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ABSTRACT
Objective. To inquiry about mechanism of miR-100-5p/CDC25A axis in breast
carcinoma (BC), thus offering a new direction for BC targeted treatment.
Methods. qRT-PCR was employed to explore miR-100-5p and CDC25A mRNA levels.
Western blot was employed for detecting protein expression of CDC25A. Targeting
relationship of miR-100-5p and CDC25A was verified by dual-luciferase assay. In vitro
experiments were used for assessment of cell functions.
Results. In BC tissue and cells, miR-100-5p was significantly lowly expressed (P < 0.05)
while CDC25A was highly expressed. Besides, miR-100-5p downregulated CDC25A
level. miR-100-5p had a marked influence on the prognosis of patients. The forced
miR-100-5p expression hindered BC cell proliferation, migration and invasion, and
facilitated cell apoptosis. Upregulated miR-100-5p weakened promotion of CDC25A
on BC cell growth.
Conclusion. Together, these findings unveiled that CDC25A may be a key target of
miR-100-5p that mediated progression of BC cells. Hence, miR-100-5p overexpression
or CDC25A suppression may contribute to BC diagnosis.

Subjects Cell Biology, Genetics, Molecular Biology, Oncology, Women’s Health
Keywords MiR-100-5p, CDC25A, Breast carcinoma, Proliferation, Migration and invasion

INTRODUCTION
Breast carcinoma (BC) accounts for 7–10% of all solid malignancies (Feng et al., 2015).
At present, the incidence and mortality rate of BC are increasing annually owing to the
difficulty in the early diagnosis of BC caused by the complexity of endocrine system (Al-Hajj
et al., 2003). Great improvements have been made in prognosis of BC patients in recent
years. However, five-year survival rate of patients is still low, and postoperative malignant
behaviors of BC cells are main causes of the disease (Anastasiadi et al., 2017). Therefore, it
is of importance to make in-depth inquiry about mechanism of BC metastasis and actively
search the target gene for the targeted therapy of BC.

MicroRNAs (miRNAs) are evolutionarily conserved (Gangaraju & Lin, 2009). miRNA
expression is considered to be a part ofmultiple normal biological processes (Ambros, 2003).
Studies indicated that abnormity of miRNAs exists in several malignancies including BC,
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and affects the malignant behaviors of cancer cells (Yerukala Sathipati & Ho, 2020; Volovat
et al., 2020). For example, miR-520c-3p was reported to negatively modulate epithelial-
mesenchymal transition (EMT) via targeting Interleukin-8 (IL-8) to hamper BC cell
malignant progression (Tang et al., 2017). miR-485-5p can downregulate transmembrane
glycoprotein Mucin 1 (MUC1) to constrain BC cell proliferation, invasion, migration,
and to hasten cell apoptosis (Wang et al., 2020). miR-539 upregulation represses BC
progression via targeting specificity protein 1 (SP1), indicating that miR-539 is a possible
target for diagnosis of BC (Cai et al., 2020). Taken together, these findings evince that
miRNAs are important in BC. miR-100-5p as an essential member of miR-100 family
is highly conserved (Nabavi et al., 2017). miR-100 is aberrantly expressed in diverse
tumors, including esophageal squamous carcinoma (Zhou et al., 2016), glioblastoma
(Luan et al., 2015), gastric cancer (Shi et al., 2015) and renal cell carcinoma (Chen et al.,
2017). Nonetheless, exploration of miR-100-5p function in BC cell metastasis necessitates
extensive research.

CDC25 family members can regulate cell cycle (Brenner et al., 2014). CDC25 modulates
cell cycle progression by hindering cyclin-dependent kinases (CDKs) phosphorylation,
so as to activate the CDK complexes (Blomberg & Hoffmann, 1999). The high CDC25A
expression has been found in different cancer types, and overexpression of CDC25A
presents in approximately 50% of BC cases and implicates poor prognosis (Cangi et al.,
2000). A previous study denoted that CDC25A regulates stem cell proliferation via targeting
Sirtuin6 (SIRT6) in colorectal cancer (Liu et al., 2018).miR-365 strengthens radiosensitivity
of non-small cell lung cancer (NSCLC) cells via targeting CDC25A (Li et al., 2019). miR-98-
5p hinders osteosarcoma progression via targeting CDC25A (Liu & Cui, 2019). However,
the regulatory mechanism of CDC25A in BC has not been explored.

By bioinformaticsmethods, we identified lowmiR-100-5p expression in BC.Modulatory
role of miR-100-5p was investigated in BC via experiments, disclosing that miR-100-
5p targeted CDC25A to restrain BC cell progression. Our investigation contributes to
mechanistic understanding of BC progression, thereby providing targeted therapy for BC
with novel theoretical basis.

MATERIALS AND METHODS
Bioinformatics methods
Mature miRNA (104 normal samples, 1,103 tumor samples) and mRNA (113 samples,
1,109 samples) expression data of TCGA-BRCA dataset were obtained from TCGA
(https://portal.gdc.cancer.gov/) database. Expression analysis and survival analysis were
carried out on the target miRNA according to the obtained data. Differential mRNAs
(DEmRNAs) were got through differential analysis by using ‘‘edgeR’’ package (|logFC|>2.0
and padj<0.01). Three databases miRDB, starBase, and mirDIP were used to predict
target mRNAs of miR-100-5p. Candidate mRNAs were got by overlapping up-regulated
DEmRNAs and predicted mRNAs of miR-100-5p, among which a mRNA having the
highest correlation coefficient was picked as the objective of study.
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Table 1 Primer sequences used in qRT-PCR.

Gene Primer sequence (5′→ 3′)

miR-100-5p F: AACCCGTAGATCCGAACTTGTG
U6 F: CTCGCTTCGGCAGCACA R: ACGCTTCACGAATTTGCGT
CDC25A F: GAGGAGTCTCCACCTGGAAGTACA R: GCCATTCAAAACAGATGCCATAA
GAPDH F: GACCTGACCTGCCGTCTA R: AGGAGTGGGTGTCGCTGT

Cell culture
Human breast epithelial cell line MCF-10A (BNCC337734), human BC cell lines T47D
(BNCC339607), MDA-MB-231 (BNCC339911), MCF-7 (BNCC100137) and BT-474
(BNCC101989) were bought from BeNa Culture Collection (Beijing, China) and cultured
at 37 ◦C with 5% CO2. Information of culture mediums:

MDA-MB-231, MCF-7, T47D cell lines: DMEMwith 10% fetal bovine serum (FBS) and
100 U/mL penicillin/streptomycin;

MCF-10A, BT-474 cell lines: RPMI-1640 medium with 10% FBS.

Cell transfection
miR-100-5p mimic (miR-mimic), mimic NC (miR-NC), pcDNA3.1 (oe-NC), and
pcDNA3.1-CDC25A plasmid (oe-CDC25A) were acquired from GenePharma Company
(Shanghai, China). Cell transfection recommended lipofectamine 2000 (Invitrogen,
Carlsbad, CA, USA).

qRT-PCR
Total RNAwas extracted fromcells byTRIzol kit (Invitrogen, Carlsbad, CA,USA) according
to instructions. Concentration was assayed using NanoDrop 2000 system (Thermo Fisher
Scientific, Inc., Waltham, MA, USA). cDNA was generated by reversely transcribing
miRNA with miScript IIRT kit (Qiagen, USA) and mRNA with PrimeScript RT Master
Mix (Takara, Dalian, P.R. China) according to protocols. qRT-PCR was completed on
Applied Biosystems R© 7500 Real-Time PCR Systems (Thermo Fisher Scientific, Waltham,
MA) with miScript SYBR Green PCR Kit (Qiagen, Germany) and SYBR R© Premix Ex Taq
TM II (Takara Bio Inc., Shiga, Japan). PCR conditions were as follows: 95 ◦C 10 s, 60 ◦C
20 s, 72 ◦C 20 s, 45 cycles. 2−11Ct method was utilized for data analyzing. GAPDH and U6
were applied as endogenous controls. Primer sequences were exhibited in Table 1.

CCK-8
Forty-eight h after transfection, BC cell line MCF-7 suspended in DMEM plus 10% FBS
was added into 96-well plates (2× 103 cells/well). Ten µL CCK-8 solution (CK04; Dojindo
Laboratories, Kumamoto, Japan) was added at 24, 48, 72 and 96 h for 2 h of incubation
under standard conditions. Absorbance value at 450 nmwas read at designated time points.

Clonogenic assay
Cells in varying transfection groups were treated with 0.25% trypsin, inoculated into 6-well
plates (4 × 102 cells/well) and incubated in DMEM with 10% FBS for 2 weeks. Colonies
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were subjected to fixation with 95% methanol, 10 min of staining with 0.1% crystal violet,
and rinsing with PBS, followed by cell colony counting.

Wound healing assay
After transfection, 1 × 105 BC cells (MCF-7) were placed into 6-well plates, and a pipette
tip (200 µL) was employed to make a scratch through center of each well when cells grew
to 80% confluence. Dispersed cells were discarded. Fresh mediums were employed to
continuously culture the remaining cells. The migrated cells were observed and pictured
at 0 and 24 h. Image J software was used for analysis. Migration width = wound healing
width at 24 h –wound healing width at 0 h.

Transwell invasion assay
First, 9.6 mg/ml Matrigel matrix (356234, BD Company, USA) diluted with serum-free
medium at 1:8. Fifty µL of dilution was added to the Transwell upper chambers for 30
min. After transfected for 48 h, BC cells were suspended in 200 µl serum-free DMEM
(1 × 105 cells/mL) and were filled into the upper chamber, while medium with 15% FBS
was filled into lower chamber. After being cultured for 48 h at 37 ◦C, cells that did not
pass membranes were removed using a cotton swab, while cells in lower chamber were
subjected to 0.1% crystal violet for staining. A microscope was implicated to random 4
fields, and invaded cells were counted and photographed.

Western blot
Cells were lysed by radioimmunoprecipitation assay buffer (RIPA; Sigma-Aldrich), and
protein concentration was assessed by Pierce BCA (Thermo, USA) protein assay kit.
Total proteins were isolated by 10% SDS-PAGE and transferred onto polyvinylidene
fluoride (PVDF) membranes (Sigma-Aldrich). After blocking, membranes were cultivated
overnight with primary antibodies, including rabbit anti-CDC25A and rabbit anti-GAPDH.
Subsequently, PBS + 0.1% Tween-20 (PBST) was taken to rinse membranes 3×10 min.
Afterward, secondary antibody goat anti-rabbit IgGH&L (HRP) (ab205718) was incubated
with membranes at room temperature for 1 h, and then membranes were rinsed with PBST
3×10 min. All protein bands were visualized by chemiluminescence reaction (Bio-Rad,
Hercules, CA, USA), followed by analysis by Image Lab (Bio-Rad). All antibodies were
from Abcam (China).

Dual-luciferase assay
Vectors psiCHECK (Sangon Co., LTD, Shanghai, China) fused with mutant-type (MUT)
and wild-type (WT) CDC25A 3′ UTR were generated. MCF-7 cells were planted onto
48-well plates for 24 h of culture at 37 ◦C. miR-100-5p mimic/mimic NC and CDC25A-
psiCHECK WT/MUT were co-transfected into cells. Forty-eight h later, the luciferase
activity was assayed by Dual-Luciferase Reporter Assay System (Promega, Fitchburg, WI,
USA).

Flow cytometry
BC cells in logarithmic growth phase were transfected. Forty-eight h later, cells were
collected. Cell suspension (100 µL) was incubated 15 min in dark with Annexin-V-FITC

Li et al. (2021), PeerJ, DOI 10.7717/peerj.12263 4/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.12263


(5 µL, KeyGen Biotech, Nanjing, China), and then propidium iodide (2.5 µL, PI) was
utilized for cell staining. FACS Calibur (BD Biosciences, San Jose, CA, USA) was adopted
to measure cell apoptosis. Flowjo software (Tree Star Corp, San Carlos, CA, USA) was
recommended for data analysis.

Statistical analysis
All data were processed by GraphPad Prism 6.0 (La Jolla, CA). Each experiment was
repeated in triplicate, including 3 technical replicates and 3 biological replicates. The
results were presented by mean± standard deviation (SD). To compare differences among
three or more groups, one-way analysis of variance, followed by Bonferroni test was
used. Student’s t -test was used for significance test between the two groups. P < 0.05 was
accepted as significant.

RESULT
miR-100-5p is lowly expressed in BC tissue and cells
Bioinformatics analysis was employed to analyze miRNA expression data in TCGA-BRCA
dataset. miR-100-5p was conspicuously down-regulated in BC tissue (Fig. 1A), while
survival analysis suggested that low miR-100-5p level was related to poor prognosis
(Fig. 1B). A lot of studies also manifest that miR-100 is essential in regulating pathogenesis
of BC (Gebeshuber & Martinez, 2013; Chen et al., 2014; Gong et al., 2015; Jiang et al., 2016).
Therefore, miR-100-5p was chosen as the miRNA of interest. Thereafter, qRT-PCR result
disclosed that miR-100-5p was considerably reduced in T47D, MCF-7, and BT-474 cells
(P < 0.05) (Fig. 1C). Thus, we concluded that miR-100-5p was decreased in BC. MCF-7
cell line with the lowest miR-100-5p level was selected for future detections.

The forced miR-100-5p expression hinders BC cell malignant
progression
To explore role of miR-100-5p in BC, mimic NC group and miR-100-5p mimic groups
were designed for verification. qRT-PCR was employed to assay transfection efficiency
into MCF-7, presenting that miR-100-5p was notably increased in miR-100-5p mimic
group (P < 0.05) (Fig. 2A). CCK-8 assay result showed that effect of enforced miR-100-5p
expression potently suppressed MCF-7 cell proliferation (P < 0.05) (Fig. 2B). As unveiled
via clonogenic assay, overexpressing miR-100-5p highly inhibited cell clonogenic capacity
(P < 0.05) (Fig. 2C). Results of Transwell and wound healing assays discovered that
these properties were remarkably inhibited after miR-100-5p expression was enforced
(P < 0.05) (Figs. 2D and 2E). Flow cytometry indicated that overexpressing miR-100-5p
fostered MCF-7 cell apoptosis (P < 0.05) (Fig. 2F). It was displayed that miR-100-5p
overexpression inhibited BC cell proliferative, migratory, invasive properties, and hastened
cell apoptosis.

miR-100-5p inhibits CDC25A in BC cells
Three databases miRDB, mirDIP and starBase were applied for predicting target mRNAs
of miR-100-5p. Three candidates obtained from overlap of up-regulated DEmRNAs and
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Figure 1 miR-100-5p is lowly expressed in BC cells. (A) Box plots of miR-100-5p (normal sample:
green, 104; tumor sample: red, 1103); (B) Survival curves of miR-100-5p. The x-axis refers to time (years),
y-axis refers to survival rate; (C) miR-100-5p level in MCF-10A (human breast epithelial cell line) and
T47D, MDA-MB-231, MCF-7 and BT-474 (human BC cell lines) assayed via qRT-PCR; * P < 0.05; Exper-
iment in Fig. C was repeated 3 times, including 3 technical replicates and 3 biological replicates, and repre-
sentative figures were selected.

Full-size DOI: 10.7717/peerj.12263/fig-1

predicted mRNAs of miR-100-5p (Fig. 3A) were analyzed by correlation analysis with
miR-100-5p, and CDC25A was applied as the target mRNA due to its highest correlation
coefficient (Figs. 3B and 3C). CDC25A was found to be greatly up-regulated in BC tissue
(P < 0.05) (Fig. 3D). In BC cells, CDC25A mRNA and protein expression levels were
relatively high (Fig. 3E). We also disclosed complementary binding sites of miR-100-5p
and FCDC25A. Bioinformatics analysis revealed binding of miR-100-5p and CDC25A
(Fig. 3F). Dual-luciferase assay manifested that overexpressed miR-100-5p suppressed
luciferase activity of CDC25A-WT (P < 0.05) but had no influence on that of CDC25A-
MUT (Fig. 3G). qRT-PCR was then implemented to detect CDC25A mRNA level in
MCF-7 cell line, showing a decreased trend of CDC25AmRNA level in miR-100-5p-mimic
group (P < 0.05) (Fig. 3H). Western blot uncovered that CDC25A protein level was
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Figure 2 The forced miR-100-5p expression hinders BC cell proliferation, migration and invasion,
and fosters cell apoptosis. (A) Transfection efficiency of miR-100-5p mimic in MCF-7 cells measured via
qRT-PCR; (B) cell viability, (C) clonogenic, (D) cell invasive property, (E) cell migratory property; (F) cell
apoptosis in different groups; * P < 0.05; Experiment in Figure 2 was repeated three times, including three
technical replicates and three biological replicates, and representative figures were selected.

Full-size DOI: 10.7717/peerj.12263/fig-2
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noticeably reduced after miR-100-5p was enforced (P < 0.05) (Fig. 3I). It was revealed that
miR-100-5p suppressed CDC25A in BC cells.

miR-100-5p targets CDC25A to repress cell proliferation, migration,
invasion, and induce cell apoptosis in BC
To investigate impact of miR-100-5p targeting CDC25A on malignant behaviors of BC, we
established four groups: miR-NC+oe-NC (negative control group), miR-NC+oe-CDC25A
(CDC25A overexpression group), miR-mimic+oe-NC (miR-100-5p overexpression
group), and miR-mimic+oe-CDC25A (simultaneous enforced expression of miR-100-5p
and CDC25A group). qRT-PCR and western blot result found that CDC25A mRNA and
protein levels were markedly up-regulated in oe-CDC25A group (P < 0.05), and notably
downregulated when miR-100-5p was overexpressed (P < 0.05). In comparison to miR-
mimic+oe-NC group, CDC25Awas upregulated inmiR-100-5pmimic+oe-CDC25A group
(P < 0.05) (Fig. 4A and 4B), which clarified that CDC25Awas down-regulated bymiR-100-
5p. The results of CCK-8 and clonogenic assays illustrated that overexpressing CDC25A
potently increased BC cell proliferation ability (P < 0.05), while upregulating miR-100-5p
could notably suppress this ability(P < 0.05). In comparison to miR-mimic+oe-NC group,
cell proliferative ability increased when CDC25A and miR-100-5p were simultaneously
overexpressed (P < 0.05) (Figs. 4C and 4D). Subsequently, wound healing and Transwell
revealed that overexpressing CDC25A potently increased BC cell migratory and invasive
properties (P < 0.05), while upregulating miR-100-5p could remarkably repress these
abilities (P < 0.05). In comparison tomiR-mimic+oe-NC group, these abilities were clearly
enhanced after CDC25A and miR-100-5p were simultaneously overexpressed (P < 0.05)
(Figs. 4E and 4F). Furthermore, flow cytometry also substantiated that apoptotic rate of
MCF-7 cells was considerably reduced in oe-CDC25A group (P < 0.05), while miR-100-5p
upregulation could dramatically facilitate cell apoptosis (P < 0.05). In comparison to miR-
mimic+oe-NC, cancer cell apoptotic rate was restrained after CDC25A and miR-100-5p
were simultaneously overexpressed (P < 0.05) (Fig. 4G). In conclusion, we manifested
that miR-100-5p hindered BC cell proliferation, migration, invasion, and hastened cell
apoptosis by reducing CDC25A expression.

DISCUSSION
With 1.3 million cases increasing annually, BC is a symbolic cancer in female’s daily
life (Qin & Liu, 2019). A recent study has illustrated that miRNAs might be potential
therapeutic targets for BC (Luan et al., 2017). miRNAs are regarded as effective modulators
of cell proliferation, metastasis, translation and tumorigenesis (Zhou et al., 2017). There
is a correlation between miRNAs and mRNAs that makes specific cure of certain cancers
possible at molecular level (Zhou et al., 2013).

Present studies disclosed that miR-100-5p is aberrantly expressed in several cancers,
modulating cancer cell malignant behaviors. For instance, miR-100-5p is lowly expressed
in prostate cancer cells, and it down-regulates mTOR to hamper progression of prostate
cancer cells (Ye, Li & Wang, 2020). In chordoma tissue, miR-100-5p is down-regulated,
while enforced miR-100-5p expression can hinder chordoma growth, and it can partially

Li et al. (2021), PeerJ, DOI 10.7717/peerj.12263 8/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.12263


Figure 3 miR-100-5p targets and reduces CDC25A level in BC cells. (A) Venn diagram of up-regulated
DEmRNAs and predicted downstream genes of miR-100-5p; (B) Pearson correlation analysis of miR-100-
5p and predicted genes CDC25A, FGFR3 and PCSK9; (C) Pearson correlation analysis of miR-100-5p and
CDC25A; (D) box plots of CDC25A level (green refers to normal and red refers to tumor; normal sample:
113; tumor sample: 1109); (E) Western blot assessed CDC25A expression in MCF-10A, T47D, MDA-MB-
231, MCF-7, and BT-474; (F) the binding sequences of miR-100-5p and CDC25A; (G) binding of miR-
100-5p and CDC25A validated through dual-luciferase assay; (H–I) CDC25A mRNA and protein levels in
MCF-7 cells; * P < 0.05; Experiments in Figure E, G–I was repeated three times, including three technical
replicates and three biological replicates, and representative figures were selected.

Full-size DOI: 10.7717/peerj.12263/fig-3
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Figure 4 miR-100-5p hampers cell malignant behaviors by targeting CDC25A in BC. The (A) mRNA
and (B) protein levels of CDC25A in transfected cells assayed through qRT-PCR and western blot; (C)
Proliferation, (D) clonogenic, (E) migration and (F) invasion properties of MCF-7 cells in different treat-
ment groups assayed through CCK8, clonogenic , wound healing (40×) and Transwell assays (100×), and
(G) flow cytometry was carried out for determination of cell apoptotic rate; * P < 0.05; Each experiment
was repeated three times, including three technical replicates and three biological replicates, and represen-
tative figures were selected.

Full-size DOI: 10.7717/peerj.12263/fig-4

hinder chordoma cell malignant behaviors via EMT suppression (Zhang et al., 2020).Wang,
Tao & Bian (2021) unveiled that miR-100-5p may be a new biomarker for patients with
skin melanoma, and it may be related to survival time of patients. Moreover, Annalisa et al.
(Petrelli, Bellomo et al. 2020) elucidated that miR-100 can be used as a novel biomarker for
patients suffering luminal BC. Nonetheless, research on role andmodulatorymechanism of
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miR-100-5p in BC is in high unmet need. In this study, we first carried out bioinformatics
analysis, revealing low miR-100-5p expression in BC tissue. qRT-PCR detection also found
that miR-100-5p was decreased in BC cells. Additionally, we noted that overexpression of
miR-100-5p inhibited progression of MCF-7 cells as well, indicating that miR-100-5p had
a cancer-suppressive effect on BC cells, congruous with earlier investigations.

To further elucidate modulatory mechanism of miR-100-5p in progression of BC,
CDC25A was predicted to be a target of miR-100-5p, which was unveiled to be highly
expressed in BC through bioinformatics analysis. CDC25A is a key regulatory factor
in progression of cell cycle and checkpoint response (Jin, 2011). miR-365 facilitates
radio-sensitivity of NSCLC cells in vitro and in vivo by targeting CDC25A (Ding et al.,
2019). miR-122-5p has an inverse modulatory impact on CDC25A expression, which is
conducive to the improvement of the prognosis of cervical cancer patients (Ding et al.,
2019). miR-449a targets CDC25A to noticeably reduce cell proliferation and invasion, while
inducing cell apoptosis in endometrial carcinoma (Ye et al., 2014). Here, we uncovered
that miR-100-5p downregulated CDC25A expression. Overexpressing CDC25A facilitated
BC cell malignant progression. In addition, rescue experiment suggested that miR-100-5p
hampered BC cell progression by targeting CDC25A.

In conclusion, we validated the inhibitory effect of miR-100-5p on malignant behaviors
of BC cells. Besides, miR-100-5p suppresses development of BC through reducing CDC25A
expression. Our study helps us to gain more awareness of role of miR-100-5p in BC,
and brings additional insight into the exploration of novel targeted therapy for BC.
Nevertheless, there are several limitations. For instance, it is necessary to further investigate
the involvement of signaling pathways downstream of miR-100-5p/CDC25A. Besides,
direct relationship of miR-100-5p and CDC25A, as well as their molecular mechanism in
regulating biological behaviors are still elusive. These shortcomings need to be resolved in
further studies.
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