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A B S T R A C T   

Since the onslaught of SARS-CoV-2, the research community has been searching for a vaccine to fight against this 
virus. However, during this period, the virus has mutated to adapt to the different environmental conditions in 
the world and made the task of vaccine design more challenging. In this situation, the identification of virus 
strains is very much timely and important task. We have performed genome-wide analysis of 10664 SARS-CoV-2 
genomes of 73 countries to identify and prepare a Single Nucleotide Polymorphism (SNP) dataset of SARS-CoV-2. 
Thereafter, with the use of this SNP data, the advantage of hierarchical clustering is taken care of in such a way 
so that Average Linkage and Complete Linkage with Jaccard and Hamming distance functions are applied 
separately in order to identify the virus strains as clusters present in the SNP data. In this regard, the consensus of 
both the clustering results are also considered while Silhouette index is used as a cluster validity index to 
measure the goodness of the clusters as well to determine the number of clusters or virus strains. As a result, we 
have identified five major clusters or virus strains present worldwide. Apart from quantitative measures, these 
clusters are also visualized using Visual Assessment of Tendency (VAT) plot. The evolution of these clusters are 
also shown. Furthermore, top 10 signature SNPs are identified in each cluster and the non-synonymous signature 
SNPs are visualised in the respective protein structures. Also, the sequence and structural homology-based 
prediction along with the protein structural stability of these non-synonymous signature SNPs are reported in 
order to judge the characteristics of the identified clusters. As a consequence, T85I, Q57H and R203M in NSP2, 
ORF3a and Nucleocapsid respectively are found to be responsible for Cluster 1 as they are damaging and unstable 
non-synonymous signature SNPs. Similarly, F506L and S507C in Exon are responsible for both Clusters 3 and 4 
while Clusters 2 and 5 do not exhibit such behaviour due to the absence of any non-synonymous signature SNPs. 
In addition to all these, the code, SNP dataset, 10664 labelled SARS-CoV-2 strains and additional results as 
supplementary are provided through our website for further use.   

1. Introduction 

SARS-CoV-2 is the causal agent for current ongoing outbreak of 
disease commonly known as COVID-19 (Zhou et al., 2020) which has 
proven to have a detrimental effect on the humankind. As a result, 
medical emergencies have surged and a halt of economic growth has 
occurred around the globe due to an eccentric impact of SARS-CoV-2. 

SARS-CoV-2 belongs to the family of Coronaviridae which also houses 
SARS-CoV-1 and MERS-CoV (van Dorp et al., 2020). First case of Severe 
Acute Respiratory Syndrome (SARS) was registered way back in 
2002-03, which took around 8000 lives.2 Another pathogenic invasion 
was reported in 2012, named as Middle East Respiratory Syndrome 
Coronavirus (MERS-CoV) with a worldwide mortality rate of 35.5% 
(Ahmed, 2017). However, these two viruses have a significantly low 
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transmission rate among the masses as compared to SARS-CoV-2 
(Petersen et al., 2020). On the other hand, SARS-CoV-2 which 
emerged in late 2019 in China has now spread across the globe. On 11th 
March 2020, World Health Organization (WHO) declared COVID-19 as a 
global pandemic due to its high transmission rate and adverse effect on 
health care systems resulting in 112.2 million affected and 2485k deaths 
till now (Worldometer, 2021). In this current havoc situation, many 
organizations such as The University of Oxford (Folegatti et al., 2020), 
Bharat BioTech, Beijing Institute of Biological Products are witnessing 
their ongoing trials of designed vaccines respectively to curb the impact 
of this contagious virus. In fact, in India indigenously produced Covaxin 
by Bharat BioTech and Covishield (the local name for the 
Oxford-AstraZeneca vaccine developed in the UK) are already being 
disseminated among the masses. 

Vaccine development is a key component in the prevention of disease 
spread and reduction in the morbidity and mortality associated with the 
diseases by evoking an immune response in form of antigens against 
regions of proteins which are critical for pathogen binding (Amela et al., 
2007). Since the emergence of SARS-CoV-2 in December 2019, many 
mutations such as substitutions and deletions in its coding and 
non-coding regions have been discovered (Phan, 2020) till date. 
Genome-wide analysis of 566 Indian SARS-CoV-2 genomes (Saha et al., 
2020) revealed numerous mutation points as substitutions, deletions, 
insertions and single nucleotide polymorphism popularly known as SNP. 
Among all types of mutations, SNP (Nogales and Dieg, 2019; Yin, 2020) 
can be considered to be the source of variance in virus genomes giving a 
way for re-emergence, drug resistance and antibody escape for patho-
gens. SNPs were used in (Yang et al., 2020) to classify four super 
spreader (SS) clusters according to relative variants. According to their 
study, SS1 was widely spread in Asia and US, while SS4 was responsible 
for the pandemic in Europe. Hence, SNPs play a vital role in tracking 
virus strains and variations. Analysis of SNP was carried out in (Lo et al., 
2018) as well where they suggested a change in the samples of Plas-
modium falciparum between the northern and southern regions of 
Western Kenya; the samples from the southern part showed lesser 
divergence from each other. Furthermore, clustering has been used by 
many studies (Sevilla-Reyes et al., 2013; Fischer et al., 2018; Hahn et al., 
2020) to understand genetic characteristics for a large set of genomes. 
To detect genetic diversity of non-structural (NS1) protein of influenza A 
virus, (Sevilla-Reyes et al., 2013) used clustering on the available pro-
tein sequence data and combined it with maximum likelihood phylo-
genetic RNA reconstruction and consensus WebLogo comparison. In 
(Fischer et al., 2018), Fischer et al. have used affinity propagation 
clustering to define clusters for rabies virus (RABV). Most recently, 
unsupervised cluster analysis of SARS-CoV-2 genomes have been carried 
out in (Hahn et al., 2020) by using principal component analysis to a 
similarity matrix to compare all pairs of 2540 nucleotides using Jaccard 
index. The analysed results were used to illustrate the geographic pro-
gression of the virus. Apart from this, for clustering of SARS-CoV-2 ge-
nomes, online web servers like GISAID CoVsurver3 and Pangolin4 exist. 
However, these servers take a substantial amount of time while per-
forming clustering in order to generate phylogenetic tree as they 
consider all substitutions like mutation. This drawback has motivated us 
to perform the underlying clustering task faster and accurately on 
smaller and relevant features like SNP in order to identify SARS-CoV-2 
virus strains of 10664 SARS-CoV-2 genomes. 

To address the clustering task, we have performed genome-wide 
analysis of 10664 SARS-CoV-2 genomes from 73 countries to deter-
mine the SNPs. SNPs represent mutation as substitution that occurs in 
more than 1% of the virus population for a given genomic position. In 
this regard, 107 SNPs are identified throughout the genome which are 
used to prepare a binary dataset. In order to identify the virus strains 

from this binary dataset, careful application of clustering methods with 
proper distance functions is very crucial. Thus, from our previous clus-
tering experience, the use of hierarchical clustering such as Average 
Linkage and Complete Linkage with Jaccard and Hamming distances are 
appropriate in this context, while for computing the goodness of the 
clustering, the Silhouette index can be used with the same distance 
functions. Moreover, the consensus of the clustering results can be an 
added boost for the identification of the proper number of clusters as 
virus strains. To the best of our knowledge, this approach has not yet 
been applied for the identification of SARS-CoV-2 virus strains. This 
approach results in five major clusters as virus strains. Moreover, their 
presence in different countries are identified along with the evolution of 
the virus genomes from January to July 2020 for each of the 73 coun-
tries. These outcomes are shown quantitatively and visually through 
BioCircos (Cui et al., 2016), Visual Assessment of Tendency (VAT) plot 
(Bezdek and Hathaway, 2002; Kumar and Bezdek, 2020) and Heatmap 
(Deng et al., 2014). Therefore, the major contributions of this work can 
be summarised as: SNP identification from 10664 SARS-CoV-2 genomes 
of 73 countries, binary dataset creation from SNP data to find the 
number of clusters as virus strains present in 73 countries around the 
globe and their evolution, identifying signature SNPs in each cluster and 
determining the structural stability of the non-synonymous signature 
SNPs to judge the characteristics of the identified clusters. 

2. Materials and methods 

In this section, collection of SARS-CoV-2 genomes, Visual Assessment 
of Tendency (VAT) plot and the proposed pipeline with the preparation 
of SNPs data are discussed. For the ease of understanding for the readers, 
hierarchical clustering (Tou and Gonzalez, 1974; Devijver and Kittler, 
1982) such as Average Linkage (Tou and Gonzalez, 1974; Devijver and 
Kittler, 1982) and Complete Linkage (Tou and Gonzalez, 1974) with 
Jaccard (Tou and Gonzalez, 1974; Devijver and Kittler, 1982) and 
Hamming distance (Tou and Gonzalez, 1974; Devijver and Kittler, 1982) 
functions, Silhouette index (Rousseeuw, 1987) as cluster validity mea-
sure are briefly discussed in supplementary. 

2.1. Collection of SARS-CoV-2 genomes 

Initially, 10664 complete and near complete SARS-CoV-2 genomes 
were collected from Global Initiative on Sharing All Influenza Data 
(GISAID)5 in fasta format while the Reference Genome (NC_045512.2)6 

was collected from National Center for Biotechnology Information 
(NCBI). These genomic sequences are distributed in 73 countries starting 
from January till July 2020. This is important to note that GISAID 
contains many incomplete sequences or virus genomes which we have 
removed while preparing our sequence dataset. The dataset contains 
sequence ID and virus genome as a fasta format. The maximum and 
average length of the 10664 virus genomes are 29,903 and 29,821 bp 
respectively. Please note that the maximum length has been considered 
by taking the reference sequence. These 10664 SARS-CoV-2 sequences 
are aligned using multiple sequencing alignment (MSA) to prepare the 
SNP dataset. Please note that for the data visualization and editing 
BioEdit was used. For the alignment of sequences High Performance 
Computing facility of NITTTR, Kolkata was used and for the identifica-
tion and preparation of SNP dataset MATLAB R2019b was used. 

2.2. Visual Assessment of Tendency 

The well-known Visual Assessment of Tendency (VAT) (Bezdek and 
Hathaway, 2002; Kumar and Bezdek, 2020) representation is used here 
to visualize the clusters formed by the clustering methods. This 

3 https://www.gisaid.org/epiflu-applications/covsurver-mutations-app/.  
4 https://cov-lineages.org/index.html. 

5 https://www.gisaid.org/.  
6 https://www.ncbi.nlm.nih.gov/nuccore/1798174254. 
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technique generally represents pairwise dissimilarity information of n 
data objects as an n × n image, where the data objects are reordered in 
such a way so that the resulting image is able to highlight potential 
cluster structure in the dataset. Therefore, the dataset is sorted first 
according to the cluster labels obtained after clustering. Subsequently, 
the distance matrix, e.g., Jaccard or Hamming, is computed for graph-
ical representation. Boxes lying on the main diagonal represent the 
clusters structure. 

2.3. Pipeline of the workflow 

The pipeline of the workflow is shown in Fig. 1(a). In order to find 
the virus strains, it is important to prepare the SNP dataset and then to 
use that datatset in hierarchical clustering with different distance 
functions to build a consensus of clustering results so that we can 
determine robust and deterministic number of clusters as virus strains 
that are present in the dataset. Initially to prepare the SNP dataset, 
10664 SARS-CoV-2 sequences are aligned using multiple sequencing 
alignment (MSA) technique called Clustal Omega (ClustalO) (Sievers 
et al., 2011; Sievers and Higgins, 2014) in presence of reference 
sequence from NCBI. The choice of selecting ClustalO is taken because of 
its popularity, speed and accuracy. After performing ClustalO, a 
consensus sequence is built so that the mutation as substitution, so called 
SNPs that occur in more than 1% of the virus population for a given 
genomic position i.e. more than 106 viruses can be identified. The 
detection technique is shown in Fig. 1(b). Once such SNPs are identified, 
a SNP binary dataset of is prepared based on its presence in the virus 

sequences as shown in the third figure of Fig. 1(c). Thereafter, such bi-
nary dataset is used for hierarchical clustering using Average Linkage 
and Complete Linkage with the Jaccard and Hamming distance func-
tions separately in iterative manner by considering number of Clusters 2 
to 100. In each iteration, Silhouette Index is computed to measure the 
goodness of the clustering results. Once the number of clusters are 
determined by each of the four methods, the VAT plots of such clustering 
results are prepared to see the structure of clusters. Based on the VAT 
plots, two or more clustering results are compared to create a final 
consensus clustering solution which gives the robust and stable clusters 
as virus strains. After finding the clusters as virus strains, the presence of 
virus strains in different countries is identified as the distribution of the 
genomic sequences is known. Furthermore, top 10 signature SNPs in 
each cluster are identified based on their frequency of occurrence in the 
cluster. 

3. Results 

The results of the experiments are explained here. Initially, 107 SNPs 
are identified in both coding and non-coding regions from the 10664 
SARS-CoV-2 sequences. SNPs represent mutation as substitution that 
occurs in more than 1% of the virus population for a given genomic 
position. Such SNPs are shown using bar and BioCircos plots in the first 
and second figures of Fig. 1(c). In bar plot, the frequency of SNPs with 
their genomic locations are shown while the BioCircos plot represents 
the SNPs with the corresponding coding regions. In the first figure of 
Fig. 1(c), SNPs at coordinates 241, 3037, 14,408, 23,403 and 29,816 

Fig. 1. (a) Pipeline of the Workflow, (b) Detection technique to find mutation as substitution, (c) Bar plot to represent the frequency of SNPs at different genomic 
positions, BioCircos plot to represent SNPs with corresponding coding regions and example of SNP dataset as binary matrix 1 and 0 represents presence and absence 
of SNP in any specific sequence. 
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occur in more than 30% of the virus population, that is in more than 
3199 genomes out of 10664. The first coordinate belongs to 5′-UTR, the 
next two are in ORF1ab, 23,403 belongs to Spike, while the last coor-
dinate is in 3′-UTR. Thereafter, by considering the presence or absence 
of a SNP in the 10664 sequences, the corresponding binary dataset is 
created of size 10664 × 107 as shown in the third figure of Fig. 1(c). For 
each of the virus sequence, 1 represents the presence of SNP and 0 rep-
resents the absence of SNP at a particular genomic coordinate for such 
107 identified SNPs. 

Once the SNP binary dataset is prepared, hierarchical clustering such 
as Average Linkage and Complete Linkage with Jaccard and Hamming 
distance functions are considered iteratively for number of clusters 

ranging from 2 to 100 to find the number of clusters as virus strains. 
These results are presented in Table 1 and Fig. 2(a). It is evident from 
Fig. 2(a) that the silhouette values are highest at cluster numbers 8, 7, 5 
and 3 respectively for Average Linkage with Jaccard distance, Average 
Linkage with Hamming distance, Complete Linkage with Jaccard dis-
tance and Complete Linkage with Hamming distance. The silhouette 
values for these clusters are reported in Table 1. 

Moreover, the mapping of the SARS-CoV-2 genomes to each cluster is 
reported in Table 2. From Table 1, it can be seen that for Average 
Linkage with Jaccard and Hamming distance respectively, the silhouette 
values are 0.5163 and 0.5130 for Clusters 8 and 7. Similarly, for Com-
plete Linkage, the silhouette values are 0.5317 and 0.5103 for Clusters 5 
and 3 respectively. For both Average Linkage and Complete Linkage, 
Jaccard distance shows the higher silhouette value for different number 
of clusters. Therefore, to take a decision about the number of clusters, it 
is important to see the size and the structure of the clusters. The size of 
the clusters is shown in Table 2 by mapping the SARS-CoV-2 genomes to 
different clusters, while the structure of the clusters is visualised using 
VAT plots in Fig. 2(b). 

From the results of Table 2 and Fig. 2(b), it is found that for Average 
Linkage with Jaccard distance, Clusters 3, 6 and 8 have very small 
number of SARS-CoV-2 genomes as compared to the other clusters. 
Similarly, for Hamming Distance, Clusters 3 and 7 are also found to be 

Fig. 2. (a) The plots of silhouette values for Average Linkage and Complete Linkage with Jaccard and Hamming distances for number of clusters ranging from 2 to 
100, (b) The VAT plots of the clusters produced by Average Linkage and Complete Linkage with Jaccard and Hamming distances for higher silhouette values, (c) The 
confusion matrices for comparing clustering results of Average Linkage with Jaccard and Hamming distances as reported in Table 2 and Average Linkage and 
Complete Linkage with Jaccard distance as reported in Table 3. 

Table 2 
Mapping of SARS-CoV-2 genomes to the different clusters produced by hierarchical clustering methods.  

Method Distance function Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 

Average Linkage 
Jaccard 9058 466 22 497 281 4 335 1 
Hamming 9044 497 26 501 263 332 1 –  

Complete Linkage 
Jaccard 8898 444 407 545 360 – – – 
Hamming 9488 766 410 – – – – –  

Table 1 
Optimal number of clusters produced by hierarchical clustering methods on 
SNPs data.  

Method Distance 
function 

Cluster 
validity index 

Number of 
optimal 
clusters 

Silhouette 
value 

Average 
Linkage 

Jaccard 
Silhouette 
Index 

8 0.5163 
Hamming 7 0.5130 

Complete 
Linkage 

Jaccard 5 0.5317 
Hamming 3 0.5103  
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very small in size. On the other hand, for Complete Linkage with Jaccard 
and Hamming Distances we have 5 and 3 clusters respectively where all 
the clusters have reasonable number of SARS-CoV-2 genomes. The 
clustering results of Average Linkage with Jaccard and Hamming dis-
tances are compared using confusion matrix in the first figure of Fig. 2(c) 
in order to build the consensus between them to identify the common 
number of SARS-CoV-2 genomes in the different clusters. As a result, five 
major clusters are identified of size 9026, 465, 497, 263 and 332. 
Thereafter, these results are subsequently compared once again in order 
to build the consensus between the clustering results of Complete 
Linkage with Jaccard distance using confusion matrix in the second 
figure of Fig. 2(c). It also shows five major clusters with 8887, 444, 492, 
263 and 323 SARS-CoV-2 genomes. Furthermore, to evaluate the five 
clusters obtained from Average Linkage and Complete Linkage with 
Jaccard distances, silhouette values are computed and reported in 
Table 3. 

The results show that the five clusters obtained by applying Average 
Linkage have a higher silhouette value, 0.5581, in comparison to all the 
other cases. Thus, after analysis of SNPs data of 10664 SARS-CoV-2 
genomes of 73 countries, we can conclude five virus strains are pre-
sent. After finding these five clusters as virus strains, SARS-CoV-2 ge-
nomes in 73 countries are mapped to the five clusters with the 
corresponding percentage which are reported in Table 4. The same is 
also visualised through Circos plot in Fig. 3. All the detailed clustering 
results are reported in Supplementary Table S1. 

Furthermore, top 10 signature SNPs from each cluster are identified 
and reported in Table 5. In unsupervised learning (clustering), selection 
of features which may define a cluster is a non-trivial task. In this work, 
this selection has been performed by considering the frequency of a SNP 
in a cluster. For example, the frequency of occurrence of mutation point 
241 is 6088 and thus considered to be the top most signature SNP in 
Cluster 1. To depict the common signature in the five clusters, visual-
isation in the form of Venn diagram is shown in Fig. 4. As can be seen 
from the figure, there are no common SNPs in all the five clusters, 
thereby confirming the fact that such signature SNPs are features which 
indeed define the clusters. It is worth mentioning here that multiple 
changes in nucleotide may lead to multiple amino acid changes as well. 
For example in Table 5, at mutation point 14,408 there are two nucle-
otide changes, C>T and C>A. As a consequence, there are two changes 
in amino acid as well, P323L and P323H. Thus, for 50 signature SNPs in 
5 clusters, the total number of non-synonymous signature SNPs are 20, 
out of which 16 are unique. 

4. Discussions 

SARS-CoV-2 has turned out to be a worldwide pandemic and has 
caused disruptions of epic proportions in human lives. In this situation, 
the identification of virus strains is a very important task. In this regard, 
we have analysed 10664 SARS-CoV-2 genomes of 73 countries around 
the world which resulted in some major outcomes: SNP identification 
from 10664 SARS-CoV-2 genomes of 73 countries, binary dataset crea-
tion from SNP data to find the number of clusters as virus strains present 
in the 73 countries, identification of top 10 signature SNPs for each 
cluster and the determination of the structural stability of the non- 
synonymous SNPs to judge the characteristics of the identified clusters. 

Initially, we have identified 107 SNPs which are then used to prepare 
the binary dataset to identify the presence or absence of SNPs. Hierar-
chical clustering such as Average Linkage and Complete Linkage with 
Jaccard and Hamming distance functions are then applied on this 
dataset to the number of clusters as virus strains. These clusters can be 
used to identify and design peptide based synthetic vaccines viz. epi-
topes (Ghosh et al., 2021). Also, top 10 signature SNPs from each cluster 
are identified based on their frequency, the details of which are 
mentioned in the Results section. 

Sequence and structural homology-based prediction of the non- 
synonymous signature SNPs along with their protein stability are re-
ported in Table 6 using tools like PROVEAN (Protein Variation Effect 
Analyser) (Choi and Chan, 2015), PolyPhen-2 (Polymorphism Pheno-
typing) (Adzhubei et al., 2010) and I-Mutant 2.0 (Capriotti et al., 2005) 
to judge the characteristics of the identified clusters. PROVEAN7 works 
on sequence based prediction algorithm while the prediction of Poly-
phen-28 is based on sequence, structural and phylogenetic information 
pertaining to a SNP. On the other hand, I-Mutant 2.09 uses support 
vector machine (SVM) for the automatic prediction of protein stability 
changes upon single point mutations. PROVEAN and PolyPhen-2 are 
used to find the deleterious or damaging non-synonymous SNPs. The 
threshold value of PROVEAN is set at − 2.5. If the PROVEAN score of a 
SNP is equal to or below this threshold, the corresponding 
non-synonymous mutation is considered to be deleterious. For 
Polyphen-2, this range is between 0 to 1. If the score is closer to 1, 
mutations are more confidently considered to be damaging. From the 
consensus of both PROVEAN and PolyPhen-2, it can be seen from 
Table 6 that out of 16 unique non-synonymous signature SNPs, 5 are 
predicted to be deleterious or damaging, out of which T85I, Q57H and 
R203M are in NSP2, ORF3a and Nucleocapsid respectively for Cluster 1. 
For both Clusters 3 and 4, such damaging non-synonymous signature 
SNPs are F506L and S507C in Exon while Clusters 2 and 3 do not exhibit 
any such behaviour due to the absence of non-synonymous signature 
SNPs. All of them are marked in bold in Table 6. Furthermore, protein 
stability is important to determine the functional and structural activity 
of a protein. Protein stability dictates the conformational structure of the 
protein, thereby determining its function. Any change in protein sta-
bility may cause misfolding, degradation or aberrant conglomeration of 
proteins (Hossain et al., 2020). The protein stabilities of the 
non-synonymous signature SNPs are determined using I-Mutant 2.0. The 
changes in the protein stability in I-Mutant 2.0 tool is predicted using 
reliability index (RI) and free energy change values (DDG). The outcome 
of I-Mutant 2.0 revealed that all of the deleterious 5 unique 
non-synonymous signature SNPs decrease the stability of the protein 
structure. These 5 SNPs are shown in their respective protein structures 
in Fig. 5. The rest of the structures are provided in the Supplementary 
Figures S1 and S2. All these structures are taken from Zhanglab10 in the 
form of respective PDB files. It is to be noted that although some mu-
tations are neutral, their stability can decrease like D614G in Spike 
protein. 

The temporal evolution of SARS-CoV-2 genomes in the five identified 
clusters for the 73 countries from the month of January till July 2020 is 
reported in Table 7. For example, in the month of January, 548 genomes 
are present in Cluster 1. However, the number increased to 6264 in the 
month of March. In April, there were 1510 genomes while in May, June 
and July, the numbers are 541, 3 and 21 respectively. Furthermore, to 
understand the evolution of the SARS-CoV-2 genomes from the month of 
January till July 2020, their presence in different countries are identi-
fied by mapping the genomes to the five major clusters for the 73 
countries. This is depicted in the form of pie charts in Table 8. The 

Table 3 
Re-evaluation of five major clusters produced by Average Linkage and Complete 
Linkage clustering with Jaccard distance using silhouette value.  

Method Distance 
function 

Cluster validity 
index 

Number of 
clusters 

Silhouette 
value 

Average 
Linkage Jaccard Silhouette 

Index 

5 0.5581 

Complete 
Linkage 

5 0.5344  

7 https://provean.jcvi.org/index.php.  
8 http://genetics.bwh.harvard.edu/pph2/.  
9 http://folding.biofold.org/i-mutant/i-mutant2.0.html.  

10 https://zhanglab.ccmb.med.umich.edu/COVID-19/. 
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Table 4 
Mapping of SARS-CoV-2 genomes to the five clusters and the corresponding percentage.  

Country Total number of 
genomes 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5   

Number of 
genome 

(%) Number of 
genome 

(%) Number of 
genome 

(%) Number of 
genome 

(%) Number of 
genome 

(%) 

USA 2546 2236 87.82 7 0.27 64 2.51 76 2.99 163 6.40 
England 1592 1188 74.62 187 11.75 115 7.22 9 0.57 93 5.84 
China 631 585 92.71 1 0.16 11 1.74 30 4.75 4 0.63 
Australia 582 345 59.28 186 31.96 29 4.98 14 2.41 8 1.37 
Netherlands 568 565 99.47 0 0 2 0.35 0 0 1 0.18 
India 566 495 87.46 0 0 20 3.53 48 8.48 3 0.53 
Iceland 462 381 82.47 1 0.22 74 16.02 6 1.30 0 0 
Scotland 434 406 93.55 0 0 28 6.45 0 0 0 0 
Belgium 426 421 98.83 0 0 5 1.17 0 0 0 0 
Portugal 349 342 97.99 0 0 7 2.01 0 0 0 0 
Spain 267 206 77.15 24 8.99 15 5.62 0 0 22 8.24 
Wales 214 158 73.83 33 15.42 15 7.01 2 0.93 6 2.80 
Sweden 194 194 100 0 0 0 0 0 0 0 0 
France 189 183 96.83 2 1.06 2 1.06 1 0.53 1 0.53 
New Zealand 175 160 91.43 0 0 15 8.57 0 0 0 0 
Switzerland 164 109 66.46 0 0 16 9.76 38 23.17 1 0.61 
Denmark 109 101 92.66 0 0 7 6.42 0 0 1 0.92 
Japan 94 89 94.68 0 0 2 2.13 0 0 3 3.19 
Brazil 81 80 98.77 0 0 1 1.23 0 0 0 0 
Canada 72 67 93.06 1 1.39 4 5.56 0 0 0 0 
Luxembourg 71 60 84.51 0 0 7 9.86 1 1.41 3 4.23 
Germany 68 67 98.53 0 0 1 1.47 0 0 0 0 
Itay 66 55 83.33 1 1.52 7 10.61 3 4.55 0 0 
Kazakhstan 49 26 53.06 1 2.04 0 0 22 44.90 0 0 
Oman 42 41 97.62 0 0 0 0 1 2.38 0 0 
Poland 39 33 84.62 0 0 4 10.26 0 0 2 5.13 
South Korea 36 36 100 0 0 0 0 0 0 0 0 
Vietnam 31 28 90.32 2 6.45 0 0 1 3.23 0 0 
Singapore 28 18 64.29 0 0 2 7.14 1 3.57 7 25 
Thailand 28 23 82.14 0 0 3 10.71 2 7.14 0 0 
Russia 27 26 96.30 0 0 1 3.70 0 0 0 0 
Finland 26 18 69.23 0 0 6 23.08 0 0 2 7.69 
Czech 

Republic 
25 25 100 0 0 0 0 0 0 0 0 

Mexico 21 19 90.48 0 0 1 4.76 1 4.76 0 0 
Norway 20 14 70 0 0 5 25 1 5 0 0 
Northern 

Ireland 
19 8 42.11 8 42.11 2 10.53 1 5.26 0 0 

Estonia 18 18 100 0 0 0 0 0 0 0 0 
Austria 16 14 87.50 0 0 2 12.50 0 0 0 0 
Chile 15 14 93.33 0 0 1 6.67 0 0 0 0 
DRC 15 12 80 0 0 1 6.67 0 0 2 13.33 
Colombia 14 11 78.57 0 0 2 14.29 1 7.14 0 0 
Senegal 19 12 63.16 1 5.26 0 0 0 0 6 31.58 
Croatia 12 10 83.33 0 0 0 0 2 16.67 0 0 
Georgia 11 5 45.45 0 0 0 0 0 0 6 54.55 
Kenya 11 11 100 0 0 0 0 0 0 0 0 
Malaysia 11 8 72.73 0 0 3 27.27 0 0 0 0 
Romania 11 11 100 0 0 0 0 0 0 0 0 
South Africa 11 7 63.64 0 0 4 36.36 0 0 0 0 
Ireland 10 10 100 0 0 0 0 0 0 0 0 
Latvia 10 10 100 0 0 0 0 0 0 0 0 
Nigeria 8 8 100 0 0 0 0 0 0 0 0 
Kuwait 7 5 71.43 0 0 1 14.29 1 14.29 0 0 
Turkey 5 4 80 0 0 0 0 0 0 1 20 
Bangladesh 4 4 100 0 0 0 0 0 0 0 0 
Greece 4 4 100 0 0 0 0 0 0 0 0 
Qatar 4 3 75 0 0 0 0 1 25 0 0 
Slovakia 4 4 100 0 0 0 0 0 0 0 0 
Algeria 3 3 100 0 0 0 0 0 0 0 0 
Argentina 3 3 100 0 0 0 0 0 0 0 0 
Belarus 3 3 100 0 0 0 0 0 0 0 0 
Hungary 3 3 100 0 0 0 0 0 0 0 0 
Saudi Arabia 4 0 0 0 0 1 25 0 0 3 75 
Indonesia 2 1 50 0 0 1 50 0 0 0 0 
Israel 2 2 100 0 0 0 0 0 0 0 0 
Pakistan 2 2 100 0 0 0 0 0 0 0 0 
Serbia 2 2 100 0 0 0 0 0 0 0 0 
Slovenia 2 2 100 0 0 0 0 0 0 0 0 
Cambodia 1 1 100 0 0 0 0 0 0 0 0 
Lithuania 1 1 100 0 0 0 0 0 0 0 0 

(continued on next page) 
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corresponding colour representation for the five major clusters and the 
months are shown in Fig. 6. The evolution of the genomes is quite 
evident from the pie charts in Table 8. For example, for USA, SARS-CoV- 
2 genomes mapped to Cluster 1 are mostly in the month of March and 
almost disappears by the month of May. For Cluster 2, the genomes are 
not present beyond the month of April. This indicates that the SARS- 
CoV-2 genomes present in Cluster 1 and Cluster 2 are either not 

virulent any longer after the months of May and April respectively or 
through evolution they may have mutated to be a part of some other 
clusters. Similarly for the other countries as well, one or the other kind of 
evolutions for the SARS-CoV-2 genomes for the five different clusters are 
observed. 

In order to see the common clusters among 73 countries, heatmap is 
created and shown in Fig. 7. In the heatmap, deep blue indicates lesser 

Fig. 3. Circos plot to visualise the mapping of SARS-CoV-2 genomes to five clusters.  

Table 4 (continued ) 

Country Total number of 
genomes 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5   

Number of 
genome 

(%) Number of 
genome 

(%) Number of 
genome 

(%) Number of 
genome 

(%) Number of 
genome 

(%) 

Morocco 1 1 100 0 0 0 0 0 0 0 0 
Nepal 1 1 100 0 0 0 0 0 0 0 0 
Panama 1 1 100 0 0 0 0 0 0 0 0 
Peru 1 1 100 0 0 0 0 0 0 0 0  
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Table 5 
Top 10 signature SNPs in each cluster.  

Cluster Number of sequences in each 
cluster 

Coordinate of signature 
SNPs 

Occurrence of signature SNPs in 
genome 

Change in 
nucleotide 

Change in amino acid Coordinate of amino acid in 
protein 

Mapped with coding and Non-coding 
region 

Cluster 
1 

8887 

241 6088 C>T NA NA 5′-UTR 
1059 1735 C>T T>I 85 ORF1ab 
3037 6071 C>T Synonymous 106 ORF1ab 
14,408 6046 (C>T)(C>A) (P>L), (P>H) 323 ORF1ab 
23,403 6073 A>G D>G 614 Spike 
25,563 2232 (G>T)(G>C) Q>H 57 ORF3a 
28,881 1855 (G>A)(G>T) (R>K) (R>M) 203 Nucleocapsid 
28,882 1848 (G>A)(G>T) Synonymous, (R>S) 203 Nucleocapsid 
28,883 1847 G>C G>R 204 Nucleocapsid 
29,816 2613 (T>A)(T>G) NA NA 3′-UTR  

Cluster 
2 444 

29,816 416 (T>A)(T>G) NA NA 3′-UTR 

29,857 348 (C>A)(C>T) 
(C>G) 

NA NA 3′-UTR 

29,858 369 (T>A)(T>C) 
(T>G) 

NA NA 3′-UTR 

29,859 402 
(T>A)(T>G) 
(T>C) NA NA 3′-UTR 

29,861 416 
(G>A)(G>C) 
(G>T) NA NA 3′-UTR 

29,862 427 (G>C)(G>A) 
(G>T) 

NA NA 3′-UTR 

29,864 435 (G>A)(G>C) 
(G>T) 

NA NA 3′-UTR 

29,867 437 
(T>A)(T>G) 
(T>C) NA NA 3′-UTR 

29,868 435 
(G>A)(G>T) 
(G>C) NA NA 3′-UTR 

29,870 433 (C>A)(C>G) 
(C>T) 

NA NA 3′-UTR  

Cluster 
3 

492 

19,557 475 (T>A)(T>C) 
(T>G) 

(F>L), Synonymous, 
(F>L) 

506 ORF1ab 

19,558 479 (A>G)(A>C) 
(A>T) 

(S>G) (S>R) (S>C) 507 ORF1ab 

22,506 469 
(C>A)(C>T) 
(C>G) (T>N) (T>I) (T>S) 315 Spike 

29,776 486 (A>G)(A>T) NA NA 3′-UTR 
29,779 489 (G>A)(G>T) NA NA 3′-UTR 
29,780 487 (A>G)(A>C) NA NA 3′-UTR 

29,781 492 (G>A)(G>T) 
(G>C) 

NA NA 3′-UTR 

29,782 487 (A>G)(A>C) NA NA 3′-UTR 

29,783 490 
(G>C)(G>T) 
(G>A) NA NA 3′-UTR 

29,784 483 
(C>T)(C>A) 
(C>G) 

NA NA 3′-UTR  

Cluster 
4 

263 

19,557 263 
(T>A)(T>C) 
(T>G) 

(F>L), Synonymous, 
(F>L) 

506 ORF1ab 

19,558 263 (A>G)(A>C) 
(A>T) 

(S>G) (S>R) (S>C) 507 ORF1ab 

29,858 259 (T>A)(T>C) 
(T>G) 

NA NA 3′-UTR 

(continued on next page) 
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Table 5 (continued ) 

Cluster Number of sequences in each 
cluster 

Coordinate of signature 
SNPs 

Occurrence of signature SNPs in 
genome 

Change in 
nucleotide 

Change in amino acid Coordinate of amino acid in 
protein 

Mapped with coding and Non-coding 
region 

29,859 262 (T>A)(T>G) 
(T>C) 

NA NA 3′-UTR 

29,860 248 (A>G)(A>C) 
(A>T) 

NA NA 3′-UTR 

29,861 263 (G>A)(G>C) 
(G>T) 

NA NA 3′-UTR 

29,862 263 (G>C)(G>A) 
(G>T) 

NA NA 3′-UTR 

29,863 245 (A>C)(A>T) 
(A>G) 

NA NA 3′-UTR 

29,864 261 (G>A)(G>C) 
(G>T) 

NA NA 3′-UTR 

29,867 249 (T>A)(T>G) 
(T>C) 

NA NA 3′-UTR  

Cluster 
5 

323 

3 302 
(T>G)(T>A) 
(T>C) NA NA 5′-UTR 

4 306 
(A>G)(A>C) 
(A>T) 

NA NA 5′-UTR 

5 313 (A>T)(A>G) 
(A>C) 

NA NA 5′-UTR 

6 314 
(A>T)(A>C) 
(A>G) NA NA 5′-UTR 

7 320 
(G>T)(G>A) 
(G>C) NA NA 5′-UTR 

8 322 (G>A)(G>C) 
(G>T) 

NA NA 5′-UTR 

10 321 (T>A)(T>C) 
(T>G) 

NA NA 5′-UTR 

11 319 
(T>C)(T>G) 
(T>A) NA NA 5′-UTR 

12 320 
(A>C)(A>T) 
(A>G) NA NA 5′-UTR 

29,816 320 (T>A)(T>G) NA NA 3′-UTR  

N
. G

hosh et al.                                                                                                                                                                                                                                  



Virus Research 298 (2021) 198401

10

number of common clusters and yellow shows more number of common 
clusters. This heatmap is not symmetric. For example, the virus strains 
from India belong to Clusters 1, 3, 4 and 5 while that for England is 
distributed among all the five clusters. Thus, if we consider row wise 
though India shares 100% common clusters as virus strains with En-
gland, when considered column wise England shares 80% common 
clusters as virus strains with India. In this regard, a hypothesis can be 
drawn that the same vaccine can be effective in those countries with 
common clusters or virus strains. 

It is worth mentioning the advantage of the proposed clustering 
method as compared to the existing phylogenetic analysers like 
Maximum-Likelihood and Neighbour-Joining Trees in MEGA-X, GISAID 
CoVsurver and PANGOLIN. The existing analysers use all substitutions 
like mutation while the proposed clustering method is more robust as it 
uses only SNP data, thereby providing faster results. Moreover, SNP data 
is more relevant in our case as we have small sparse data. 

5. Conclusion 

In this work, we have analysed 10664 SARS-CoV-2 genomes of 73 
countries to identify Single Nucleotide Polymorphisms (SNPs) which 
comprise of substitution that occurs in more than 1% of the virus pop-
ulation. As a result, 107 SNPs are identified throughout the genome 
(including coding and non-coding regions) to prepare a binary dataset of 
SNP. Thereafter, virus strains as clusters are identified from the SNP 
data. In this regard, hierarchical clustering viz. Average Linkage and 
Complete Linkage are applied with Jaccard and Hamming distance 
functions. Additionally, Silhouette Index is used to gauge the goodness 
of the clusters and also to determine the number of clusters as virus 
strains with the same distance functions. Jaccard distance gives the 
better Silhouette value. Thus, the consensus from the two clustering 
methods using Jaccard distance are used to determine the proper 
number of clusters which resulted in five major clusters. Moreover, 
using the presence of the five clusters in the 73 countries, we have also 
put forth the evolution of the clusters of virus genomes, starting from 
January till July 2020. Also, top 10 signature SNPs are identified in each 
cluster and the non-synonymous signature SNPs are visualised in protein 
structures. The sequence and structural homology-based prediction 
along with the protein structural stability of these non-synonymous 
signature SNPs are also determined to judge the characteristics of the 
identified clusters. Therefore, this work can be summarised as identifi-
cation of SNPs from 10664 SARS-CoV-2 genomes of 73 countries, Ta
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Fig. 4. Venn Digram to represent the common signature SNPs in five clusters.  
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creation of binary dataset from SNP data in order to find the number of 
clusters as virus strains present in 73 countries, identifying signature 
SNPs in each cluster and determining the structural stability of the non- 
synonymous signature SNPs to judge the characteristics of the identified 
clusters. 

Ethics approval and consent to participate 

The ethical approval or individual consent was not applicable. 

Availability of data and materials 

The aligned 10664 SARS-CoV-2 genomes with reference and 
consensus sequences, SNP dataset and supplementary are available at 
“http://www.nitttrkol.ac.in/indrajit/projects/COVID-Mutation-10K-Cl 
ustering/”. Moreover, all the virus genomes used in this work are pub-
licly available at GISAID database. 

Fig. 5. Non-synonymous signature SNPs highlighted in the structures of (a) NSP2 (b) ORF3a (c) Nucleocapsid and (d) Exon.  

Table 7 
Temporal evolution of SARS-CoV-2 genomes in the five major clusters from January to July for 73 countries.  

Cluster January March April May June July 

Cluster 1 548 6264 1510 541 3 21 
Cluster 2 13 266 71 94 0 0 
Cluster 3 18 276 136 57 0 5 
Cluster 4 22 146 71 21 0 3 
Cluster 5 12 185 45 81 0 0  
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Table 8 
Pie charts to represent mapping of SARS-CoV-2 genomes to the five major clusters and the evolution of such genomes from January to July for 73 countries.   

(continued on next page) 
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Table 8 (continued ) 

(continued on next page) 
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Table 8 (continued ) 

(continued on next page) 
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Table 8 (continued ) 
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Table 8 (continued ) 
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Table 8 (continued ) 

Fig. 6. Colours to represent (a) Five major clusters and b) Months from January to July 2020.  
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