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Abstract

Background: The central element of each enzyme is the catalytic site, which commonly catalyzes a single
biochemical reaction with high specificity. It was unclear to us how often sites that catalyze the same or highly
similar reactions evolved on different, i. e. non-homologous protein folds and how similar their 3D poses are. Both
similarities are key criteria for assessing the usability of pose comparison for function prediction.

Results: We have analyzed the SCOP database on the superfamily level in order to estimate the number of
non-homologous enzymes possessing the same function according to their EC number. 89 % of the 873 substrate-
specific functions (four digit EC number) assigned to mono-functional, single-domain enzymes were only found in
one superfamily. For a reaction-specific grouping (three digit EC number), this value dropped to 35 %, indicating
that in approximately 65 % of all enzymes the same function evolved in two or more non-homologous proteins.
For these isofunctional enzymes, structural similarity of the catalytic sites may help to predict function, because
neither high sequence similarity nor identical folds are required for a comparison. To assess the specificity of
catalytic 3D poses, we compiled the redundancy-free set ENZ_SITES, which comprises 695 sites, whose composition
and function are well-defined. We compared their poses with the help of the program Superpose3D and
determined classification performance. If the sites were from different superfamilies, the number of true and false
positive predictions was similarly high, both for a coarse and a detailed grouping of enzyme function. Moreover,
classification performance did not improve drastically, if we additionally used homologous sites to predict function.

Conclusions: For a large number of enzymatic functions, dissimilar sites evolved that catalyze the same reaction
and it is the individual substrate that determines the arrangement of the catalytic site and its local environment.
These substrate-specific requirements turn the comparison of catalytic residues into a weak classifier for the
prediction of enzyme function.
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Background
Enzymes are the workhorses of all metabolic processes
observed in nature, which modify their substrates with
high specificity and efficiency. Interestingly, on average
no more than 3.5 of the approximately 80 to several
hundred residues that constitute an enzyme are directly
engaged in catalysis [1]. Commonly, these residues are
named catalytic residues and the catalytic residues of
one enzyme are termed catalytic site or simply site. In

certain enzymes, metal ions, cofactors, or water mole-
cules are also involved in catalysis, but the catalytic site
is central to the function of an enzyme.
It is known that evolutionary unrelated proteins can

catalyze the same biochemical reactions and these non-
homologous isofunctional enzymes have been named
NISE [2]. Along these lines, algorithms have been devel-
oped that compare the poses, i. e. the relative spatial
(3D) orientation of catalytic residues from different en-
zymes. These comparisons are based on the assumption
that highly similar poses of sites are indicative of similar
reactions and support the prediction of enzyme function
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in the absence of a more global sequence or fold
similarity.
A pioneering and very flexible algorithm that allows

the user to specify a site is PINTS [3]; the alternative
GASPS utilizes a machine learning approach and auto-
matically identifies sets of 3 – 10 residues that maximize
function prediction [4]. Applied to four protein super-
families, GASPS was found to perform comparable or
better than commonly used methods of annotation
transfer like PSI-BLAST [4]. Alternatively, the catalytic
site identification server provides users with protein an-
notations based on structural matches with entries of
the PDB [5]. For the more recently introduced algorithm
CMASA, which uses a similar approach, the authors re-
ported the detection of 166 putative catalytic sites [6].
Methods like ProFunc [7] or ASSIST [8] combine ana-
lysis of protein sequence and structure using several al-
gorithms. The performance of these two approaches is
comparable and ASSIST predicted for 34 of 54 randomly
chosen enzymes the correct Enzyme Commission (EC)
number [8].
With the advent of highly sensitive methods like

HHsearch, which is based on a comparison of Hidden
Markov Models [9], the sensitivity in detecting homolo-
gous proteins has increased drastically: even if the pair-
wise sequence identity of homologous proteins is no
greater than 20 %, HHsearch identifies 50 % of these re-
lationships [9]. Although homologous enzymes may
catalyze quite different reactions, such hits narrow down
the number of putative functions if similarity is high for
the full sequences [10]. Thus, the major challenges of a
catalytic site comparison are the cases in which no hom-
ologous enzymes allow for an annotation transfer.
Recently, we have implemented CLIPS-4D, which predicts

functionally important residues, i. e. catalytic and ligand
binding ones [11]. For these predictions, CLIPS-4D only
uses features deduced from 3D structure and homologous
sequences like solvent accessibility or residue conservation
and does not transfer the annotation of known sites. A
straightforward utilization of these data would be a func-
tional assignment based on the pose of the putative catalytic
residues in order to predict function for unknown enzymes.
Hence we had an interest in determining the performance
of pose comparison for more difficult cases.
Thus we focused on non-homologous isofunctional en-

zymes, where function assignment by sequence compari-
son will fail in most cases. To this end, we estimated the
number of NISE, i. e. those cases which are due to conver-
gent evolution. In convergent evolution, non-homologous
enzymes evolve in separate biological contexts to catalyze
the same or a similar biochemical transformation.
Our analysis of the SCOP database [12] identified 98

out of 873 specific enzyme functions as NISE, which
argues in favor of pose comparison for function

assignment. However, for a successful application, the pre-
dictive power of this approach has to reach an acceptable
level. In order to assess classification performance, we i)
compiled a representative and redundancy-free data set of
catalytic sites and ii) utilized the program Superpose3D
[13] to compare their poses. The function of the enzymes
was compared based on the assigned EC classes [14] and
GO terms [15]. It turned out that for sites consisting of
two or more residues, the specificity of pose comparison
is relatively low; similar poses were found in enzymes
catalyzing completely different reactions. Consequently,
this finding makes clear that a pose comparison alone can
only help in a few cases to unambiguously assign enzyme
function.

Methods
ENZ_SITES, a redundancy-free set of catalytic sites
The Catalytic Site Atlas (CSA) is a comprehensive and fre-
quently used resource of catalytic sites [16]. This database
consists of two types of annotations: a hand‐annotated set
containing information extracted from the primary litera-
ture, using well-defined criteria to assign catalytic residues
and an additional homologous set, containing annotations
inferred by PSI‐BLAST and a sequence alignment to one
entry of the manually curated data set [16]. In order to
concentrate on highly reliable data, we focused on the
manually curated sites, which were in version 2 of CSA
from 928 different PDB [17] entries. Additionally, we
queried the databases BRENDA [18] and PDBsum [19]
(versions as of January 2014) in order to maximize the
number of assigned functions, i. e. EC numbers.
For our purposes, we had to exclude a large num-

ber of entries: 317 sites consisted of just one residue,
which renders the comparison of poses insignificant,
as the 3D superposition of the two corresponding side
chains will always indicate high similarity. For 34
sites, at least one residue was not a canonical amino
acid residue and 126 sites were excluded, as the cata-
lytic residues were located at different chains of the
PDB entry, which is a configuration we could not
analyze. 41 sites were from proteins without an EC
number and 77 sites from multifunctional enzymes; i.
e. more than one EC number was listed. 36 sites had
no SCOP entry which made it impossible to decide
on homology, and 8 sites were removed due to incon-
sistencies in the CSA data and the corresponding
PDB entries. After this filtering process, the data set,
which we named ENZ_SITES, consisted of 695 sites.
The names of these CSA entries are listed in
Additional file 1. The average number of catalytic res-
idues per site was 3.4, which is in agreement with
previous findings [1]; the minimum were two (207/
695, 29.8 % of all sites) and the maximum ten
residues.
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Performance measures
To assess the performance of a classification, we deter-
mined the sensitivity

Sensitivity ¼ TP
TPþ FN

ð1Þ

and the MCC value

MCC ¼ TP� TN‐FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FNð Þ TPþ FPð Þ TNþ FPð Þ TNþ FNð Þp

ð2Þ
MCC values [20] are considered a fair performance

measure as they are deduced from all classified cases. In
both formulae, TP is the number of true positives, TN
the number of true negatives, FP the number of false
positives, and FN the number of false negatives.

Normalized RMSD values
To normalize for the extent of the sites, we tested two
scores, which take into account the number of residues
that were matches:

RMSDN1 csi; csj
� � ¼ RMSD csi; csj

� �

msj j−1 ð3Þ

RMSDN2 csi; csj
� � ¼ RMSD csi; csj

� �

max 1; 3� msj j−6ð Þ ð4Þ

Here, RMSD(csi, csj) = Superpose3D(csi, csj, all-atom
mode) is the root mean square deviation (RMSD) value
determined for the comparison of sites csi and csj in all-
atom mode of Superpose3D [13]; |ms| is the number of
matched, i. e. successfully superposed residues. For
RMSDN2, the score decreases stronger than with
RMSDN1 if ms consists of a larger set of residues.

Results and discussion
Homology is indicative of substrate specificity, but not of
enzymatic function
Based on a detailed analysis of 33 sites, it has been de-
duced that convergent evolution of catalytic sites is not
rare [21]. A more comprehensive analysis resulted in
185 confirmed EC nodes, i. e. enzymatic functions,
where different protein folds were present [2]. The En-
zyme Commission numbering scheme [14] groups the
chemical reactions catalyzed by enzymes in six classes.
These are (1) oxidoreductases, (2) transferases, (3) hy-
drolases, (4) lyases, (5) isomerases, and (6) ligases. Be-
neath each of the six classes, three levels of subclasses
describe the specific enzymatic reaction in more detail.
The third subclass level specifies the reaction and the
fourth level the specific substrate [22, 23].
We were interested in estimating the number of NISE

on the level of the enzymatic reactions and, additionally,

on the level of their individual substrates. In order to de-
termine the evolutionary relationship of enzymes, we
utilized the hierarchical classification of the SCOP data-
base (release 1.75) [12]. SCOP is manually maintained
by experts and its superfamily level is regarded as the
most reliable standard for remote homologs [24]. Thus,
we considered two enzymes as homolog if they shared
the same SCOP superfamily.
We identified all single-domain enzymes that had been

assigned exactly one full EC number. These 8102 enzymes
were grouped according to their EC number, and for each
of these 873 enzyme-catalyzed reactions the number of
SCOP superfamilies was determined. Results are shown in
Fig. 1. The fraction of reactions (four-digit EC number)
catalyzed exclusively by homologous enzymes was 89 %.
98 (11 %) of these reactions were found in at least two dif-
ferent superfamilies and no more than 2 % in five or more
superfamilies. Most extreme were the non-specific serine/
threonine protein kinase (EC 2.7.11.1) that had 19 super-
families and the endo-1,4-beta-xylanase (EC 3.2.1.8), the
protein-tyrosine-phosphatase (EC 3.1.3.48) and the histi-
dine protein kinase (EC 2.7.13.3) that had 8 superfamilies.
Note that these values are upper bounds for the occur-
rence of convergent evolution, as we assumed that en-
zymes from different superfamilies are non-homologous.
This is not true in all cases, e. g. the assignment of
(βα)8-barrels to several SCOP superfamilies is too conser-
vative [25].
According to EC nomenclature, enzymes catalyze the

same reaction if the first three digits of their EC number
are identical. After applying the same grouping as above
to the first three EC digits, the number of functions

Fig. 1 Enzymatic function and their evolution in different SCOP
superfamilies. For the dark bars, enzymes were grouped according to
their four-digit EC number and the number of SCOP superfamilies was
deduced for each of these substrate specific enzymatic functions. The
light bars show the histogram deduced from a compilation of three-
digit EC numbers, which subsumes enzymes with the same function
but different substrates

Žváček et al. BMC Bioinformatics  (2015) 16:359 Page 3 of 8



represented exclusively by homologous enzymes
dropped to 35 %, and the number of functions with five
or more superfamilies was 30 %. These findings make
clear that homology - and consequently sequence simi-
larity - is a strong indicator of a specific substrate, but
not of the more general enzymatic function. Taken
together, these numbers are in agreement with previous
findings, which identified 185 EC nodes with two or
more experimentally characterized (or predicted) struc-
turally unrelated proteins [2].

The all-atom representation and a normalized RMSD are
best suited for site comparison
As shown above for many cases, the same enzymatic
function can be found in different superfamilies. How-
ever, these comparisons do not permit a conclusion on
the specific arrangements and similarities of catalytic
sites.
We wanted to assess the 3D similarity of these sites

based on a representative data set. Unfortunately, it is
unclear for many enzymes which residues are directly
involved in catalysis. This is why we had to concentrate
on a smaller, redundancy-free set of catalytic sites, which
we named ENZ_SITES; see Methods. It consists of 695
sites and is based on the Catalytic Site Atlas, which pre-
cisely enumerates residues that are directly involved in
catalysis [16]. Thus, for all ENZ_SITES entries, the 3D
orientation of the corresponding catalytic residues is
known as well as the SCOP classification [12]. The func-
tion of these enzymes is given by their EC number and
alternatively by a set of GO terms [15] that were inferred
from the Gene Ontology Annotation Database [26] for
618 ENZ_SITES entries.
To begin with, we identified the most suitable 3D rep-

resentation of side chains and the type of score that
maximizes the number of correct predictions. For a first
analysis, we distributed all entries of ENZ_SITES to six
sets according to the first digit of the corresponding EC
number. Figure 2 confirms that the EC class distribution
observed in the PDB is preserved to a great extent in
ENZ_SITES and demonstrates that our selection of en-
zymes is not strongly biased with respect to their func-
tion. For the 3D comparison of sites, we chose the
program Superpose3D [13], as it offers a large number
of ways to represent side chains and amino acid equiva-
lency rules. We altered the source code so that we could
enumerate all possible matches up to a certain, prede-
fined RMSD cut-off. These matches varied with respect
to |ms|, which is the number of superimposed residues.
We compared each catalytic site csi with all other entries
csj that belonged to a different SCOP superfamily, in
order to compare sites that were most likely from non-
homologous enzymes. We counted the prediction as
correct (TP, functional match), if the first digit of the EC

numbers of csi and the most similar site csm_s were iden-
tical. If csm_s was from a different EC class, it was an FN
prediction.
To score a comparison of sites, two parameters have

to be chosen: these are i) the representation of residues
and ii) a measure that assesses the 3D difference of the
two sites. Considering residue representation, we alter-
natively used for each residue the Cα-atom, the Cα- plus
the Cβ-atom, the Cα-atom plus the centroid of the side
chain, and the all-atom representation. Moreover, we
modeled the structural resemblance of tyrosine and
phenylalanine and of isoleucine and valine. With respect
to the overall similarity of the poses, we compared as a
measure the pure RMSD as determined by Superpose3D,
two terms (RMSDN1, RMSDN2) aimed at normalizing by
the number of matched residues (ms, see Methods), and
the scores introduced by Stark et al. [27] and by
Torrance et al. [28]. Table 1 lists the resulting sensitivity
values, which were computed according to equ. (1). It
turned out that the combination of the all-atom repre-
sentation with strict residue equivalences in combination
with the RMSDN2 value gave the highest sensitivity of
0.32. The finding that the all-atom representation is su-
perior to other ones is in agreement with previous stud-
ies [29]. Interestingly, normalizing the RMSD value also
improved the selection of templates for protein design,
as has been demonstrated for the TM-score [30].

Maximizing the MCC as a means of finding optimal cut-
off values
So far, we utilized for a classification only the most simi-
lar hit csm_s, independent of the magnitude of the
RMSDN2 value. For a classifier that predicts enzyme

Fig. 2 Occurrence of enzymes from the six EC classes. The dark bars
give the fraction of the enzymes in ENZ_SITES, the light bars their
fraction in the PDB. On top of the bars, the ratio of the corresponding
fraction values is printed. The value of 1.16 indicates that enzymes
from EC class 1 are 16 % overrepresented in ENZ_SITES with respect to
their occurrence in the PDB
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function, a cut-off value cu_RMSDN2 has to be defined,
which decides on the result of the classification: if
RMSDN2(csi, csm_s) < cu_RMSDN2, then the known func-
tion of the best hit with site csm_s is transferred to the
enzyme with site csi. In order to find the optimal setting,
we used the MCC value, which is considered a fair
measure to assess performance on unbalanced sets of
positives and negatives, as observed here [31]. More pre-
cisely, we searched after the cut-off cu_RMSDN2 that
maximized the MCC value according to:

cuRMSDN2 ¼ arg maxval MCC RMSDN2 csi; csj
� �

; val
� �� �

∀csi; csj∈ENZSITES∨IdentSupFam csi; csj
� � ¼ F

ð5Þ
Ident_SupFam(.) was false (F) if the enzymes repre-

sented by sites csi, csj belonged to different SCOP super-
families. Thus, we only compared sites which were most
likely from non-homologous enzymes, and we named
these comparisons DIFF_SF. For the computation of the
MCC values, we only considered the best hit csm_s. If
RMSDN2(csi, csm_s) < val, then the prediction was
counted as TP if the EC classes of csi and csm_s were
identical; otherwise it was a FP prediction. Accordingly,
the cases with RMSDN2(csi, csm_s) ≥ val were considered:
if the EC classes of csi and csm_s were identical, it was a
FN, otherwise a TN prediction. The largest MCC value
we found was 0.19 for cu_RMSDN2 = 0.65 Å; see Table 2.
With these optimal settings, a relatively low number of
61 TP and a comparatively high number of 58 FP cases
were generated together with 159 FN and 417 TN
predictions.

Classifying function based on site comparison and GO
terms
Grouping all enzymes into no more than six classes, as
we have done so far, is a relatively crude approach that
may deteriorate classification performance. The low sen-
sitivity of 0.32 (Table 1) indicates that the number of FN
is approximately 2 × TP. This means that highly similar
sites possess dissimilar functions to be found in enzymes
belonging to different EC classes. To be more specific,
we applied a classification scheme with a higher

Table 1 Numbers of TPs and sensitivity for different
representations of catalytic sites and for scores to compare their
poses

Method TP Sensitivity

Cα 177 0.26

Cα + Cβ 206 0.30

Cα + centroid 215 0.31

EQUI(Y/F, I/L) 216 0.31

Stark score 214 0.31

Torrance score 213 0.31

RMSD 211 0.30

RMSDN1 218 0.31

RMSDN2 220 0.32

In the upper part, the column Method lists the performance reached for
different representations of the catalytic sites. Cα and Cβ indicate a
representation restricted to the respective atoms, the centroid represents the
full sidechain with one point in 3D. For EQUI(Y/F, I/L), Superpose3D considers
the residue pairs Y, F and I, L as structurally equivalent. The second part of the
table lists results deduced by using different scores for the 3D comparison of
poses. For these cases, the all-atom mode of Superpose3D was used; for
details see text

Table 2 Classification performance for pose comparison

Method MCC TP FP TN FN

DIFF_SF cu_ RMSDN2 = 0.65 Å, 6 EC classes 0.19 61 58 417 159

cu_ RMSDN2 = 0.21 Å, cu_ SGO = 0.88, CC, BP, MF 0.44 2 8 608 0

cu_ RMSDN2 = 0.21 Å, cu_ SGO = 0.88, BP, MF 0.64 5 5 607 1

cu_ RMSDN2 = 0.50 Å, cu_ SGO = 0.75, BP, MF 0.36 35 38 493 52

cu_ RMSDN2 = 0.21 Å, cu_ SGO = 0.75, BP, MF 0.29 5 5 587 21

cu_ RMSDN2 = 0.91 Å, cu_ SGO = 0.88, BP, MF 0.11 6 279 333 0

cu_ RMSDN2 = 0.91 Å, cu_ SGO = 0.75, BP, MF 0.13 20 265 327 6

ALL_ENZ_SITES cu_ RMSDN2 = 0.37 Å, cu_ SGO = 0.90, BP, MF 0.29 14 41 546 17

cu_ RMSDN2 = 0.99 Å, cu_ SGO = 0.77, BP, MF 0.47 59 78 459 22

cu_ RMSD = 0.85 Å, cu_ SGO = 0.70, MF 0.57 167 73 325 53

best of 10 cu_ RMSDN2 = 1.10 Å, cu_ SGO = 0.75, BP, MF 0.58 163 65 337 53

In all cases, the cut-offs for the comparison of poses (cu_ RMSD or cu_ RMSDN2) and sets of GO terms (SGO) are given under Method. The terms CC, BP, and MF
indicate which combination of terms from the annotation domains were analyzed, respectively. The columns on the right give the MCC value and the number of
TP, FP, TN, and FN cases, which resulted from a classification using these cut-offs. For the experiments labeled DIFF_SF, only poses for enzymes from different
superfamilies were compared; for ALL_ENZ_SITES, sites from all entries of ENZ_SITES were compared
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resolution of enzyme function. However, instead of using
EC subclasses, we chose the gene ontology, which also
allows a precise specification of enzyme activity [15].
The major advantage of an ontology is the possibility of
comparing terms by means of a similarity score, which is
not feasible for EC subclasses.
The gene ontology describes gene products with respect

to three annotation domains: these are the cellular com-
ponent (CC), where the protein is active, the biological
process (BP) the protein is involved in, and the molecular
function (MF), which specifies the catalyzed reaction for
enzymes. The set of GO terms is fixed and an acyclic
graph defines the relationships between terms, which
makes possible the comparison of terms and term sets.
For this comparison, several algorithms have been im-

plemented, and we opted for a method proposed recently
[32]. This approach computes similarity scores, which are
independent of the occurrence of the GO terms in the
data set under study. The output is a normalized score
SGO(Gi, Gj) from the range [0, 1], and higher values indi-
cate that the sets Gi and Gj of GO terms are similar. Here,
larger values signal that the corresponding enzymes ei and
ej represented by sites csi and csj have similar function.
We conjectured that GO terms related to the domain CC
do not contribute to a classification of enzyme function,
therefore we tested several combinations of the three an-
notation domains. However, the optimal cut-off cu_SGO
was unclear, as the authors did not recommend a default
value. This is why we performed a grid search and varied
in a systematic manner both cu_RMSDN2 and cu_SGO in
order to maximize the MCC value analogously to the
above-mentioned approach. Table 2 summarizes the re-
sults; the largest MCC value of 0.64 resulted from an ana-
lysis of BP and MF terms and the cut-offs cu_RMSDN2 =
0.21 Å and cu_SGO = 0.88. The number of only five TP in-
dicated a low classification success. For the least stringent
cut-off values which we studied, namely cu_RMSDN2 =
0.91 Å and cu_SGO = 0.75, the MCC value dropped to 0.13
and the number of FP increased to 265. For the intermedi-
ate cut-offs cu_RMSDN2 = 0.50 Å and cu_SGO = 0.75, the
number of FPs was 38, but the MCC value was not higher
than 0.36. For a fixed cu_RMSDN2 value, the MCC value
increased with a decrease of cu_SGO, as more cases were
considered TP; compare the listed results for cu_RMSDN2

= 0.91. As expected, adding GO terms from the CC do-
main to the functional assignment deteriorated classifica-
tion performance: the maximal MCC value dropped from
0.64 to 0.44.

Adding poses of homologs does not improve
classification performance
The above results indicate that pose comparison of non-
homologous enzymes identifies only a small number of
functionally similar enzymes. On the other hand, large

protein families are known to exist, which consist of
functional diverse enzymes [33]. This is why we also
wanted to assess classification performance resulting
from a comparison of all ENZ_SITES, and we named
these analyses (which also included homologous sites)
ALL_ENZ_SITES. Again, the maximal MCC value was
determined by means of a grid-search, and results are
listed in Table 2. Using the same parameters as above
(RMSDN2 and BP, MF), the MCC value was 0.47. As ex-
pected, the number of TP increased to 59, but the num-
ber of FP rose simultaneously to 78. A classification
based on the pure RMSD and GO terms from MF re-
sulted in the MCC value of 0.57. In this case, TP was
167, FP 73 and sensitivity 0.76. It seems that this MCC
value is the upper limit of the classification performance:
even if we picked the enzyme with the highest SGO-score
out of the 10 most similar poses, the maximal MCC
value was not higher than 0.58 and the number of TP,
FP, TN, and FN did not change notably; see the numbers
given in Table 2. For the more stringent cut-offs
cu_RMSDN2 = 0.37 Å and cu_SGO = 0.90, the MCC value
was only 0.29.
Are our findings consisting of an optimal MCC value

of 0.57 and a sensitivity of 0.76 in agreement with previ-
ous results? For their assessment, we selected two re-
cently introduced alternatives, which are the catalytic
site identification server [5] and the CMASA algorithm
[6]. Both are based on similar methods for the 3D com-
parison of catalytic sites as introduced above and have
been evaluated on larger data sets. For the catalytic site
identification server, an MCC value of 0.55 and a sensi-
tivity of 0.85 have been reported [5]. For the CMASA al-
gorithm, a mean MCC value of 0.90 and a sensitivity of
0.86 have been determined. Note that in both assess-
ments, only sites consisting of three or more catalytic
residues have been analyzed. Moreover, for the CMASA
data set, all three residue sites containing two glycines
were eliminated as well. Thus, the lower performance
we determined for the 695 entries of our data set
ENZ_SITES is most likely due to the additional assess-
ment of the more difficult cases, which are the 207 sites
consisting of only two residues. In summary, these find-
ings make clear that pose comparison alone is not suffi-
cient to unambiguously determine enzyme function, if
sites consisting of not more than two residues have to
be analyzed. Additionally, a pose comparison is not pos-
sible for approximately a third of the CSA sites, which
consist of only one catalytic residue. These cases were
masked out in all of the above mentioned studies.

Nature’s preference of a limited number of sites
complicates function prediction
Our survey of 873 substrate-specific enzymatic func-
tions made clear that approximately 11 % of them
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have evolved on two or more non-homologous pro-
tein structures. On the other hand, the performance
of pose comparison was poor both for homologous
and especially for non-homologous structures. For the
relatively strict cut-offs cu_RMSDN2 = 0.21 Å and
cu_SGO = 0.88, the number of five FP predictions
equals the number of five TPs, which indicates that
the same residues - arranged in a highly similar
orientation - catalyze different reactions. For the
other settings tested here, the number of FP was as
well similar to those of TP predictions. Why is this
the case?
It is known that only the 11 polar and charged resi-

dues are generally observed as catalytic residues [34].
Moreover, the combination of residues which occur in
catalytic sites is strictly limited: no more than nine
residue combinations were found that are repeatedly
in use in different and unrelated enzymes [34], which
makes the above findings plausible.
On the other hand, an unbiased analysis of enzymes

suggested that less than 30 % of the BLAST pair frag-
ments determined above 50 % sequence identity have
an identical function [10]. A survey of structurally
characterized superfamilies demonstrated that almost
40 % are functionally diverse, i. e. different members
catalyze reactions with different EC numbers [35].
Thus, a simple annotation transfer by sequence hom-
ology is often insufficient to assign function. A strik-
ing example is the enolase superfamily, which consists
of more than 8000 members that catalyze more than
20 different reactions [36].
How can one assign function in these cases? Most

helpful is a combination of orthogonal methods.
Among the in silico approaches used so far are ligand
docking, the analysis of the genomic context, and
sequence similarity networks [36]. However, in silico
ligand docking is not always successful, as the binding
of a ligand often induces structural changes and the
genomic context is only conserved for microorgan-
isms. Moreover, these methods require a fine-tuning
of parameters and their concerted interpretation is
difficult. Thus, the assignment of enzyme function
still requires human expertise, and the design of reli-
able classifiers for enzyme function is still an open
problem, as has been shown by the CAFA contest
[37]. The challenge is to find the most suitable com-
bination of weak classifiers like CLIPS-4D and pose
comparison and the integration of disparate data
sources in order to form a robust and reliable system
for functional assignment.

Conclusions
For a large number of enzymatic functions, dissimilar
sites evolved that catalyze the same reaction and it is the

individual substrate that determines the arrangement of
the catalytic site and the adjacent residues. It follows
that these substrate-specific requirements turn the com-
parison of catalytic sites into a weak classifier for the
prediction of enzyme function: If a site consists of not
more than two or three catalytic residues, the specificity
of pose comparison is relatively low. Thus, the compos-
ition and the 3D arrangement of the site are in most
cases not specific for a distinct enzyme function.
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