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Simple Summary: The clinical relevance of vascular calcifications has increased in recent years, given
the aging of the population and increased exposure to risk factors. Tissue calcification is often a point
of no return that leaves no room for any medical therapy and limits the possibility of surgical and
interventional treatments—a real insurmountable barrier. The diffusion of cardiac imaging methods
has made the recognition of cardiac calcifications, at various levels and of variable extent, more and
more frequent. The pathogenesis of calcifications is not unique but includes different mechanisms,
depending on the specific site and disease, which, in turn, results in different phenotypes. Unfor-
tunately, however, clinicians are not always aware of these different mechanisms and phenotypes.
This concise, but in-depth, review explores the different molecular processes and their links with the
specific clinical condition, and current therapeutic approaches to counteract calcifications.

Abstract: There is a growing interest in arterial and heart valve calcifications, as these contribute to
cardiovascular outcome, and are leading predictors of cardiovascular and kidney diseases. Cardio-
vascular calcifications are often considered as one disease, but, in effect, they represent multifaced
disorders, occurring in different milieus and biological phenotypes, following different pathways.
Herein, we explore each different molecular process, its relative link with the specific clinical condi-
tion, and the current therapeutic approaches to counteract calcifications. Thus, first, we explore the
peculiarities between vascular and valvular calcium deposition, as this occurs in different tissues,
responds differently to shear stress, has specific etiology and time courses to calcification. Then, we
differentiate the mechanisms and pathways leading to hyperphosphatemic calcification, typical of
the media layer of the vessel and mainly related to chronic kidney diseases, to those of inflammation,
typical of the intima vascular calcification, which predominantly occur in atherosclerotic vascular
diseases. Finally, we examine calcifications secondary to rheumatic valve disease or other bacterial
lesions and those occurring in autoimmune diseases. The underlying clinical conditions of each of
the biological calcification phenotypes and the specific opportunities of therapeutic intervention are
also considered and discussed.

Keywords: hyperphosphatemic calcification; vascular calcification; valvular calcification; inflammatory
calcification; extracellular vesicles; Notch

1. Introduction

Cardiovascular (CV) calcification is a growing research topic in cardiology, mainly
because the deposition of calcium salts is associated with major CV diseases, such as
atherosclerosis, valvular diseases, and several hypertrophic cardiomyopathies. Recently,
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coronary artery calcium measurements have been proposed as the most accurate means for
screening or risk assessment for atherosclerotic CV disease [1].

Calcifications can involve arteries and heart valves, causing stiffness and dysfunction
and, less frequently, the myocardium, causing fibrosis, conduction defects, and pericarditis.
Figure 1 schematizes the most common pathological calcifications within the heart and the
vascular system, the two most relevant being vascular and valvular calcifications. Although
sharing risk factors and similar molecular pathways, vascular and valvular calcifications
occur in different tissues, react to different stimuli, and represent two distinct biological
phenotypes [2].
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vascular system.

Differences also exist within the vascular calcifications related to whether calcium
deposition occurs mainly in the intimal or medial layer of the arterial wall.

This article summarizes the intracellular processes and pathways controlling hy-
perphosphatemic calcification, occurring mainly in the media layer of the vessels, and
the intima vascular calcification, which is predominantly linked to inflammation. The
specific mechanisms of both processes are analyzed in the two most relevant districts,
namely, in the arterial wall and the aortic valve. The molecular mechanisms leading to
rarer calcification, in response to infections and autoimmune diseases, are also examined.
Finally, we consider the different pathophysiological phenotypes in light of the clinical
conditions associated with each phenotype, the eventual predictive value, and possible
therapeutical implications.

2. Diversity in Vascular Versus Valvular Calcification

Although these calcifications share several routes and risk factors, not all patients with
calcific aortic stenosis (CAS) present significant coronary artery diseases (CAD), which
occur in only 25–40% of CAS cases. This suggests different pathways for the two types of
calcifications, which diverge in several aspects.

Firstly, the sites of calcification are different. The valve is a complex tri-layered
structure, consisting of collagen, elastin, and proteoglycans, instead of the vasculature’s
simple collagen and elastin-rich layer. The valvular leaflets are arranged in three layers:
fibrosa, spongiosa, and ventricularis. The leaflets of both the aortic and ventricular surfaces
are covered by endothelium. Each of these layers has a distinct structure and function.
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The fibrosa, made of connective tissue, provides the strength of the leaflet. The spongiosa,
made of mucopolysaccharides, facilitates the movement of the valve. The ventricularis,
made of elastin, contributes to its flexibility, allowing for changes in shape during opening
and closing. Each layer has a sub-population of resident interstitial cells, essential for
maintaining homeostasis within the leaflets and avoiding inflammation [3]. The vessels’
walls are constituted mainly by smooth muscles and elastin-rich layers, with only one side
covered by endothelium. The resident cells are also different: vascular smooth muscle cells
(VSMCs) for the vessels and valve interstitial cells (VICs), essentially fibroblasts, for the
valve. These are the cells that, under pathologic conditions, may undergo myofibrogenic [4],
osteogenic, and even chondrogenic differentiation [5].

Secondly, the reaction to shear stress is different. The valves are exposed to pulsatile
shear stress on the ventricular side and to low and reciprocating flow on the aortic side, as
opposed to the arteries’ laminar flow. With the progression of valvular stenosis, shear stress
increases dramatically on both sides and activates latent factors that can induce fibrosis and
calcification [3]. Of note, bicuspid aortic valves are exposed to greater shear stress than the
tri-leaflet valves and, consequently, calcify earlier [6]. Vascular shear stress also drastically
increases at the level of intravascular plaque, where calcifications often occur.

Thirdly, the etiology is different. Increased longevity and lower prevalence of rheumatic
heart diseases have caused, at least in the industrialized countries, a pattern shift in the
valvular calcification: from rheumatic to a degenerative pathology. On the contrary, inflam-
mation and genetic predisposition seem to be prevalent in vascular calcification occurring
in CAD and PAD [7,8].

Fourthly, the time courses of valvular versus vascular calcification are different. The
time required for valve calcifications is longer than that needed for vascular mineralization,
suggesting that the valves are more resistant to calcific insults than the vessels. Table 1
summarizes these differences, which will be described in detail in the following sections.

Table 1. Main differences between valvular and vascular tissues.

Characteristics of
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Arteries

STRUCTURE

3 LAYERS:
Fibrosa,

Spongiosa,
Ventricularis

2 LAYERS:
Collagen,

Elastin

RESIDENT CELLS FIBROBLAST (VICs) SMOOTH MUSCLE
(VSMCs)

PATHOLOGY DEGENERATIVE INFLAMMATORY
TIME COURSE FOR

CALCIFICATION LONG SHORT

3. Diversity in Medial Versus Intimal Vascular Calcifications

Medial and intimal vascular calcification are defined by etiology, location within the
arterial wall, regional distribution, and clinical consequences. Unfortunately, non-invasive
imaging is unable to discern the two calcifications; therefore, the knowledge and clinical
prevalence of the two types is limited.

Intimal calcifications are associated with atherosclerosis, which, in turn, is character-
ized by lipid accumulation, inflammation, fibrosis, and the development of focal plaques.
Medial calcifications may also be associated with arteriosclerosis, but to a lesser extent.
Commonly, they arise from serum hyperphosphatemia and are specific to chronic kidney
disease (CKD). Medial calcifications are associated with the severity of CKD, dialysis vin-
tage, and Monckeberg’s syndrome, and are frequent in diabetes mellitus and advanced
age, resulting in increased arterial stiffness that causes hypertension, increased cardiac
work, and, eventually, left ventricular hypertrophy [7]. A complication related to CKD
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and hemodialysis is calcific uremic arteriolopathy, also called calciphylaxis. In this disease,
calcium rapidly accumulates in the small arterioles of the adipose and skin tissues, causing
clots and ulcers, which can lead to life-threatening infections [9]. Intimal calcifications
are associated with CAD or PAD but can also occur in larger arteries, such as the aorta,
causing inflammation-driven vascular remodeling [2,10]. Calcium deposits in atheroscle-
rotic plaque are predictive of adverse events, such as myocardial infarction, stroke, or limb
events. In particular, micro-calcifications within the fibrous caps increase local stress and the
risk of plaque rupture, with consequent development of an acute coronary syndrome [11].
Figure 2 outlines these differences.
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4. Mechanism of Hyperphosphatemic Medial Calcification

Hyperphosphatemia, associated with CKD, leads to a rapid wall and aortic valve
calcification. The histology of arteries from these patients shows gross, aligned mineral
deposits, diffused in topographic areas of the vascular wall, typically devoid of lipid
accumulation or atherosclerotic lesions (Figure 2).

Two processes essentially achieved maintenance of the serum phosphate within the
physiological levels: (i) the regulation of bone formation and absorption; (ii) the control
of phosphate excretion in the proximal tubules of the kidney. These processes are finely
regulated by parathyroid hormone (PTH), fibroblast growth factor (FGF)-23, and 1,25-
dihydroxy-vitamin D (calcitriol), through complex interactions, as discussed later and
described in more detail elsewhere [12,13].

It is plausible that the increase in serum phosphate concentration contributes to the
direct precipitation of calcium phosphate. This, however, does not happen in every patient
with hyperphosphatemia, as numerous physiological mechanisms prevent the growth
of calcium phosphate crystals. Therefore, there must be other explanations for calcium
deposition. Table 2, at the end of this section, summarizes the agents that favor or contrast
the increase in vascular calcification.

In vitro studies suggest that increased phosphate induces dose and time-dependent,
closely regulated changes in vascular and/or valvular cells, discussed below and schema-
tized in Figure 3.
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4.1. The Role of Osteogenic Transdifferentation

The presence of a pro-calcific milieu mediates the transdifferentiation of VSMCs (in
the vessels) or VICs (in the valve) into the osteochondrogenic cells. Studies in transgenic
mice have shown that the Nuclear Factor-kappa B (NF-κB) pathway plays an essential
role in the transdifferentiation of VSMCs and VICs [14,15]. This process is mediated by
osteogenic transcription factors, such as Runt-related transcription factor 2 (RUNX2), Msh
homeobox (MSX2) and Osterix (OSX), and chondrogenic (SOX9) transcription factors [5],
which drive the expression of osteochondrogenic-specific proteins, including osteopontin
(OPN), osteocalcin, and alkaline phosphatase (ALP) [16]. Mutations in the NT5E gene,
which encodes for CD73 protein, cause lower-extremity medial artery calcifications, which
resemble those of PAD [17]. Studies in vitro and in animal models have shown that
CD73 deficiency promotes stem cell differentiation into the osteogenic lineage and that
defective CD73-mediated signaling causes an increase in TNAP activity, sufficient to induce
calcification [8,18]. Once established, osteoblasts act as bone-forming cells, producing a
collagen matrix with calcium and phosphate secretion. This process is mediated by several
mechanisms, including: (i) decreased production of calcification inhibitors; (ii) release of
calcifying extracellular vesicles; (iii) expression of matrix metalloproteases (MMP), with
consequent matrix remodeling; (iv) release of inflammatory cytokines and chemokines [5].
Thus, the process is very dynamic and is highly regulated (Figure 3).

4.2. Regulatory Role of FGF-23 and Klotho

FGF-23 is a fibroblastic factor, primarily produced in the bone. Its principal function
is to directly control blood phosphate and calcium concentrations by promoting renal
phosphate excretion, and indirectly, by inhibiting the synthesis of calcitriol [13]. In animal
models, genetic ablation or antibodies neutralizing FGF-23 cause hyperphosphatemia and
tissue calcification [19]

In CKD patients, FGF-23 levels are increased and associated with mortality and
cardiovascular events [7,20]. However, it is still debated whether changes in FGF-23
levels inhibit or promote vascular calcification [7,21]. A crucial unanswered question is
whether FGF-23 can act directly on vascular cells to influence calcification. The evidence
in this regard is conflicting; some studies have shown that FGF-23 protects SMC from
calcification [22,23], others have shown pro-calcifying effects [24], still, others have not
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shown any effect of FGF-23 on calcification [25,26]. The reasons for these divergent findings
are not easy to determine; different experimental settings may have led to inconsistent
results or even that there are no direct effects of FGF-23. Future studies are needed to clarify
this critical point.

The activity of FGF-23, in turn, depends on Klotho, a co-receptor, essential for the
binding of FGF-23 to its receptor, FGFR [27]. Klotho knock-out mice display increased
serum phosphate and extensive vascular calcification [28], while adding exogenous Klotho
to VSMCs directly suppresses osteogenic transdifferentiation [29]. Also, in human aortic
valves, Klotho suppresses high phosphate-induced osteogenic response by inhibiting
the osteochondrocytic transcription factor SOX9 [30]. Unlike those on FGF-23, findings
regarding Klotho converge, in showing its role in suppressing vascular calcification.

4.3. Regulatory Role of MGP, Fetuin-A and Calciprotein Particles

Vitamin K-dependent matrix Gla-(γ-carboxyglutamate) protein (MGP) and fetuin-A
also play a regulatory role in vascular calcification. VSMCs secrete MGP in the tunica media,
where it acts as a calcification inhibitor. Mutations in the MGP gene cause Keutel syndrome,
in which patients develop calcification in soft tissues throughout the body, including vascu-
lar vessels [31]. MGP knockout mice develop massive vascular calcification in their first
weeks of life and die within two months because of vessel rupture [32]. Fetuin-A is a glyco-
protein secreted by the liver. It is present in relatively high concentrations in the serum and
can be uptaken by VSMCs [33]. Fetuin-A-deficient mice, exposed to hyperphosphatemia,
display widespread vessel calcification [34]. In vitro and in vivo studies have shown that
fetuin-A binds and removes calcium and phosphate, which is the basis for its anti-calcifying
activity [35]. Fetuin-A and MGP cooperate to store excessive calcium and phosphate into
amorphous spherical particles, sized 50 to 500 nm in diameter, called calciprotein particles
(CPPs) [36]. These particles, generally referred to as “primary CPPs”, facilitate the clearance
of calcium and phosphate and, therefore, protect from pathological calcification. However,
CPPs have a bivalent effect. When hypercalcemia or hyperphosphatemia persist, CPPs
are transformed into calcium hydroxyapatite (needle-shaped) particles, called “secondary
CPPs ”, which promote vascular calcification [37]. More specifically, secondary CPPs can
enter vascular endothelial cells and induce apoptosis [38], expression of leukocytes ad-
hesion molecules, endothelial-to-mesenchymal transition (EndMT), thus, impairing the
anti-calcific properties of the endothelial monolayer [39]. The result is enhanced osteochon-
drogenic transdifferentiation and calcification [5].

4.4. Regulatory Role of Extracellular Vesicles

Extracellular vesicles (EVs) are a heterogeneous group of secreted vesicles, including
matrix vesicles and exosomes, regulating mineral homeostasis. Patidar and colleagues
showed uremic serum from patients with CKD-induced calcifications of cultured VSMCs
and suggested that pro-calcific EVs are present in their serum [40]. Vascular calcifica-
tion can be triggered by the secretion of pathological EVs with calcifying properties [41],
also termed calcifying micro-vesicles (CMVs). CMVs, secreted by VSMCs, in a high
phosphate environment, exhibit a specific proteomic profile [42] and resemble those re-
leased by osteoblasts [43]. Once released in the extracellular space, CMVs aggregate by
annexin-dependent tethering and bind to matrix collagens to form nucleation sites for
calcification [44].
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Table 2. Promoters and inhibitors of vascular calcification. CMVs = calcifying micro-vesicles;
CPPs = calciprotein particles; FGF-23 = Fibroblast Growth Factor 23; MGP = Vitamin K-dependent
matrix Gla- (γ-carboxyglutamate) protein; NF-kB = Nuclear Factor- kappa B; OPN = Osteopontin;
OSX = Osterix; RUNX2 = Runt-related transcription factor 2; SOX9 = ostheochondrocitic transcription
factor; TNAP = tissue nonspecific alkaline phosphatase; VIC = Valve interstitial cell; VSMC = Vascular
Smooth Muscle Cell.

Role Actor Description Reference

Promoters of vascular
calcification

TNAP
TNAP is an ectoenzyme that catalyzes

dephosphorylations. Its activity releases free phosphate,
which promotes mineralization.

[2]

RUNX2 RUNX2 is a key transcription factor controlling
osteoblast differentiation. [5]

OSX OSX is a transcription factor necessary for osteocyte
differentiation and bone formation [5]

NF-kB
NF-kB pathway plays an essential role in the
transdifferentiation of VSMCs and VICs into

osteochondrogenic cells.
[14,15]

Osteocalcin Osteocalcin is a hormone and osteogenic marker
produced by osteoblast-like cells. [16]

SOX9 SOX9 is a transcription factor associated with
osteoblast-like transdifferentiation [30]

Secondary CPPs
Secondary CPPs are calcium hydroxyapatite

nano-particles produced from primary CPPs under
persistent hypercalcemia or hyperphosphatemia.

[36]

Inhibitors of vascular
calcification

FGF-23
FGF-23 regulates phosphatemia by controlling renal

phosphate excretion. Its role in vascular calcification is
still debated.

[7]

Klotho
Klotho is a co-receptor essential for the binding of
FGF-23 to its receptor. In addition, Klotho directly

suppresses osteogenic transdifferentiation.
[30]

MGP
MGP is a Gla-containing protein which binds calcium. It
is secreted by VSMCs and acts as a potent inhibitor of

vascular calcification.
[31]

Fetuin-A
Fetuin-A is a glycoprotein secreted by the liver which

binds calcium and phosphate, collaborating with MGP
to prevent calcium precipitation in tissues.

[35]

Primary CPPs
Primary CPPs are amorphous particles sized 50 to 500

nm that facilitate the clearance of calcium and
phosphate, protecting from pathological calcification.

[36]

CMVs
CMVs can promote or inhibit mineralization, depending
on the phenotype of their originating cells and on the

extracellular milieu.
[41]

5. Mechanism of Inflammatory Intima Vascular Calcification

Intimal calcifications are associated with atherosclerosis and, thus, are characterized
by lipid deposition, a robust inflammatory response, and are favored by the same risk
factors as for atherosclerosis. It is well known that atherosclerotic plaques can vary widely
in composition, including calcium content, and this is known to affect plaque stability and,
thus, disease course. This section will focus on the mechanisms that link inflammations to
vascular calcifications.

Inflammation-driven intimal calcifications are different from medial calcification.
Initially, they appear as spherical or ellipsoidal micro-calcifications, arising from the co-
alescence of calcifying EVs. Later, they merge to form larger macro-calcifications that
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may stabilize atherosclerotic plaques but disrupt aortic valve mechanical and functional
properties [37].

Studies in vitro and in animals have shown that the inhibition of inflammation pre-
vents intima calcification. At the same time, pro-inflammatory stimuli exacerbate it through
mechanisms involving apoptotic cell death and activation of the osteogenic pathways, sec-
ondary to an increased expression and activity of tissue non-specific alkaline phosphatase
(TNAP) [2]. Nevertheless, intimal calcification is not a simple one-way causal relationship,
but the endpoint of a complex inflammation-driven remodeling of the vascular wall, in-
volving interactions among endothelial cells, VSMCs, and immune cells, as schematized in
Figure 4 [2].

Biology 2022, 11, x FOR PEER REVIEW 8 of 21 
 

 

factors as for atherosclerosis. It is well known that atherosclerotic plaques can vary widely 
in composition, including calcium content, and this is known to affect plaque stability and, 
thus, disease course. This section will focus on the mechanisms that link inflammations to 
vascular calcifications. 

Inflammation-driven intimal calcifications are different from medial calcification. In-
itially, they appear as spherical or ellipsoidal micro-calcifications, arising from the coales-
cence of calcifying EVs. Later, they merge to form larger macro-calcifications that may 
stabilize atherosclerotic plaques but disrupt aortic valve mechanical and functional prop-
erties [37]. 

Studies in vitro and in animals have shown that the inhibition of inflammation pre-
vents intima calcification. At the same time, pro-inflammatory stimuli exacerbate it 
through mechanisms involving apoptotic cell death and activation of the osteogenic path-
ways, secondary to an increased expression and activity of tissue non-specific alkaline 
phosphatase (TNAP) [2]. Nevertheless, intimal calcification is not a simple one-way causal 
relationship, but the endpoint of a complex inflammation-driven remodeling of the vas-
cular wall, involving interactions among endothelial cells, VSMCs, and immune cells, as 
schematized in Figure 4 [2]. 

 
Figure 4. Mechanism of inflammatory vascular and valvular calcification. Vascular smooth muscle 
cells = VSMCs; valvular interstitial cells = VICs; endothelial-to-mesenchymal transition = EndMT; 
VSMC = Vascular smooth muscle cell; VICs = valvular interstitial cells; EndTM = endothelial-to-
mesenchymal transition. 

5.1. Role of Endothelial Cells 
At the onset of atherosclerosis, plasma lipoproteins accumulate in the sub-endothe-

lial space, triggering inflammatory responses, with the expression of leukocytes’ adhesion 
molecules and impairment of endothelial function. Under physiological conditions, nitric 
oxide (NO), produced by endothelial nitric oxide synthase (eNOS), prevents the transdif-
ferentiation of VSMCs into osteoblastic cells by inhibiting transforming growth factor-β 
(TGF-β) signaling through a cGMP-dependent pathway [45]. On the contrary, dysregula-
tion of eNOS induces oxidative stress, with the production of oxidized low-density lipo-
proteins (LDL) and phospholipids, which, in turn, drive VSMCs apoptosis and the conse-
quent release of apoptotic bodies, which act as a scaffold for further calcification [46]. Fur-
thermore, in aortic valves, the lack of endothelial NO triggers NF-κB and induces Dipep-
tidyl peptidase 4 (DPP-4) expression in VICs, which, in turn, determines osteogenic dif-
ferentiation [47]. 

Figure 4. Mechanism of inflammatory vascular and valvular calcification. Vascular smooth muscle
cells = VSMCs; valvular interstitial cells = VICs; endothelial-to-mesenchymal transition = EndMT;
VSMC = Vascular smooth muscle cell; VICs = valvular interstitial cells; EndTM = endothelial-to-
mesenchymal transition.

5.1. Role of Endothelial Cells

At the onset of atherosclerosis, plasma lipoproteins accumulate in the sub-endothelial
space, triggering inflammatory responses, with the expression of leukocytes’ adhesion
molecules and impairment of endothelial function. Under physiological conditions, nitric
oxide (NO), produced by endothelial nitric oxide synthase (eNOS), prevents the transdif-
ferentiation of VSMCs into osteoblastic cells by inhibiting transforming growth factor-β
(TGF-β) signaling through a cGMP-dependent pathway [45]. On the contrary, dysreg-
ulation of eNOS induces oxidative stress, with the production of oxidized low-density
lipoproteins (LDL) and phospholipids, which, in turn, drive VSMCs apoptosis and the
consequent release of apoptotic bodies, which act as a scaffold for further calcification [46].
Furthermore, in aortic valves, the lack of endothelial NO triggers NF-κB and induces
Dipeptidyl peptidase 4 (DPP-4) expression in VICs, which, in turn, determines osteogenic
differentiation [47].

In response to pro-atherogenic stimulus, endothelial cells can engage in a de-differentiation
program, called endothelial-to-mesenchymal transition (EndMT). Endothelial cells lose
their characteristics during this process as they begin to express multipotent stem cell
markers. In the context of atherosclerosis, it is well documented that vascular calcification
is accompanied by EndMT [48]. Significantly, in animal models of vascular calcification, the
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expression of markers of multipotency, such as SOX2, NANOG, OCT4 (octamer-binding
transcription factor 4), precedes osteogenic transition [48]; conversely, endothelial-specific
deletion of those factors contrasts calcification [49]. This indicates that endothelial cells can
differentiate into osteogenic cells, transitioning through a mesenchymal phenotype.

Several studies have also implicated EndMT in the pathology of CAVD. In aortic
valves, disturbed shear stress triggers the expression of UBE2C (ubiquitin E2 ligase C),
which, in turn, triggers EndMT, promoting aortic valve calcification [50]. The involvement
of shear stress and development-related pathways in EndMT-mediated calcification is well
known; we will focus on this in the next section.

5.2. Regulatory Role of Shear Stress and of Notch and Wnt Signaling

The Notch and Wnt pathways are necessary for cell-to-cell communications and me-
diate stimuli derived from shear stress [51]. Physiological, laminar shear stress activates
Notch1 in endothelial cells, inhibiting the expression of inflammatory and pro-calcific
genes [52,53] and inducing the expression of anti-calcific MGP [54]. Dysregulation of
shear stress, with a reduction in Notch1 activity in areas subjected to disturbed flow,
such as the aortic arch and coronary bifurcations, promotes atherosclerosis and calcifica-
tion [55,56]. However, the link between mutations of Notch1 and aortic valve stenosis is
different [56–58]. In endothelial cells and VICs, isolated from patients with bicuspid and tri-
cuspid aortic valves [59], the activation of Notch1 signaling no longer has anti-calcification
properties, but it enhances bone morphogenetic protein 2 (BMP2) responsiveness of the
MSX2 gene, to induce osteogenic VSMC differentiation and calcification [60]. Thus, more
studies are needed to elucidate the opposite effects of the Notch pathway in vascular and
valvular calcification.

Impairment of Wnt signaling is involved in vascular calcification [55,61] but with
effects strictly dependent on the cell type. In endothelial cells, active Wnt signaling prevents
EndMT, thus, converting the endothelium into a state leading to vascular and valvular
calcification [62]. In mesenchymal cells, Wnt promotes myofibroblast [63] and osteogenic
differentiation [64], interacting with bone morphogenetic proteins (BMPs) signaling [65]
and with the transcription factor MSX2 [66].

5.3. Regulatory Role of Immune Cells

The innate immune system is the first defense activated by pathogens, which are
recognized by toll-like receptors (TLRs), expressed on the membrane of innate immune
cells. These receptors, in particular TLR2 and TLR4 isoforms, are implicated in calcification,
as their activation amplify the inflammatory responses [67].

In atherosclerotic plaque, inflammatory response drives further macrophage polar-
ization towards a pro-inflammatory phenotype; these macrophages are termed M1. In
valves and vessels, M1 macrophages release pro-inflammatory cytokines, including tu-
mor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-18, which increase the
expression of osteochondrogenic factors and subsequent VSMCs osteoblastic transdiffer-
entiation [68,69]. In addition, M1 macrophages also secrete proteinases, such as MMP-2,
MMP-9, or cathepsins that lead to the degradation of extracellular matrix proteins and
are implicated in intimal, medial, and aortic valve calcification [70,71]. The early innate
immune response then triggers a late adaptive response, also involved in calcification. T
helper (Th) lymphocytes are the primary cells of late adaptive immunity. Th 1 lymphocytes
are commonly present in plaques, where they secrete inflammatory cytokines that pro-
mote the progression of atherosclerosis but are not involved in cardiovascular calcification.
Conversely, Th2 cells stabilize atherosclerotic plaques, produce IL-4, and promote VSMCs
osteoblastic transdifferentiation [72]. Other cells of adaptive immunity, such as B-cells, are
present in the area of calcification, but their role is unknown.



Biology 2022, 11, 414 10 of 21

5.4. Regulatory Role of Clonal Hematopoiesis of Indeterminate Potential

Clonal hematopoiesis of indeterminate potential (CHIP) is defined by the presence
of clones, carrying a mutation associated with a blood neoplasm, but without evident
hematological disorders [73]. Studies in animal models showed that mutations associated
with CHIP activate immune cells, promoting inflammation and coronary calcification [74].
Human CHIP carriers have an increased risk of CAD and, possibly, of valvular diseases,
such as calcific aortic stenosis [75]. In support of this hypothesis, patients with aortic steno-
sis have a higher CHIP prevalence than age-matched patients with or without CAD [76].
In addition, CHIP carriers show an increased risk of death than non-carriers after a suc-
cessful valve replacement [76]. However, a causal relationship between CHIP and valve
calcification has not been established yet.

6. Medial Calcification in Diabetes

In this regard, the diabetic patient represents a challenging mix of clinical and patho-
genetic problems. In adults with type II diabetes, affected by CAD, the probability that
peripheral arterial disease coexists is in the range of 20%. Conversely, in the presence
of symptomatic peripheral arterial disease, the probability of CAD is 30%, which rises
to 40–50% in the case of carotid pathology. Allison and colleagues found a difference in
the prevalence of calcification among different vascular beds, in 4544 patients who had
undergone whole-body CT scans during an 8-year follow-up. Among them, calcification in
the coronary artery had the highest prevalence (55.8%), followed by the abdominal aorta
(54.8%), while calcification in the carotid artery had the lowest prevalence rate (32.2%) [77].
In a multiethnic study of atherosclerosis (MESA), the association between abdominal aortic
calcification (AAC) and diabetes was the strongest among all vascular beds [78]. Patients
with calcification in the carotid, coronary, and iliac arteries have a significantly higher body
mass index. In addition, patients with calcification in any vascular bed other than the
carotid artery have a higher probability of a family history of cardiovascular disease [79].

In type II diabetes, the distribution of calcifications in the arterial wall and their patho-
genetic mechanisms have profound similarities with CKD. Recent evidence suggests that
medial calcification in diabetes is an active, cell-mediated process, similar to that observed
in patients with end-stage renal disease (ESRD). VSMCs’ several bone matrix proteins
act to either facilitate or regulate the calcification process. Therefore, the phenotypic and
the molecular fingerprints of medial calcification in patients with diabetes and patients
with chronic kidney disease, including those on dialysis, are strikingly similar. While
disturbances in divalent ion homeostasis have been proposed to play a role in the calcifica-
tion of the media in patients with chronic kidney disease, patients with diabetes have an
apparently intact bone and mineral metabolism.

CKD, as well as diabetes, are now recognized as pro-inflammatory states [80,81]. Sev-
eral studies have shown that the Advanced Glycation End-Products (AGEs)/Receptor for
AGEs (RAGE) signaling pathways play a crucial role in the hyperglycemia-mediated vascu-
lar calcification switch of VSMCs to osteoblast-like cells [82,83]. This transition is mediated
by p38 mitogen-activated protein kinase (MAPK) [84]. Under hyperglycemic conditions,
AGEs increase the Serine/threonine-protein kinase (SGK1) expression in VSMCs, leading
to the osteogenic transdifferentiation and calcification of VSMCs [85]. Hyperglycemia-
induced AKT (Protein kinase B) post-translational modification promotes the activation
of this pathway, which, in turn, leads to increased Runx2 transcription and, consequently,
vascular calcification [86]. In diabetes, VSMCs calcification is associated with cellular
senescence, oxidative stress, DNA damage and is characterized by decreased expression of
sirtuin 1 (SIRT1) [87,88]. Recently, it has been shown that, in vitro, SIRT1 activity reduces
these processes and attenuates VSMCs calcification, indicating a potential therapeutic role
of this pathway [88].
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7. Drug-Induced Vascular Calcification

In recent years, some pharmacological treatments have emerged to promote the
calcification of vessels and valves as a side effect.

7.1. Warfarin

Several studies have shown that anticoagulant therapy warfarin is associated with
increased calcification in various districts, including coronary arteries [89], carotids [90],
lower-extremity arteries [91], abdominal aorta, and heart valves [92]. Warfarin is a competi-
tor of vitamin K, and there is evidence that it accelerates calcification by affecting vitamin
K-dependent MGP activation, hence, reducing the physiological anti-calcific properties
of this protein [93]. Moreover, it has been recently shown that warfarin can interact with
SOX5 and SOX9, promoting osteogenic markers’ expression in VICs [94].

7.2. Statins

Lipid-lowering therapy with statins effectively attenuates the progression of atheroscle-
rosis and reduces cardiovascular mortality. Nevertheless, the impact of statins on vascular
calcification is still debated as, paradoxically, some studies have shown an increase in vas-
cular calcification in patients taking statins [95]. Importantly, this increase in calcification
is not accompanied by increased mortality [96]. Statins promote coronary artery calcifi-
cation, regardless of their regressive effects on the plaque, suggesting that they stabilize
plaque beyond their effects on lipids. [96]. This hypothesis seems to be confirmed by a
recent study in dyslipidemic mice, which showed that pravastatin treatment affects the
microarchitecture of the calcium deposits and, thus, stabilizes the plaque [97].

7.3. COX-2 Inhibitors

We, and others, have found that celecoxib, a COX-2 inhibitor and nonsteroidal anti-
inflammatory drug used to treat musculoskeletal pain and arthritis, induces VICs trans-
differentiation into myofibroblasts [4] and is associated with an increased risk of CAVD [98].

8. Calcification Caused by Infections or Autoimmune Disorders
8.1. Infections

Rheumatic heart valve disease (RHVD) is caused by an abnormal immune response to
Streptococcus infection. Although RHVD is rare in developed countries, it is the leading
cause of CV death in children and young adults in low and middle-income nations. RHVD
is characterized by high levels of circulating inflammatory mediators, such as IL-6 and
TNF-α, that are strongly correlated with the severity of the valvular malfunction and
calcification [99]. Furthermore, the few available studies support the concept that rheumatic
calcification is not just a passive process, but consists of a series of molecular events,
including the differentiation of VICs into osteoblasts and neo-angiogenesis [100].

Other bacterial infections, such as periodontitis, a risk factor for CAD, have been
linked to vascular calcification [101,102]. Equally, Helicobacter pylori, the causative agent of
various gastrointestinal disorders, is associated with serum antibodies against heat shock
protein 65, which correlates with the degree of coronary calcification [103,104].

8.2. Autoimmune Diseases

The association between autoimmune diseases, chronic inflammation, atherosclerosis,
and vascular calcification has been known for a long time [105]. Rheumatoid arthritis (RA)
is characterized by systemic inflammation and early-onset diffuse calcification of different
vascular beds, predictors of CV morbidity and mortality [106]. In RA patients, high serum
levels of IL-6 and TNF-α and neopterin, a marker of monocytes and macrophages activation
and autoantibodies against citrullinated protein, are all independently associated with
coronary calcification [107,108].

Systemic lupus erythematosus (SLE) is another autoimmune disease that causes
widespread inflammation and calcification of the coronary arteries, aorta, and heart
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valves [109,110]. In SLE patients, vascular calcification is associated with elevated lev-
els of anticardiolipin and aβ2GPI antibodies of the IgG class [111], while calcification of
the aortic valve is associated with antiphospholipid antibodies [112]. Thus, in the context
of autoimmune disorders, such as RA and SLE, chronic inflammation and autoantibodies
against vascular and valve antigens play a role in the calcification process.

9. Therapeutic Approaches

Despite consistent research for drugs targeting several molecular intermediates of
calcification, the results, so far, are disappointing. However, new possible therapeutic
opportunities for both medial and intimal calcification are under investigation.

9.1. Treatment of Hyperphosphatemic Medial Vascular Calcification

(a) Vitamin K: Vitamin K is required to carboxylate MGP and activates its anti-
calcification activity. A trial (VitaVasK) is testing the hypothesis that supplementation
of vitamin K1 counteracts coronary and aorta calcification. The results are expected soon
(ClinicalTrials.gov Identifier: NCT01742273, accessed on 20 January 2022).

(b) Magnesium: Animal studies and small human trials showed that magnesium might
inhibit the development of phosphate-induced calcifications, in uremic rats or patients with
advanced CKD. An open-label randomized control trial, on just less than 100 patients with
CKD stages 3 and 4, was stopped early, as the progression of coronary artery calcification
(CAC) was substantially reduced in the treated arm with magnesium oxide [113]. The data
are promising but given the open-label design and the small number of participants, they
need to be confirmed.

(c) Phosphate binders: Phosphate binders can contain calcium (acetate, carbonate) or
not (sevelamer, lanthanum, magnesium). In patients subject to dialysis, the use of calcium-
containing binders is associated with higher rates of vascular calcification [114]. The use of
calcium-free phosphate binders in these patients is controversial [7]. The same uncertainties
hold for the non-dialysis CKD population. Two trials have been set up: the COMBINE,
testing the combination of lanthanum and nicotinamide, which was inconclusive [115],
and the IMPROVE-CKD, comparing lanthanum to placebo in 488 patients, followed for
96 weeks, which is still ongoing.

(d) SNF472-MYO-Inositol Hexaphosphate: SNF472, also known as IP6, is a hexas-
odium salt of the active ingredient myo-inositol hexaphosphate or phytate. Pre-clinical
studies in rodents yielded promising results [116]. So did CALYPSO, a phase II trial in
274 dialytic patients, randomized to SNF472 (in two doses) or placebo. At 12 months,
treated groups showed a significant slowing in the progression of CAC [117]. More exten-
sive studies are necessary to establish safety and efficacy.

(e) Denosumab: Denosumab is a human IgG2 monoclonal antibody used in osteoporo-
sis patients to block bone reabsorption of calcium and phosphate, by inhibiting the link
of RANKL with the membrane of osteoblasts and preventing the activation of osteoclasts.
It has reduced calcium deposition in the aorta with a poorly understood mechanism and,
in vitro, is a potential inhibitor of VICs calcification [3]. Recently, a small observational
study showed that denosumab reduces calcification of the aortic arch in CKD patients
undergoing hemodialysis [118]. In contrast, in aortic stenosis patients, denosumab is not
effective in reducing the progression of aortic valve calcification. [119].

(f) Sodium thiosulphate: Sodium thiosulfate is an antioxidant and chelating agent,
used to prevent cisplatin toxicity and treat cyanide poisoning. Sodium thiosulfates have
been used to treat calciphylaxis with promising results [120]. In addition, in a small
randomized controlled trial, sodium thiosulfate reduced calcification in the iliac arteries
and heart and reduced arterial stiffness and carotid intima-media thickness [121].

(g) Vitamin D and calcimimetics: Vitamin D plays a pivotal role in calcium metabolism.
Experimental and clinical studies have revealed an association between vitamin D de-
ficiency and cardiovascular diseases (CVD) [66], and that low doses of calcitriol and
paricalcitol may reduce vascular calcification [74]. Calcimimetics increase parathyroid
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cells’ sensitivity to calcium, inhibiting PTH release and reducing circulating calcium. In a
randomized clinical trial, low-dose vitamin D, combined with cinacalcet, a calcimimetic,
decreased coronary and aortic valve calcification in hemodialysis patients [122].

(h) Bisphosphonates: Bisphosphonates are used to treat osteoporosis in clinical practice,
as they effectively prevent bone loss. In vitro and in animal models of CKD, bisphospho-
nates are protected against vascular calcification, raising interest in their possible use in
vascular calcification prevention [123]. However, clinical trials have shown conflicting
results, and whether bisphosphonates may have a role in preventing vascular calcification
is still debated [124].

(i) TNAP and NF-kB inhibitors: As previously described, TNAP is implicated in
several processes leading to vascular calcification. Pre-clinical studies have provided proof-
of-concept that TNAP inhibition may be used to contrast calcification [125,126]. However,
since TNAP has several essential functions, in addition to its established role in controlling
physiological and ectopic mineralization, the effect of TNAP inhibition on these functions
is not clear yet. Further studies are needed to evaluate these crucial aspects and, thus, the
feasibility of this approach [127]. Similarly, the NF-kB pathway controls the expression
of genes involved in the osteogenic transition, as previously described. Some approved
drugs have shown inhibitory activity against NF-kB [128], hence, the idea of exploiting
these molecules to counteract the vascular calcification is intriguing. However, no clinically
approved drug has been specifically developed to inhibit NF-kB yet [129]. Therefore,
further studies are needed to evaluate whether the pharmacological inhibition of NF-kB
may become a viable option.

9.2. Treatment of Inflammatory Intimal Vascular Calcification

The role of lipid-lowering agents, together with angiotensin converting enzyme in-
hibitors (ACEi), in reducing the progression of atherosclerosis and CVD, beyond cholesterol
and blood pressure lowering, is well established [130]. The underlined molecular effects are
generally called “pleiotropic” and are related to several possibilities, including a reduction
in endothelial apoptosis and increased regeneration, thus, maintaining, intact, the endothe-
lial layer or a favorable genetic action. These mechanisms prevent coronary calcification.

Lipid lowering has also been proposed [131] as a therapeutical possibility to counteract
calcific aortic stenosis. In this case, the situation is more complex than in CAD. Mendelian
randomization studies have indicated LDL-cholesterol as an important risk factor for aortic
stenosis [132,133]. However, three well-conducted randomized control trials could not
find any benefit of lowering LDL-cholesterol with statins. There are different explanations
for such counterintuitive results, including too short duration of the trials, pro-osteogenic
properties of statins, and an increase in lipoprotein (a) [LP(a)] levels. The latter is considered
a therapeutical target, as it carries oxidized phospholipids, which promote calcification.
The issue, however, is complicated. A post-hoc analysis of the FOURIER trial argues against
a role of Lp(a) in aortic stenosis, while the Safe Heart Registry confirms a positive role, at
least in familial hypercholesterolemia [134]

An anti-calcification role of Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9)
has been confirmed in animal studies, suggesting that a stronger cholesterol reduction with
PCSK9 might be needed. Trials with PCSK9 are underway, and we will have to wait before
coming to a definitive conclusion.

CANTOS and LoDoCo2 [135,136] studies provided clear evidence that modulating the
inflammatory response with canakinumab or colchicine effectively reduces atherosclerotic
disease and cardiovascular events. Given the close relationship between inflammation,
atherosclerosis, and vascular calcification, it can be hypothesized that immunotherapy may
also reduce vascular calcification.

10. Conclusions

Vascular, and probably valvular, calcifications are not new. They existed at the time
of the Egyptians, as demonstrated by computed tomography of the mummies [137], in
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line with the hypothesis that age and inflammation, more than nutritional habits, are
pathogenic factors.

Through the years, our understanding of calcification has shifted from a simple depo-
sition of minerals to an active, highly regulated cell-mediated process, which represents a
common complication in CKD and CVD, diabetes mellitus, valvular disease, and aging.
Today, it is clear that CV calcifications are multifaceted disorders, occurring in different
milieus, due to different pathologies. Hyperphosphatemia is a determinant of vascular
calcification in CKD, while inflammation causes calcification associated with atherosclero-
sis. These findings marked how different pathological phenotypes exist, not only between
vascular and valvular calcifications, but even within the same vessel. Therefore, the first
take-home message is that the way forward is difficult but not impossible. The second
message is that calcium is involved in several aspects of human life and is pervasive in
human fluids. Slight shifts in its homeostasis can result in its mineralization. Unfortunately,
the third message is that experimental models mimicking the different human pathological
conditions are lacking.

Despite these difficulties, progress in detecting calcification with imaging modalities,
as coronary CT with the Agatston score, in the near future, will allow us to reliably and
quantitatively distinguish calcification among the different phenotypes.

Several therapeutic agents have been identified but can only partially slow down the
progression of vascular calcification. As of today, no therapeutic approach can halt the
progression of calcification and, for AS patients, the only available option is the replacement
of the valve. Preclinical research shed further light on this multifaceted, unsolved clinical
problem and has led to the identification of previously unknown mechanisms promoting
calcification that could be targeted. These include: (1) the retinoic acid receptor, which
increases MGP while decreasing TNAP [138]; (2) the endoplasmic reticulum stress, which
induces vascular calcification by releasing Grp78-loaded EVs [139], and (3) sortilin, which
is involved in the traffic of pro-calcific EVs [140]. Repositioning drugs, such as Sitagliptin,
an inhibitor of DDP4 used in the treatment of type 2 diabetes mellitus, could be a promising
approach to interfere with the progression of CAVD [47]. Ongoing multi-omics studies,
conducted in experimental models and patients, along with high-resolution imaging meth-
ods and Artificial Intelligence approaches [141], will help to identify a specific molecular
signature of calcification, leading to new therapeutic targets.

The Egyptians did not have our multidimensional technologies and knowledge. We
do, and we should capitalize on this to find therapeutical opportunities to prevent and halt
both vascular and valvular calcifications.

11. Limitations

The aim of this Review was to highlight the heterogeneity of cellular and molecular
mechanisms, underlying calcification in multiple pathologies and tissues, which hampers
our efforts to identify a treatment strategy for this disease. To make the Review of broad
interest, while keeping it focused, we chose not to discuss in detail the molecular and
cellular mechanisms of calcification associated with each pathology, including differences
in local milieu driving calcification at different anatomical sites (for a detailed Review on
this last topic, the reader is referred to [16]). For the same reason, we left out a detailed
discussion of the steps leading to atherosclerosis, even though strongly intertwined with
intimal calcification.
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