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Abstract

Changing one’s mind on the basis of new evidence is a hallmark of cognitive flexibility. To revise 

our confidence in a previous decision, new evidence should be used to update beliefs about choice 

accuracy, but how this process unfolds in the human brain remains unknown. Here we manipulated 

whether additional sensory evidence supports or negates a previous motion direction 

discrimination judgment while recording markers of neural activity in the human brain using 

fMRI. A signature of post-decision evidence (change in log-odds correct) was selectively observed 

in the activity of posterior medial frontal cortex (pMFC). In contrast, distinct activity profiles in 

anterior prefrontal cortex (aPFC) mediated the impact of post-decision evidence on subjective 

confidence, independently of changes in decision value. Together our findings reveal candidate 

neural mediators of post-decisional changes of mind in the human brain, and indicate possible 

targets for ameliorating deficits in cognitive flexibility.

John-Maynard Keynes allegedly said, “When the facts change, I change my mind”. 

Updating beliefs on the receipt of new evidence is a hallmark of cognitive flexibility. 

Previous work has focused on how newly arriving evidence for each choice option is 

evaluated to guide ongoing motor actions in the coordinate frame of a perceptual 
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discrimination decision (e.g. left vs. right)1–4. However, revising one’s confidence about an 

already-made choice imposes a different coordinate frame on the evidence, and requires 

weighting the evidence comparatively with respect to the choice5–7. Here, we leveraged a 

novel extension of a classic motion discrimination task to investigate the computational 

signatures of such assessment and to investigate how new evidence leads to changes in 

decision confidence (Figure 1), while recording markers of neural activity in the human 

brain using functional magnetic resonance imaging (fMRI). We confirmed behaviorally that 

post-decision motion led to systematic changes in confidence about the accuracy of a 

previous decision. This design allowed us to study the underpinnings of changes of mind by 

analyzing how new evidence impacts confidence bidirectionally, in a graded fashion, rather 

than only on a subset of trials on which discrete choice reversals are observed.

We hypothesized that brain regions in the human frontal lobe implicated in performance 

monitoring (posterior medial frontal cortex (pMFC), encompassing dorsal anterior cingulate 

cortex8,9 and pre-supplementary motor area10) and metacognition (anterior prefrontal 

cortex; aPFC11–14) would play a central role in updating beliefs about previous choice 

accuracy. Tracking evidence in the coordinate frame of choice accuracy rests on computing a 

probability that a previous choice was (in)correct given the new evidence available, or a 

change in log-odds correct5. When this quantity (which we refer to as “post-decision 

evidence” or PDE) is sufficiently low the alternative option becomes more favourable3. A 

Bayesian observer predicts a qualitative signature of PDE in both behaviour and neural 

activity. Specifically, we expect a positive relationship between PDE and motion strength on 

correct trials (because new evidence serves to a confirm a previous choice) and a negative 

relationship on error trials (because new evidence disconfirms a previous choice; Figure 1C, 

middle panel).

A further step in the computational chain is to use PDE to update one’s final (subjective) 

confidence in a choice (Figure 1C, righthand panel). For an ideal observer, there is a 

systematic and direct relationship between PDE and subsequent changes in confidence. 

However it is known that subjective confidence estimates do not always track objective 

changes in performance15,16, and previous studies suggest the prefrontal cortex as a key 

determinant of such metacognitive fidelity11,13. Moreover, a key challenge when 

interpreting confidence-related neural activity is dissociating distinct variables that may be 

correlated due to a particular task manipulation17. For instance, changes in confidence are 

often correlated with both evidence strength and the expected value of a choice (although 

see 18,19). Here we carefully separated these quantities through use of an incentive scheme 

in which subjects were rewarded for being highly confident and right, and unconfident and 

wrong, ensuring changes in final confidence were decoupled from subjective value (Figure 

1C, righthand panel). We additionally used mediation analyses to formally identify brain 

activity capturing the impact of model PDE on subjective confidence reports, which were 

obtained at the end of every trial20. This approach has proven fruitful in studying the neural 

basis of other subjective states such as pain while controlling for lower-level effects of 

sensory stimulation21, but has not previously been applied in studies of decision-making. 

Together our findings reveal a division of labour in which pMFC activity tracks post-

decision evidence, whereas lateral aPFC additionally mediates the impact of post-decision 

evidence on confidence, independently of decision value.
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Results

Participants carried out the perceptual decision task outlined in Figure 1A, first in a 

behavioural session (N=25 subjects), and subsequently while undergoing fMRI (N=22 

subjects). The subject’s goal was to make accurate decisions about the direction of random 

dot motion, and then to estimate confidence in their initial choice. A new sample of dot 

motion in the same (correct) direction was displayed after the subject’s choice but before 

their confidence rating. Subjects were rewarded for the accuracy of their confidence 

judgments, and thus the value of a trial increased both when they became more accurate 

about being right and more accurate about being wrong (see Figure 1C and Methods). A 

fully factorial design crossed 3 pre-decision coherence levels with 3 post-decision coherence 

levels yielding 9 experimental conditions. Together these features of the task design allowed 

us to dissociate motion strength and decision value from changes of mind, as shown in 

Figure 1C. To equate evidence strength across individuals, before the main task each 

participant performed a calibration procedure to identify a set of motion coherences that led 

to approximately 60%, 75% and 90% accuracy (Supplementary Figure 1). Examination of 

the empirical cross-correlation between task features and behaviour (motion strength, 

confidence, value and response times) confirmed a limited correlation between predictors 

(maximum absolute mean r = 0.38 for fMRI session; Supplementary Figure 2).

Choice, confidence and changes of mind

As expected, stronger pre-decision motion led to increases in response accuracy 

(behavioural session: hierarchical logistic regression, β = 9.21 (0.78), z = 11.8, P < 2 × 

10-16; fMRI session: β = 7.00 (0.70), z = 10.0, P < 2.0 × 10-16; Figure 2A, C and 

Supplementary Table 1). We observed robust changes of confidence in response to post-

decision motion (Figure 2B, D). Specifically, we found that after an erroneous decision, 

stronger post-decision motion led to progressively lower confidence (behavioural session: 

hierarchical linear regression, β = -1.15 (0.14), χ2(1) = 71.8, P < 2.2 × 10-16; fMRI session: 

β = -1.05 (0.11), χ2(1) = 88.0, P < 2.2 × 10-16; Supplementary Table 2) whereas after a 

correct decision, confidence was increased due to the confirmatory influence of new 

evidence (behavioural session: β = 0.41 (0.08), χ2(1) = 26.3, P = 3.0 × 10-7; fMRI session: β 
= 0.54 (0.08), χ2(1) = 44.7, P = 2.3 × 10-11). Binary changes of mind are revealed by 

confidence levels lower than 0.5 (i.e., greater confidence in the alternative response) with 

strong post-decision motion accordingly leading to more frequent binary changes of mind 

(behavioural session, mean = 11.7 % of trials; fMRI session, mean = 18.4 % of trials) than 

weak post-decision motion (behavioural session, mean = 10.4 % of trials; fMRI session, 

mean = 14.8 % of trials). Subjects were well calibrated, with final confidence approximately 

tracking aggregate performance (Supplementary Figure 3).

Computational model of post-decisional change in confidence

We compared between a set of alternative computational models of how confidence is 

affected by post-decision motion strength (see Methods for details). All models generalize 

signal detection theory, with a single free parameter k mapping pre- and post-decision 

motion strength (coherence) onto an internal decision variable (Figure 1B). Extensions to an 

ideal observer model explored the impact of asymmetric weighting parameters on pre- and 
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post-decision motion6,7, asymmetric weighting of confirmatory and disconfirmatory 

evidence6, flexible mappings between probability correct and reported confidence22, and 

the influence of initial response time23 (see Methods and Supplementary Figure 4). We 

assessed model fit by examining generalization across testing sessions to avoid overfitting; 

the best-fitting Bayesian+RT model was able to capture both the relationship between pre-

decision motion strength and choice accuracy, and the impact of post-decision motion on 

changes in confidence (Figure 2 and Supplementary Figure 5) (difference in median log-

likelihood relative to next best model: behavioural->fMRI, 1932; fMRI->behavioural, 1298; 

Supplementary Figure 4). The βRT parameter of this model was negative in both cases 

(behavioural session: βRT = -0.73 (0.26); fMRI session: βRT = -0.37 (0.22); Supplementary 

Table 3) indicating that faster initial decisions boosted final confidence. We note that a 

qualitative signature of PDE in Figure 1C is common to all model variants, and makes clear 

predictions for interrogation of brain imaging data, which we turn to next.

Neural representations of post-decision evidence

We sought to identify fMRI activity patterns consistent with tracking PDE in the coordinate 

frame of choice accuracy (changes in log-odds correct due to post-decision motion). Such 

patterns are characterized by a change in the sign of the relationship between post-decision 

motion strength and brain activity on correct vs. error trials (Figure 1C, middle panel). This 

change in sign is qualitative and we remain agnostic about its direction at the level of the 

fMRI signal – it is plausible that a particular neural population encodes increasing rather 

than decreasing likelihood of change of mind, in which case we would observe a positive 

relationship on error trials and a negative relationship on correct trials.

We first computed interaction contrasts (positive or negative) between post-decision motion 

strength and choice accuracy, to identify patterns of activity that mirror a signature of PDE. 

Interaction effects were observed whole-brain corrected at both the voxel- and cluster-level 

in pMFC (Figure 3A; peak: [6 18 50], PvoxelFWE = 0.002; PclusterFWE < 0.001) and at the 

cluster-level in right insula (peak: [44 14 -6], PclusterFWE = 0.009; Supplementary Table 4). 

Accordingly, in an independently defined pMFC ROI, we obtained a significant interaction 

between post-decision motion strength and initial decision accuracy in single-trial activity 

estimates aligned to the onset of post-decision motion (Figure 3B and Supplementary Table 

5; β = -0.11 (0.037), χ2(1) = 9.35, P = 0.0022). This interaction effect was driven by an 

increase on error trials, and decrease on correct trials (Figure 3B).

Finally, to corroborate our model-free analysis, we extracted the predicted PDE (LOcorrect
post )

on each trial from the Bayesian+RT model fitted to each subject’s in-scanner behavioural 

data. As expected from the model-free pattern, a negative linear relationship was observed 

between model PDE and pMFC activity (Figure 3C; β = -0.052 (0.0085), χ2(1) = 37.3, P = 

1.03 × 10-9). No relationship was observed between pre-decision evidence (LOcorrect
pre ) and 

pMFC activity (β = -0.013 (0.013), χ2(1) = 1.10, P = 0.30), indicating specific engagement 

during post-decisional changes of confidence. To establish the anatomical specificity of the 

effect of PDE on brain activity we interrogated prefrontal and striatal ROIs also implicated 

in decision confidence and metacognition (ventral striatum, vmPFC and bilateral aPFC areas 

46, FPl and FPm from the atlas of Neubert et al.24; Supplementary Figures 6, 7 and 
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Supplementary Table 5). None of these ROIs showed an interaction between post-decision 

motion strength and choice (P > 0.05) and contrasts of regression coefficients revealed 

greater interaction effects in pMFC compared to aPFC subregions (area 46: χ2(1) = 3.7, P = 

0.054; FPl: χ2(1) = 5.0, P = 0.026; FPm: χ2(1) = 10.9, P = 0.00095).

Neural mediators of final confidence

Having identified a putative neural signature of PDE in pMFC, we next searched for brain 

areas tracking subjects’ final confidence in a decision. One computationally plausible 

hypothesis is that such updates of final confidence are mediated by anatomically distinct 

networks involved in metacognition25,26. Anterior prefrontal cortex (aPFC) is a leading 

candidate as this region is implicated in metacognitive assessment of both perceptual and 

economic decisions12,14,18. In a whole-brain analysis we found widespread activity 

showing both positive and negative relationships with final confidence (Figure 4A; 

Supplementary Table 6) in regions including pMFC (negative relationship), medial aPFC 

(positive relationship) and lateral aPFC (negative relationship), consistent with previous 

studies12,14,18,27.

We further sought to establish whether aPFC activation continues to track confidence shifts 

on trials in which discrete changes of mind were recorded (confidence levels < 0.5). Activity 

that tracks such changes of mind should show a consistent positive/negative slope across 

both change and no-change trials; in contrast, activity tracking decision value should reverse 

its relationship with confidence on change trials (due to the increasing reward available for 

betting against one’s choice; Figure 4B). In a split regression analysis, we found that 

regression coefficients in lateral aPFC ROIs were significantly negative on both change and 

no-change trials (Figure 4B and Supplementary Table 7; area 46: change trials β = -0.36 

(0.15), χ2(1) = 5.9, P = 0.015; no-change trials β = -0.25 (0.-54), χ2(1) = 20.6, P = 5.6 × 

10-6; FPl: change trials β = -0.41 (0.17), χ2(1) = 6.1, P = 0.013; no-change trials β = -0.12 

(0.15), χ2(1) = 4.1, P = 0.044). In contrast, regression coefficients in FPm flipped in sign on 

change vs. no-change trials (Figure 4B). Accordingly, when regressing regional timeseries 

against both confidence and value in the same GLM, we found that confidence but not value 

covaried with a late signal in area 46 and FPl (Figure 4C). Conversely, and consistent with 

previous reports18,19, FPm (and also pMFC, vmPFC and ventral striatal ROIs; see 

Supplementary Figure 7) showed simultaneous correlates of both confidence and value. 

These results support a conclusion that lateral aPFC subregions are specifically engaged 

when subjects change their minds about a previous decision on the basis of new evidence.

A key question is how PDE (encoded in pMFC) leads to subsequent shifts in final 

confidence in a previous decision. To test this hypothesis, we used multi-level mediation 

analysis21,28 to jointly test for effects of PDE (from subject-specific fits of the Bayesian

+RT computational model) on brain activity (path a), brain activity on final confidence (path 

b) and mediation (a × b) effects (Figure 5), while controlling for both response times and 

pre-decision evidence. A mediator can be interpreted as an indirect pathway through a brain 

area that links PDE with changes in subjective confidence, implying that if such a region 

were disrupted, this relationship would also be disrupted or abolished. We examined 
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mediation both in anatomically defined aPFC subregions and at the voxel level across the 

whole brain.

In line with our hypothesis, activity in area 46 and FPl was found to mediate the impact of 

PDE on final confidence (Figure 5A and Supplementary Table 8; a × b effect: area 46, P = 

0.0027; FPl, P = 0.0056). While mediation modeling is correlational, precluding a direct 

inference on directionality, we note that control models in which PDE and confidence were 

reversed did not result in a significant mediation effect in either area 46 (P = 0.54) or FPl (P 
= 0.46). Mediation may be driven either by consistent effects of paths a and b across the 

group, or by covariance between stimulus- and report-related responses21. In area 46 there 

was evidence for consistent main effects of path a and b in the group as a whole. In contrast, 

in FPl, mediation was driven by the covariance of a and b paths across subjects. Finally, in a 

voxel-based mediation analysis we observed a significant cluster in left lateral aPFC (Figure 

5B), corroborating our ROI analysis.

In an exploratory whole-brain analysis we also observed clusters in pMFC and bilateral 

parietal cortex that, together with aPFC, met whole-brain corrected statistical criteria for 

mediation (Supplementary Figure 8). This result is consistent with pMFC activity both 

tracking PDE (Figure 3C) and covarying with final confidence (Figure 4A). Taken together, 

our findings indicate complementary roles for frontal subregions in changes of mind: pMFC 

(but not aPFC) activity tracks PDE, whereas lateral aPFC additionally mediates changes in 

final confidence estimates, independently of decision value.

Discussion

Changing one’s mind on the basis of new evidence is a hallmark of cognitive flexibility. 

Such reversals are supported computationally by sensitivity to post-decision evidence – if I 

have made an error, and the new evidence is compelling, I should change my mind. Here we 

leveraged a novel manipulation of post-decisional information in perceptual decision-

making to study this process. Participants appropriately increased their confidence when 

new evidence was supportive of an initial decision, and decreased their confidence when it 

was contradictory. A signature of post-decision evidence encoding – a change in log-odds 

correct – was identified in the activity of posterior medial frontal cortex (pMFC). We further 

observed that distinct activity profiles in lateral aPFC mediated the impact of post-decision 

evidence on subjective confidence.

Previous work has focused on how stimulus evidence may reverse the accumulation of 

evidence in circuits coding for one or other choice option (e.g. left or right). To update one’s 

confidence in a previous choice, new evidence in the coordinate frame of stimulus/response 

may be further transformed into the coordinate frame of choice accuracy5. These schemes 

are not mutually exclusive – to update an ongoing action plan, it may be sufficient to 

continue accumulating evidence in a “pipeline” directly guiding the movement towards one 

or other target2,3, while in parallel revising one’s belief in the accuracy of a previous 

choice25,26. In an elegant behavioural study, van den Berg and colleagues demonstrated that 

a single stream of evidence may continue to accumulate during action initiation, and via a 

comparison to thresholds specified in stimulus/response space (i.e. log-odds rightward), be 

Fleming et al. Page 6

Nat Neurosci. Author manuscript; available in PMC 2018 September 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



used to guide changes of both decision and (response-specific) confidence3. Here, by 

introducing a novel manipulation of post-decisional information, we reveal a circumscribed 

activity pattern in pMFC consistent with tracking PDE in the frame of choice accuracy. 

Examining mutual interactions between evidence coded in the frame of stimulus/response 

identity or choice accuracy is beyond the design of the current study, but may be profitably 

investigated by tracking each of these coordinate frames using techniques with high 

temporal resolution such as magnetoencephalography.

Even in the absence of a direct manipulation of post-decision evidence, signal detection 

models of decision confidence predict an interaction between stimulus strength and choice 

accuracy16,29. We also observed such a pattern in our behavioural data – confidence 

decreased on error trials, and increased on correct trials, when pre-decision motion was 

stronger (Supplementary Table 2; this effect was tempered by the influence of response 

times on error-trial confidence, as shown by the fits of the Bayesian+RT model in Figure 2). 

However we note that the interaction effect in pMFC was primarily driven by post- not pre-

decision evidence (Supplementary Table 5) indicating a distinct role in post-decisional 

changes of mind. An interaction between stimulus strength and choice accuracy has also 

been observed in the activity of rodent orbitofrontal cortex in the absence of a post-decision 

evidence manipulation29, and inactivation of this region impairs confidence-guided 

behaviours30. Searching for signatures of PDE in other species may therefore shed light on 

mechanisms supporting changes of mind that are conserved (e.g. in homologies of 

pMFC31), and those that may be unique to humans (e.g. those supported by granular aPFC).

The function of pMFC in human cognition has been the subject of extended scrutiny and 

debate. A well-established finding is that a paracingulate region activates to self-errors, 

consistent with its role as a cortical generator of the error-related negativity8–10. More 

recently, studies have linked dorsal anterior cingulate activity to a broader role in 

behavioural switching away from a default option32. Our findings complement these lines of 

work by characterizing a computation related to changes of mind. Specifically, our analysis 

indicates that pMFC activity tracks whether an initial choice should be revised in light of 

newly acquired information. The peak activation in this contrast was obtained in pre-SMA, 

dorsal to the rostral cingulate zone33. While previous studies of error detection have focused 

on all-or-nothing, endogenous error responses in pMFC, our findings suggest a more 

computationally sophisticated picture: pMFC activity tracked graded changes in log-odds 

correct34,35 (Figure 3C). Together our results indicate that error monitoring, confidence and 

changes of mind may represent different behavioural manifestations of a common 

computation supported by inputs to pMFC25,36,37.

Beyond pMFC, we found a widespread network of regions where activity tracks final 

confidence including negative correlations in lateral PFC, parietal cortex and pMFC, and 

positive correlations in vmPFC and precuneus, consistent with previous 

findings12,14,18,19,27. Building on an analogous body of work on the neural substrates of 

subjective pain21,38, we leveraged mediation analysis to formally unpack an inter-

relationship between post-decision evidence, brain activity and the final confidence subjects 

held in their decision. Lateral aPFC (areas 46 and FPl) activity mediated the impact of post-

decision evidence on subjective confidence. Lateral aPFC has previously been implicated in 
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self-evaluation of decision performance12,14,18, and receives a significant anatomical 

projection from pMFC39. It is notable that in the current study, the activity profile of lateral 

aPFC covaried with final confidence in both mediation and regression analyses, but did not 

track post-decision evidence or decision value per se. It is therefore plausible that lateral 

aPFC supports a representation of choice quality that contributes to metacognitive control of 

future behavior40–42. Together with aPFC, exploratory whole-brain analyses also indicated 

posterior parietal cortex as a mediator of the impact of PDE on confidence, consistent with a 

role for a broader frontoparietal network in metacognition and confidence formation43,44.

In previous research it has proven difficult to isolate changes in decision confidence from 

other confounding variables. The probability of a previous decision remaining correct is 

often correlated with expected value. In other words, if subjects are motivated to be accurate, 

decision confidence usually scales with decision value. Here we separated expected value 

from confidence by allowing subjects to gain reward by betting against their original 

decision using the quadratic scoring rule. This rule returns maximum reward both when a 

correct trial is rated with high confidence and an incorrect trial is rated with low confidence 

(Figure 1C). In medial PFC we found a U-shaped pattern of activity in relation to reported 

confidence, consistent with previous findings that both confidence and value are multiplexed 

on the medial surface18,19. In contrast, lateral aPFC activity covaried with confidence but 

not value, indicating a specific role in changes of mind.

In conclusion, by integrating computational modeling with human fMRI, we reveal a neural 

signature of how new evidence is integrated to support graded changes of mind. Multiple 

coordinate frames are in play when new evidence leads to shifts in beliefs – from coding 

evidence in support of one or other decision option, to updating the accuracy of a choice, to 

communicating changes in confidence. Neuroimaging revealed complementary roles for 

frontal subregions in changes of mind: post-decision evidence was tracked by pMFC, while 

aPFC additionally mediated final confidence in choice. Failure of such updating mechanisms 

may lead to impairments to cognitive flexibility and/or an inability to discard previously 

held beliefs45,46. Together our findings shed light on the building blocks of changes of 

mind in the human brain, and indicate possible targets for amelioration of such deficits.

Online Methods

Participants

Twenty-five participants gave written informed consent to take part in a study conducted 

across two separate days. No statistical tests were used to pre-determine the sample size 

which is similar to those reported in previous publications14,32,40. A behavioural 

experiment was administered on the first day and an fMRI experiment on the second day. 

Twenty-five participants were included in the analysis of behavioural data (14 females, mean 

age 24.0, SD = 3.6). In the fMRI experiment, one participant was excluded due to excess 

head motion and one participant was excluded due to lack of variability in confidence 

ratings (308/360 trials were rated as 100% confident). A further participant attended only the 

first behavioural session. Twenty-two participants were included in the analysis of fMRI 

data (12 females, mean age 24.1, SD = 3.4). The study was approved by NYU’s University 
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Committee on Activities Involving Human Subjects, all relevant ethical regulations were 

followed, and participants provided written consent before the experiment.

Stimuli

The experiment was programmed in Matlab 2014b (MathWorks) using Psychtoolbox 

(version 3.0.12; 47,48). In the behavioural session stimuli were presented on an iMac 

desktop monitor viewed at a distance of approximately 45cm. In the scanner, stimuli were 

presented via a projector at an approximate viewing distance of 58cm. Stimuli consisted of 

random-dot kinematograms (RDKs). Each RDK consisted of a field of random dots (0.12° 

diameter) contained in a 7° circular white aperture. Each set of dots lasted for 1 video frame 

and was replotted 3 frames later49. Each time the same set of dots was replotted, a subset 

determined by the percent coherence was offset from their original location in the direction 

of motion and the remaining dots were replotted randomly. Motion direction was either to 

the left or right along the horizontal meridian. Coherently moving dots moved at a speed of 

5°/s and the number of dots in each frame was specified to create a density of 30 dots/deg2/s. 

Each RDK lasted for 300ms.

Task and procedure

Participants attended the laboratory on two different days. On the first day they completed a 

calibration session to obtain their psychometric function for motion discrimination, followed 

by 900 trials of the main experiment shown in Figure 1A. On the second day participants 

completed the fMRI scan. Data collection and analysis were not performed blind to the 

conditions of the experiments.

Behavioural session—Calibration phase: Before performing the main task each 

participant performed 240 trials of motion direction estimation without confidence ratings or 

additional post-decision motion. These trials were equally distributed across 6 coherence 

levels: 3%, 8%, 12%, 24%, 48% and 100%. Motion direction (left or right) was randomized 

and independent of coherence. Judgments were made using the left or right arrow keys on a 

standard computer keyboard after the offset of each stimulus, and the response was 

unspeeded. During the calibration phase (but not the experiment phase), auditory feedback 

was delivered to indicate whether the judgment was correct (high pitched tone) or incorrect 

(low pitched tone). The intertrial interval was 1s. The three coherence levels that resulted in 

60%, 75% and 90% correct choices were individually determined for each subject using 

probit regression. These coherence levels were then stored for use in the experiment phase.

Experiment phase: In the main experiment subjects completed 900 trials of the task shown in 

Figure 1A. Each trial consisted of the following events in sequence. A central fixation point 

(0.2° diameter) and empty aperture were presented, followed by an RDK of low, medium or 

high coherence. Following the offset of the RDK participants were asked to make a 

judgment as to whether the movement of the dots was to the left or the right. Their response 

triggered a second post-decision RDK that was shown after a delay of 100ms. The second 

post-decision RDK was always in the same (correct) direction as the first pre-decision RDK, 

but of a variable coherence. Subjects were instructed that this was “bonus” motion that they 

could use to inform their confidence in their initial response. They were told that the bonus 
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motion was always in the same direction as the regular motion, but were not informed that it 

may vary in strength. A fully factorial design crossed 3 pre-decision coherence levels with 3 

post-decision coherence levels yielding 9 experimental conditions each with 100 trials. Trial 

order was fully randomized for each subject.

After the bonus motion was displayed, an empty aperture was presented for 200ms and then 

participants were asked to indicate their confidence in their initial judgment on a horizontal 

scale (length = 14°) ranging from 0-100%. Confidence responses were made with a mouse 

click controlled by the right hand and could be made anywhere along the scale. Half of 

subjects saw the scale labeled with 0% on the left and 100% on the right and half saw the 

reverse orientation, with scale orientation fixed across both the behavioural and fMRI 

sessions. A vertical red cursor provided feedback as to the selected rating. In the behavioural 

session there was no time limit for either the response or the confidence rating, and no 

feedback was given as to whether the response was correct or incorrect.

fMRI session—During the structural scan at the start of the fMRI experiment, participants 

carried out a “top-up” calibration session consisting of 120 trials of left/right motion 

judgments without confidence ratings. Three randomly interleaved QUEST adaptive 

staircases were used to estimate coherence levels associated with 60%, 75% and 90% correct 

performance. The prior for each staircase was centered on the corresponding coherence 

estimate derived from the behavioural calibration session.

Prior to entering the scanner, participants were re-familiarized with the task and confidence 

rating scale. The task was identical to that described above except for the following changes. 

Response deadlines of 1.5s and 3s were imposed for the initial decision and confidence 

rating, respectively. Both motion judgments and confidence ratings were made via an fMRI 

button box held in the right hand. To rate confidence, participants used their index and 

middle fingers to move a cursor in steps of 10% to the left or right of the scale. The initial 

cursor location on each trial was randomized. The rating was confirmed by pressing a third 

button with the ring finger, after which the cursor changed from white to red for 500ms. 

During each of the 4 scanner runs participants completed 90 trials.

After the main experiment we carried out a localizer scan for motion-related activity. During 

this scan participants passively viewed 20 alternating displays of moving and stationary dots, 

each lasting 12s. Equal numbers of leftward and rightward moving dot displays were 

included at a constant coherence of 50%.

Scoring rule for confidence ratings—Confidence ratings were incentivized using the 

quadratic scoring rule (QSR)50:

points = 100 * 1 − correcti − con f i
2

where correcti is equal to 1 on trial i if the choice was correct and 0 otherwise, and confi is 

the subject’s confidence rating on trial i entered as a probability between 0 and 1. The QSR 

is a proper scoring rule in that maximum earnings are obtained by jointly maximizing the 
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accuracy of choices and confidence ratings51. For every 5,000 points subjects received an 

extra $1. This scoring rule ensures that confidence is orthogonal to the reward the subject 

expects to receive for each trial. Maximal reward is obtained both when one is maximally 

confident and right, and minimally confident and wrong (Figure 1C).

The confidence scale was labeled both with scale steps of 0%, 20%, 40%, 60%, 80% and 

100% (positioned above the line) and, following Boldt and Yeung34, verbal confidence 

labels of “certainly wrong”, “probably wrong”, “maybe wrong”, “maybe correct”, “probably 

correct” and “certainly correct” (positioned below the line). The scale midpoint was marked 

with a vertical tick halfway between the 40% and 60% labels. Prior to taking part in the 

main experiment participants underwent a training session to instruct them in the use of the 

confidence scale. Following Moore and Healy52, participants were first instructed:

“You can win points by matching your confidence to your performance. 

Specifically, the number of points you earn is based on a rule that calculates how 

closely your confidence tracks your performance: points = 100 ∗ [1 − (accuracy − 

confidence)2]. This formula may appear complicated, but what it means for you is 

very simple: You will get paid the most if you honestly report your best guess about 

the likelihood of being correct. You can earn between 0 and 100 points for each 

trial.”

Participants were then asked where they should click on the scale if they were sure they 

responded either correctly or incorrectly. They were then informed:

“The correct answers were: If you are sure you responded correctly, you should 

respond 100% confidence/certainly correct. If you are sure you picked the wrong 

direction, you should respond 0% confidence/certainly wrong. If you are not 100% 

sure about being correct or incorrect you should select a location in between 

according to the following descriptions on the confidence scale: probably incorrect 

= 20% confidence; maybe incorrect = 40% confidence; maybe correct = 60% 

confidence; probably correct = 80% confidence. You can also click anywhere in 

between these percentages.”

Statistics

Effects of condition on confidence ratings and accuracy were assessed using hierarchical 

mixed-effects regression using the lme4 package in R (Version 3.3.3; 53). For confidence 

ratings we constructed linear models separately for correct and incorrect trials. Pre- and 

post-decision coherence values and their interaction were entered as separate predictors of 

confidence. Log response times were also included in the model. We obtained P-values for 

regression coefficients using the car package for R54. Mixed-effects logistic regression was 

used to quantify the effect of condition on response accuracy. In all regressions we modeled 

subject-level slopes and intercepts, and report coefficients and statistics at the population 

level. The distribution of residuals in regression models was assumed to be normal but this 

was not formally tested.
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Computational models

Bayesian model—We developed a Bayesian model of choice and confidence that is 

grounded in signal detection theory. Subjects receive two internal samples, Xpre generated 

from pre-decision motion and Xpost from post-decision motion. Motion direction d ∈ [−1 1] 

determines the sample means with Gaussian signal-to-noise depending linearly on coherence 

θpre or θpost via sensitivity parameter k:

X pre ∼ N dkθpre, 1

X post ∼ N dkθpost, 1

We assume that subjects do not know the coherence levels on a particular trial (θpre and 

θpost) which are nuisance parameters that do not carry any information about the correct 

choice. We therefore approximate the likelihood of Xpre and Xpost as a Gaussian with mean 

μ and variance σ2 determined by a mixture of Gaussians across each of the three possible 

coherence levels. Starting with Xpre:

P X pre d = 1 = ∑
θpre

p θpre N kθpre, 1

As each of the three coherence levels are equally likely by design (p θpre = 0.33) we can 

define the mean as:

μ =
∑kθpre

3

The aggregate variance σ2 can be decomposed into both between- and within-condition 

variance. From the law of total variance:

σ2 = ∑
θpre

p θpre E X pre kθpre − μ
2 + ∑

θpre

p θpre Var X pre kθpre

σ2 = ∑
θpre

p θpre kθpre − μ
2 + 1

Because the possible values of θ are the same pre- and post-decision, μ and σ2 are the same 

for both Xpre and Xpost. Actions a are made by comparing Xpre to a criterion parameter m 
that accommodates any stimulus-independent biases towards the leftward or rightward 

response, a = sign(Xpre − m).

Each sample, Xpre and Xpost, updates the log posterior odds of motion direction (rightward 

or leftward), LOdir, which under flat priors is equal to the log-likelihood:
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LOdir
pre = log

P d = 1 X pre
P d = − 1 X pre

= log
P X pre d = 1

P X pre d = − 1

LOdir
post = log

P d = 1 X post
P d = − 1 X post

= log
P X post d = 1

P X post d = − 1

where, due to the Gaussian generative model for X, LOdir is equal to:

LOdir = loge μ + X 2/2σ2

e μ − X 2/2σ2

LOdir = 2μX

σ2

The total accumulated evidence for rightward vs. leftward motion at the end of the trial is:

LOdir
total = LOdir

pre + LOdir
post

Positive values indicate greater belief in rightward motion; negative values greater belief in 

leftward motion.

To update confidence in one’s choice, the belief in motion direction (LOdir) is transformed 

into a belief about decision accuracy (LOcorrect) conditional on the chosen action:

If a = 1:

LOcorrect = LOdir

Otherwise:

LOcorrect = − LOdir

As for LOdir, LOcorrect can be decomposed into pre- and post-decisional components:

LOcorrect
total = LOcorrect

pre + LOcorrect
post

The final log odds correct is then transformed to a probability to generate a confidence 

rating on a 0-1 scale:

Confidence = 1
1 + exp −LOcorrect

total
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Extensions of Bayesian model—Temporal weighting 

We considered that subjects may apply differential weights to pre- and post-decision motion 

when computing confidence6,7. To capture this possibility, we introduced free parameters 

wpre and wpost that controlled the relative weights applied to pre- and post-decision 

evidence:

LOcorrect
total = wpreLOcorrect

pre + wpostLOcorrect
post

Choice weighting 

We considered that subjects might pay selective attention to post-decision evidence 

dependent on whether it is consistent/inconsistent with their initial choice (a form of 

commitment bias; this is similar to the “selective reduced-gain” model of Bronfman et al.6). 

To capture such effects, we introduced two weighting parameters wcon and wincon that 

differentially weight confirmatory and disconfirmatory post-decision evidence:

If sign(LOdir
post) = sign(a):

LOcorrect
total = LOcorrect

pre + wconLOcorrect
post

Otherwise:

LOcorrect
total = LOcorrect

pre + winconLOcorrect
post

Choice bias 

A second variant of commitment bias operates to boost confidence in the chosen response 

without altering sensitivity to post-decision evidence (the choice acts as a prior on 

subsequent confidence formation25; this is similar to Bronfman et al.’s “value-shift” 

model6). To capture such effects, we introduced a parameter b that modulated final 

confidence dependent on the choice:

LOdir
bias = sign(a) * log b

1 − b

LOdir
total = LOdir

pre + LOdir
post + LOdir

bias

If a = 1:

LOcorrect
total = LOdir

total

Otherwise:
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LOcorrect
total = − LOdir

total

Nonlinear confidence mapping 

The ideal observer model assumes that subjects faithfully report probability correct, which 

maximizes the quadratic scoring rule (QSR). We also considered that subjects misperceive 

the scoring rule (or, equivalently, apply a nonlinear mapping between probability correct and 

reported confidence), with consequences for how particular confidence ratings were 

selected. For instance, subjects may overweight the extremes of the scale due to perceiving 

these extremes as returning greater reward.

Such misperceptions can be captured by allowing a flexible mapping between the model’s 

confidence and reported confidence. We implemented a one-parameter scaling of log-odds22 

which is able to capture both under- and overweighting of extreme confidence ratings:

LO(π(c)) = γ . log c
1 − c

Confidence = 1
1 + exp − LO π c

where c denotes the interim output of the model’s estimate of probability correct.

When γ = 1, π(c) = c, and there is no distortion. When γ > 1, the curve relating model 

confidence to reported confidence is S-shaped, whereas when 0 < γ < 1, an inverted-S-

shaped curve is obtained.

Informing confidence with decision time 

Finally we considered that in all models subjects may use decision time from the initial 

decision as a cue to confidence23. To capture this possibility we modulated the final 

LOcorrect
total  of both the Bayesian and extended models by response time via a free parameter 

βRT:

LOcorrect
total LOcorrect

total + βRTlog(RT)

In the case of the mapping model the modulation by decision time was applied prior to 

passing LOcorrect
total  through the nonlinear mapping function.

This set of model extensions led to a factorial combination of 5 model variants (ideal 

Bayesian, temporal weighting, choice weighting, choice bias, mapping) × 2 (non-response 

time dependent, response time dependent) = 10 models which were fitted to each subject/

dataset as described below.
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Model fitting—We used Markov chain Monte Carlo methods implemented in STAN55 to 

sample from posterior distributions of parameters given motion directions d, motion 

coherences θpre and θpost, subjects’ choices a and confidence ratings r.

Pseudo-code for the Bayesian model is given below (following STAN convention, scale 

parameters are written as standard deviations):

Priors:

m ∼ N(0, 10)
k ∼ N(0, 10)

Model:

X pre ∼ N(dkθpre, 1)

X post ∼ N(dkθpost, 1)

a ∼ Bernoulli_logit 100 ∗ X pre − m ))

r ∼ N(conf, 0.025)

“conf” is the output of the confidence computation detailed above. The logit function 

implements a steep softmax relating Xpre to a and is applied for computational stability. The 

mapping between model confidence and observed confidence allowed a small degree of 

imprecision (σ = 0.025) in subjects’ ratings, roughly equivalent to grouping continuous 

ratings made on a 0-1 scale into ten bins.

We placed weakly informative priors over coefficients in the extended models for 

computational stability. In the weighted models, w parameters were drawn from N(1, 1) 

distributions bounded below by 0 and above by 5. In the bias model, b was drawn from a 

uniform [0 1] distribution. In the nonlinear mapping model, γ was drawn from a positively 

constrained N(1, 1) distribution. In the RT models, βRT was drawn from a N(0, 10) 

distribution.

We fitted each model with 12,000 samples divided across 3 chains separately for each 

subject’s fMRI and behavioural datasets. 1000 samples per chain were discarded for burn-in, 

resulting in 9,000 stored samples. Chains were visually checked for convergence and 

Gelman and Rubin’s potential scale reduction factor R̂ was calculated for all parameters. For 

the majority (469 out of 470) of models/subjects, R̂ values were all < 1.1, indicating good 

convergence. The fit of the choice weighted+RT model to the behavioural session data failed 

to converge for one subject; this log-likelihood value was omitted from the model 

comparison calculations detailed below.

Model comparison—To compare models we assessed the ability of a model fit to 

behavioural data to capture the data of the same subject in the fMRI session, and vice-versa. 

For each subject and model we drew 1000 samples from posterior distributions of fitted 

parameters and generated synthetic choice and confidence data. The trialwise log-likelihood 

(itself a sum of choice and confidence rating log-likelihoods) was summed across trials and 
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stored for each parameter draw, and then averaged across draws to return a subject- and 

model-specific cross-validated log-likelihood. Fitted parameter values from the best-fitting 

Bayesian+RT model for behavioural and fMRI sessions are listed in Supplementary Table 3.

Model simulations—To visualize qualitative features of the Bayesian model (Figure 1B) 

we simulated 10,000 trials from each condition of the factorial design with k=4 and m=0. 

Pre- and post-decision motion coherences were crossed in a fully factorial design and drawn 

from the set 0%, 25% or 50%. True motion direction d was selected randomly on each trial.

To determine the ability of the best-fitting Bayesian+RT model to account for subjects’ 

choices and confidence ratings (a posterior predictive check), we drew 1000 samples from 

posterior distributions of fitted parameters and for each draw simulated one trial sequence 

with these parameter settings and averaged over simulations. To obtain regressors for fMRI 

and mediation analyses we also stored values of pre-decision evidence (LOcorrect
pre ) and post-

decision evidence (LOcorrect
post ) averaged over 5000 trials per condition (3 pre-decision 

coherence levels × 3 post-decision coherence levels × 2 choice accuracies).

fMRI acquisition and preprocessing

Whole-brain fMRI images were acquired using a 3T Allegra scanner (Siemens) with an 

NM011 Head transmit coil (Nova Medical, Wakefield, MA) at New York University’s 

Center for Brain Imaging. BOLD-sensitive echo-planar images (EPI) were acquired using a 

Siemens epi2d BOLD sequence (42 transverse slices, TR = 2.34s; echo time = 30ms; 3 x 3 x 

3 mm resolution voxels; flip angle = 90 degrees; 64 x 64 matrix; slice tilt -30deg T > C; 

interleaved acquisition). The main experiment consisted of 4 runs of 315 volumes, and the 

localizer scan consisted of a single run of 211 volumes. A high-resolution T1-weighted 

anatomical scan (MPRAGE, 1x1x1 mm voxels, 176 slices) and local field maps were also 

acquired.

All preprocessing was carried out using SPM12 v6225 (Statistical Parametric Mapping; 

www.fil.ion.ucl.ac.uk/spm). The first 5 volumes of each run were discarded to allow for T1 

equilibration. Functional images were slice-time corrected, realigned and unwarped using 

the collected field maps56. Structural T1-weighted images were coregistered to the mean 

functional image of each subject using the iterative mutual information-based algorithm. 

Each participant’s structural image was segmented into gray matter, white matter and 

cerebral spinal fluid images using a nonlinear deformation field to map it onto a template 

tissue probability map57. These deformations were applied to both structural and functional 

images to create new images spatially normalized to Montreal Neurological Institute space 

and interpolated to 2x2x2 mm voxels. Normalized images were spatially smoothed using a 

Gaussian kernel with full-width half-maximum of 6mm.

fMRI analysis

We employed a combination of region-of-interest (ROI) analyses on trial-by-trial activity 

estimates, multilevel mediation models and standard whole-brain general linear model 

(GLM) approaches.
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Whole-brain univariate analysis—We used SPM12 for first-level analyses. In all 

GLMs, regressors were convolved with a canonical hemodynamic response function. Motion 

correction parameters estimated from the realignment procedure and their first temporal 

derivatives were entered as nuisance covariates, and low-frequency drifts were removed 

using a high-pass filter (128 s cutoff).

GLM1 

GLM1 was constructed to examine activity associated with changes in post-decision motion 

strength. Correct and incorrect trials were modeled as separate stick functions timelocked to 

the onset of the post-decision motion plus parametric modulations by post-decision motion 

strength (low= -1, medium = 0, high = 1). Additional regressors were also included at the 

onset of pre-decision motion (parametrically modulated by pre-decision motion strength and 

log response times) and confidence rating period.

GLM2 

GLM2 was constructed to examine activity associated with changes in reported confidence. 

A stick function timelocked to confidence rating onset was parametrically modulated by 

reported confidence. Regressors were also included at the onset of pre-decision motion 

(parametrically modulated by log response times) and post-decision motion.

ROI analysis—A priori regions of interest were specified as follows. The pMFC ROI was 

an 8mm sphere around peak coordinates (MNI coordinates [x, y, z] = [0 17 46]) obtained 

from our previous study of decision confidence12. Anterior prefrontal ROIs were obtained 

from the right-hemisphere atlas developed by Neubert et al.24 (area 46, FPl and FPm) and 

mirrored to the left hemisphere to create bilateral masks. The vmPFC ROI was an 8mm 

sphere around peak coordinates [-1 46 -7] obtained from a meta-analysis of value-related 

activity58. The ventral striatum ROI was specified anatomically from the Oxford-Imanova 

Striatal Structural atlas included with FSL (http://fsl.fmrib.ox.ac.uk). Within each ROI we 

averaged single-trial beta estimates over voxels, scaled the timeseries to have zero mean and 

unit SD, and computed the mean activity per condition.

Quantification of single-trial response magnitudes 

To facilitate both ROI and mediation analyses we estimated single-trial BOLD responses as 

a beta timeseries. This was achieved by specifying a GLM design matrix with separate 

regressors (stick functions) for each trial, each aligned to either the onset of the post-

decision motion stimulus (for PDE analyses in Figure 3) or the confidence rating period (for 

mediation models and regressions on confidence; Figures 4 and 5). Each regressor was 

convolved with a canonical hemodynamic response function (HRF). Motion correction 

parameters estimated from the realignment procedure and their first temporal derivatives 

were entered as nuisance covariates, and low-frequency drifts were removed using a high-

pass filter (128 s cutoff). One important consideration in using single-trial estimates is that 

the beta for a given trial can be strongly affected by acquisition artifacts that co-occur with 

that trial (e.g. motion or scanner pulse artifacts). For each subject we therefore computed the 

grand mean beta estimate across both voxels and trials, and excluded any trial whose mean 
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beta estimate across voxels exceeded 3 SDs from this grand mean38. An average of 3.6 trials 

per subject (1.0%; maximum = 9 trials) were excluded.

To visualize the relationship between activity and task variables over time we also extracted 

the pre-processed BOLD data per TR. Low-frequency drifts (estimated using a cosine basis 

set, 128 s cutoff) and motion parameters plus their first temporal derivatives were regressed 

out of the signal, and the residual activity was oversampled at 10 Hz. Timecourses were 

extracted from 12 second windows timelocked to the onset of pre-decision motion. To 

construct Figure 4C we applied a GLM (see below) to each timepoint resulting in a 

timecourse of beta weights for each regressor. Nonparametric permutation tests were used to 

assess significant group-level significance of beta weights. For each permutation, we 

randomised the assignment between BOLD timeseries and trial labels and recalculated the 

group-level T-statistic comparing beta weights against zero (10,000 permutations). 

Individual timepoints were labeled as significant if the true T-statistic fell outside the 2.5 or 

97.5 percentiles of the null distribution.

ROI GLMs 

As in our regression analyses of behavior, we modeled subject-level slopes and intercepts, 

and report coefficients and statistics at the population level. To test for an interaction 

between response accuracy and post-decision evidence, we fitted the following model to 

each ROI beta series:

BOLD ∼ accuracy + pre_decision_coherence + post_decision_coherence
+ accuracy * pre_decision_coherence + accuracy * post_decision_coherence + log(RT)

Accuracy was specified as error=-1, correct=1; pre- and post-decision coherence were 

specified as low=-1, medium=0, high=1.

To estimate relationships between ROI activity and pre- and post-decision evidence from the 

fitted computational model (i.e. log-odds correct) we fitted the following model:

BOLD ∼ LOcorrect
pre + LOcorrect

post + log(RT)

To assess relationships between confidence and activity on both change and no-change of 

mind trials, we conducted a segmented regression analysis. This method partitions the 

independent variable into discrete intervals, and a separate slope is fit to each interval. Here, 

we separated the effect of confidence on change (confidence <= 0.5) and no-change 

(confidence > 0.5) trials, and fit the following model:

BOLD ∼ change_confidence + no_change_confidence + log(RT)

Multilevel mediation analysis 

We performed multilevel mediation analysis of a standard three-variable model20 using the 

Mediation Toolbox (http://wagerlab.colorado.edu/tools). Mediation analysis assesses 

whether covariance between two variables (X and Y) is explained by a third variable (the 

mediator, M). Significant mediation is obtained when inclusion of M in a path model of the 
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effects of X on Y significantly alters the slope of the X-Y relationship. When applied to 

fMRI data, mediation analysis thus extends the standard univariate model by incorporating 

an additional outcome variable (in this case, confidence reports) and jointly testing three 

effects of interest: the impact of X (post-decision evidence, LOcorrect
post ) on brain activity (path 

a); the impact of brain activity on Y (confidence reports), controlling for X (path b); and 

formal mediation of X on Y by brain activity M. In all models we included log reaction 

times and pre-decision evidence (LOcorrect
pre ) as covariates of no interest.

The Mediation Toolbox permits a multi-level implementation of the standard mediation 

model, treating participant as a random effect59. Significance estimates for paths a, b and a 
× b are computed through bootstrapping. We estimated distributions of subject-level path 

coefficients by drawing 10,000 random samples with replacement. Two-tailed p-values were 

calculated at each voxel/ROI from the bootstrap confidence interval60.

Whole-brain statistical inference 

Single-subject contrast images were entered into a second-level random effects analysis 

using one-sample t-tests against zero to assess group-level significance. To correct for 

multiple comparisons we used Gaussian random field theory as implemented in SPM12 to 

obtain clusters satisfying P<0.05, family-wise error (FWE) corrected at a cluster-defining 

threshold of P<0.001. Numerical simulations and tests of empirical data collected under the 

null hypothesis show that this combination of cluster-defining threshold and RFT produces 

appropriate control of false positives61,62.

To apply multiple comparisons correction to the multilevel mediation model output we took 

a non-parametric approach due to second-level images already comprising bootstrapped P-

values. The cluster extent threshold for FWE correction was estimated based on Monte 

Carlo simulation (100,000 iterations) using the 3dClustSim routine in AFNI (version 

compiled September 2015; http://afni.nimh.nih.gov) and SPM 12’s estimate of the intrinsic 

smoothness of the residuals. Again this method in conjunction with a cluster-defining 

threshold of P < 0.001 provides appropriate control over false positives61,62. Statistical 

maps were visualized using FSLview (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) and Surf Ice 

(https://www.nitrc.org/projects/surfice/).

Life Sciences Reporting Summary

Further information on experimental design is available in the Life Sciences Reporting 

Summary.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Post-decision evidence task and computational framework.
A) Task design. Participants made an initial left/right motion discrimination judgment, after 

which they saw additional post-decision motion of variable coherence moving in the same 

direction as pre-decision motion. They were asked to rate their confidence in their initial 

choice on a scale from 0% (certainly wrong) – 100% (certainly correct). Confidence scale 

steps were additionally labeled with the words “certainly wrong”, “probably wrong”, 

“maybe wrong”, “maybe correct”, “probably correct”, “certainly correct” (not shown). B) 

Bayesian graphical model indicating how pre- and post-decision motion samples are 

combined with the chosen action to update an estimate of decision confidence. C) Simulated 

decision variables from the model in (B) showing a distinction between updating evidence in 

the coordinate frame of motion direction (left panel) and choice accuracy (middle panel) as a 

function of post-decision motion strength and choice. A change in log-odds correct (“post-

decision evidence”; PDE) is revealed by a qualitative interaction between post-decision 

motion strength and choice accuracy (middle panel). The right panel indicates the expected 

mapping between log-odds correct and both final confidence/decision value. Confidence and 

value are dissociated on change-of-mind trials (confidence < 0.5) through use of a quadratic 

scoring rule, which rewards subjects for both being confident and right, and unconfident and 

wrong.

Fleming et al. Page 24

Nat Neurosci. Author manuscript; available in PMC 2018 September 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. Behavioural results.
Upper panels show data collected in an initial behavioural session (900 trials per subject, 

N=25 subjects); lower panels show behavioural data collected during the fMRI session (360 

trials per subject, N=22 subjects). In each panel data are separated by pre- and post-decision 

motion coherence (L=low; M=medium; H=high). A, C) Performance (% correct). B, D) 

Aggregate confidence ratings separated according to whether the decision was correct (blue) 

or incorrect (orange). Lines show data simulated from the best-fitting Bayesian+RT model 

parameters. Data are plotted as boxplots for each condition in which horizontal lines indicate 

median values, boxes indicate 25-75% interquartile range and whiskers indicate minimum 

and maximum values; data points outside of 1.5 × the interquartile range are shown 

separately as circles. For model simulations, error bars reflect 95% confidence intervals for 

the mean. See also Supplementary Figure 5.
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Figure 3. Neural signatures of post-decision evidence.
A) Whole-brain statistical parametric map for the interaction contrast error/correct × post-

decision motion strength, thresholded at P < 0.05 FWE corrected, cluster-defining threshold 

P < 0.001 (coronal section, y=18; saggital section, x=6). Activation in pMFC was significant 

corrected for multiple comparisons at both the voxel- and cluster-level (peak MNI 

coordinate: [6 18 50]). N=22 subjects. B) fMRI signal extracted from an independent pMFC 

ROI and sorted according to the subject’s choice accuracy (orange = error, blue = correct) 

and post-decision motion strength. The left panel shows activity timecourses aligned to the 

onset of pre-decision motion (trial start); the right panel shows condition-specific activity 

estimated from regressors aligned to the onset of post-decision motion. A significant 

interaction between choice accuracy and post-decision motion strength was obtained in 

pMFC; **, hierarchical regression, two-tailed Type III Wald χ2test, P = 0.0022. N=22 

subjects. C) Average BOLD signal in the pMFC ROI as a function of post-decision evidence 

extracted from the Bayesian+RT model fit (change in log-odds correct). For visualization, 

post-decision evidence is collapsed into 4 equally spaced bins per subject. N=22 subjects. In 

panels B and C, BOLD data are plotted as boxplots for each condition in which horizontal 

lines indicate median values, boxes indicate 25-75% interquartile range and whiskers 

indicate minimum and maximum values; data points outside of 1.5 × the interquartile range 

are shown separately as circles. Solid lines show the mean of subject-level linear fits.
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Figure 4. Neural signatures of final confidence in choice.
A) Whole-brain analysis of activity related to final confidence reports on each trial. Cool 

colours indicate negative relationships; hot colours indicate positive relationships. 

Thresholded at P < 0.05, FWE corrected for multiple comparisons, cluster-defining 

threshold P < 0.001. N=22 subjects. B) Hierarchical regression coefficients relating 

confidence to single-trial activity estimates on both change and no-change of mind trials. 

Orange arrows indicate that the pattern of coefficients is consistent in sign, as predicted for 

regions tracking the full range of final confidence in an initial choice. Yellow arrows indicate 

a flip in sign, as predicted for regions tracking changes in decision value. Error bars indicate 

standard errors of the coefficient means. ** P < 0.01, * P < 0.05, two-tailed Type III Wald 

χ2test; see Supplementary Table 7. N=22 subjects. C) Multiple regressions of confidence 

and value on activity timecourse in ROIs. Points below timecourse indicate significant 

excursions of T-statistics assessed using two-tailed permutation tests. Error bars indicate 

standard errors of the coefficient mean. N=22 subjects.
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Figure 5. Neural mediation of PDE on final confidence.
A) Multi-level mediation analysis assessing whether the effect of PDE on final confidence is 

mediated by activity in anatomically defined aPFC ROIs. For each ROI, the upper row of 

models indicates forward mediation; the lower row indicates reverse mediation (of 

confidence onto PDE). Mediation was observed only for forward models in areas 46 and FPl 

(red arrows). Arrow thickness reflects two-tailed bootstrapped P-values; see Supplementary 

Table 8 for statistics. N=22 subjects. B) The model used in (A) was fit to each voxel 

independently to create a map of P-values for the mediation (a × b) effect in aPFC. 

Thresholded at P < 0.05 FWE corrected at the cluster level using Monte Carlo simulation, 

cluster-defining threshold P < 0.001. N=22 subjects. See also Supplementary Figure 8.
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