
Frontiers in Oncology | www.frontiersin.org 5
enhancement on T1-weighted sequence) to detect areas of
BBB disruption. The ability to assess contrast agent
extravasation, or vessel leakiness, is complex and relies on
several factors, most notably blood flow. Therefore, the signal
measured with DCE-MRI, particularly when using a sufficiently
long acquisition time, reflects both perfusion and permeability
and DCE-MRI can be impacted by alterations in vascular
permeability, blood flow, and EES. Perfusion imaging may
alternatively be performed with DSC-MRI, relying on T2*-
weighted gradient-echo echo-planar imaging, which has
several theoretical differences and a number of advantages,
including faster acquisition, higher temporal resolution,
and the ability to determine relative cerebral blood volume
(rCBV), a widely used variable to assess tumor vascularity and
grade (21).

A number of complex pharmacokinetic models have been
proposed including Tofts et al. (22), Brix et al. (23), and Larsson
et al. (24), many of which rely on a two-compartment model
and the principle that intravenously injected contrast agent
leaks from the intravascular space (IVS; compartment 1) into
the EVS (compartment 2), and whether or not the tracer is
freely diffusible. Most pharmacokinetic models determine the
rate of contrast exchange between these two compartments
using transfer rate constants, including Ktrans (forward
volume transfer constant), Kep (flux rate constant between
EES and IVS), Ve (extracellular extravascular volume fraction
whereby Ve = Ktrans/Kep), and Vp (plasma per unit volume
of tissue).

An initial model of BBB permeability was developed by Tofts
et al., ignoring the contribution of plasma to total tissue
concentration and consequently only applicable in normal brain
T

D

K

K

V

V

D

K

K
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V

TABLE 2 | SUV and DCE parameters.

SUV Lesion 25.06 (4.2–111.8; STD: 21.39)

SUV SSS 1.47 (0.6–2.5; STD: 0.5)
SUVRSSS (SUV lesion/SSS) 18.55 (1.2–136.1; STD: 21.9)
Kep 3.18 (0.40–16.33; STD: 3.16)
Ktrans 1.68 (0.21–7.85; STD: 1.60)
Vp 0.10 (.0009–0.47; STD: 0.11)
Ve 0.56 (.091–0.99; STD: 0.21)
TABLE 1 | Clinical characteristics of the patient population.

N Patients 36

Age 53.6 (21–83; STD: 14.8)
Sex 61% F (22/36)
N meningiomas identified on PET 60
Tumor volume 2.3 (.04–26.11; STD: 4.25)
N meningiomas per patient 1 meningioma: 63.9% (24/36)

33% (8/24) WHO Grade 1
42% (10/24) WHO Grade 2
25% (6/24) WHO Grade 3
2-3 meningiomas: 25% (9/36)
56% (5/9) WHO Grade 1
33% (3/9) WHO Grade 2
11% (1/9) WHO Grade 3
≥4 meningiomas: 11.1% (3/36)
0% (0/3) WHO Grade 1
67% (2/3) WHO Grade 2
33% (1/3) WHO Grade 3
Median:1 meningioma per patient

WHO grade 0% (0/36) WHO grade unknown
36% (13/36) WHO grade 1
42% (15/36) WHO grade 2
22% (8/36) WHO grade 3

Surgical history 94% (34/36)
Time from surgery to PET 26.5 months (1.4–118 months)
Prior radiation history 50% (18/36)
Prior radiation type 56% (10/18) SRS

17% (3/18) gamma knife
22% (4/18) proton
6% (1/18) IMRT

Time from prior radiation to PET 31.6 months (0.26–205 months)
Radiation dose 41.5 Gy (5–123)
ABLE 3 | SUV Correlations.

CE Parameter to SUV R p-value

ep WHO Grade 1 0.26 0.4
WHO Grade 2 0.91 < 0.001
WHO Grade 3 0.92 < 0.01

trans WHO Grade 1 0.43 0.14
WHO Grade 2 0.40 0.14
WHO Grade 3 0.62 0.13

p WHO Grade 1 -0.15 0.61
WHO Grade 2 0.2 0.47
WHO Grade 3 0.48 0.28

e WHO Grade 1 0.21 0.49
WHO Grade 2 0.13 0.64
WHO Grade 3 -0.47 0.28

CE Parameters to SUVRSSS

ep WHO Grade 1 0.22 0.46
WHO Grade 2 0.91 < 0.001
WHO Grade 3 0.82 0.02

trans WHO Grade 1 0.23 0.45
WHO Grade 2 0.4 0.14
WHO Grade 3 0.46 0.3

p WHO Grade 1 .0012 1
WHO Grade 2 0.21 0.44
WHO Grade 3 0.55 0.2

e WHO Grade 1 -0.028 0.93
WHO Grade 2 0.17 0.55
WHO Grade 3 -0.32 0.48
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tissue with an intact BBB. A subsequent model, the Extended Tofts
model, incorporates the vascular contribution to signal intensity and
is more commonly used in tumor applications, including in this
analysis (25). While quantitative DCE-MRI measurements and
parametric maps are increasingly used for diagnostic purposes, it
is critical to understand the complexity of these measurements and
the numerous variables that affect their results, including the arterial
input function (AIF; i.e., measured concentration in an artery) and
physiological factors (e.g., changes in cardiac output), for which
determination of consistent and accurate data, both in the clinical
and research settings, may be a challenge. Of note, the data
presented in this analysis demonstrated an excellent ICC across
the assessed parameters. The assessed tumor volume demonstrated
only moderate reliability, suggesting robust DCE analysis results
even with varying sampled volume. Therefore, the consistency of
data obtained by two independent observers supports the accuracy
of the results presented.

Prior immunohistochemical analyses investigating the
relationship of vascularity in meningiomas identified a significant
upregulation of VEGF-A in WHO Grade III as compared to WHO
Grade II tumors (26). In this radiological analysis, the only perfusion
parameter to demonstrate statistical significance with [68Ga]-
DOTATATE SUV was Kep, a parameter infrequently used in
clinical practice but often described in the literature. Awasthi et al.
investigatedwhether an associationmay exist in glioblastoma (GBM)
betweenDCE-MRIparameters and tissuematrixmetalloproteinase9
Frontiers in Oncology | www.frontiersin.org 6
(MMP-9) expression, with MMPs known to be responsible for
targeting the extracellular matrix and contributing to BBB
permeability and angiogenesis/neovascularization of glial tumors.
In their study, they determined that MMP-9 expression was best
estimated by Kep, of all perfusion parameters, and demonstrated an
association with survival, suggesting Kep as a potential imaging
biomarker of GBM progression and its prognostication (27).

It is important to note, however, that GBM are intra-axial in
location while meningiomas are extra-axial in location, raising the
question as to whether tumor origin impacts the interpretation of
DCE-MRI findings. Physiological extreme vessel leakiness is
observed with both tumor types—in GBM due to BBB
destruction of preexisting vessels and faulty BBB in angiogenic
tumoral vessels, while in meningiomas due to their highly vascular
nature and inherent absence of a BBB given their extra-axial
location (21). Cha et al. compared DCE-MRI and DSC-MRI
microvascular permeability measurement Ktrans in gliomas and
meningiomas, observing that Ktrans could distinguish between
higher- and lower-grade gliomas, although correlated poorly in
meningiomas (21). However, Chidambaram et al. investigated
DCE-MRI in meningiomas treated with resection and adjuvant
radiosurgery, revealing a moderately positive correlation with
Ktrans and time to progression, approaching but not reaching
statistical significance, which supports a role of DCE-MRI as a
biomarker in meningioma diagnosis, treatment planning, and
predicting clinical outcomes (13).
A B

DC

FIGURE 3 | Scatterplots depicting the correlation between 68-Gallium-DOTATATE PET SUV and DCE perfusion parameters Ve (A), Kep (B), Ktrans (C), and Vp (D).
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A study evaluating DSC-MRI characteristics of meningiomas
compared to dural-based metastases by Lui et al. identified relative
wash-in time, a metric describing the wash-in phase of perfusion,
to be lower in metastases as compared tomeningiomas. This study
also investigated the use of rCBV, a metric that is frequently used
to assess tumor vascularity and grade, in the distinction of
meningioma from dural-based metastases. However, in
distinction to other reports describing the utility of rCBV for
extra-axial lesions, the use of rCBV was found to be limited within
this patient cohort (28). While many of the aforementioned
studies utilized DSC-MRI and did not specifically investigate the
perfusion parameter Kep, the overarching theme among these
studies is in support of the potential role and added value of
perfusion imaging for the assessment of meningiomas.

The significance of Kep with respect to other tumor types has
been previously described in the literature. For example, Kep
has been shown to negatively correlate with histological vessel
maturity in breast cancer osseous metastases (29), positively
correlate with Ki67 and p53- and triple negative status in breast
cancers (30), positively correlate with invasive ductal carcinoma
tumor size (31), and positively correlate with microvessel
density (32) and PTEN expression in prostate cancer (33).
Kep has also been shown to effectively differentiate between
benign and malignant soft tissue tumors (34) and demonstrate a
significant positive correlation with serum angiogenesis-related
biomarkers and advanced tumor stage in patients with non-
small cell lung cancer (35). The relationship between Kep and
SSTR2A expression in higher grade meningiomas may be of
significance in the treatment planning and response assessment
of meningiomas. To this end, bevacizumab, a monoclonal
antibody targeting vascular endothelial growth factor (VEGF),
has been used in meningioma off label with reports of improved
overall PFS (36). The mechanism of action may be related to
decrease in vascularity and associated decrease in SSTR2A
expression, which may serve as a clinical response biomarker.
The identified correlation between DCE-MRI perfusion
parameter Kep and [68Ga]-DOTATATE SUV in higher grade
meningiomas suggests underlying biological differences in the
relationship between tumor vascularity and SSTR2 expression,
perhaps related to biomarkers of angiogenesis, such as VEGF
and microvessel density. This may be of importance given
ongoing efforts to apply peptide receptor radionuclide therapy
(PPRT) with 177Lutetium[177Lu]-DOTATATE in meningioma,
which has been reported to have modest effects in small pilot
cohorts and individual cases (2, 37, 38). To that end, PRRT with
[177Lu]-DOTATATE in gastrointestinal neuroendocrine
tumors metastatic to the liver was recently shown to have
improved dosimetry with intra-arterial interventional
radiology-guided administration compared to systemic
intravenous administration (39). Conceivably, the correlation
between perfusion metrics and [68Ga]-DOTATATE PET SUV
may thus play a role when determining patients for clinical
trials incorporating PRRT who are most likely to benefit. The
relationship between Kep and SUV may also be clinically
relevant to other therapeutic options that specifically address
tumor vascularity.
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A limitation of this study is the relatively small sample size,
with 36 patients with 60 meningiomas. Additionally, in patients
with multiple meningiomas and WHO grade documented for
one meningioma, the assumption was made for the additional
unresected lesions to have the same WHO grade, as previously
published (18). While this approach has previously been
validated, there remains the theoretical possibility for
heterogeneity of WHO grades in patients with multiple
meningiomas. While this study only included meningiomas
measuring ≥1 cm in at least one dimension, some of the
sampled tumor volumes were relatively low, which raises the
possibility of partial volume averaging effects in these smaller
sampled volumes. Furthermore, 50% (18/36) of meningiomas
within this cohort had received prior RT, potentially serving as a
confounder for our data correlating vascularity with [68Ga]-
DOTATATE avidity. Future work assessing this correlation in
treatment-naive meningiomas is warranted. Additionally, future
immunohistochemical investigation utilizing SSTR2 stains and
those investigating vascularity on resected tumor samples can
assist in supporting the results of this study. Finally, future work
evaluating the cost effectiveness of utilizing [68Ga]-DOTATATE
PET in meningioma management will be important, as this
approach may ultimately reduce costs related to decreased
complications from RT and has the potential to improve
progression-free survival by improving targeted radiation dose
delivery in patients with small volume residual disease (7).
CONCLUSIONS

In this study, we found a strong, significant correlation between
the DCE-MRI perfusion parameter Kep and [68Ga]-DOTATATE
SUV in WHOGrade 2/3 meningiomas, which suggests biological
differences in the relationship between tumor vascularity and
SSTR2 expression in higher-grade meningiomas. Our findings
may have pathophysiological implications for clinical
management of patients with meningiomas. Future work to
understand the potential prognostic role of combined
DOTATATE PET and DCE MRI in meningioma treatment
planning and response assessment is warranted.
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